1
|
Vujović S, Desnica J, Stanišić D, Ognjanović I, Stevanovic M, Rosic G. Applications of Biodegradable Magnesium-Based Materials in Reconstructive Oral and Maxillofacial Surgery: A Review. Molecules 2022; 27:molecules27175529. [PMID: 36080296 PMCID: PMC9457564 DOI: 10.3390/molecules27175529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Reconstruction of defects in the maxillofacial region following traumatic injuries, craniofacial deformities, defects from tumor removal, or infections in the maxillofacial area represents a major challenge for surgeons. Various materials have been studied for the reconstruction of defects in the maxillofacial area. Biodegradable metals have been widely researched due to their excellent biological properties. Magnesium (Mg) and Mg-based materials have been extensively studied for tissue regeneration procedures due to biodegradability, mechanical characteristics, osteogenic capacity, biocompatibility, and antibacterial properties. The aim of this review was to analyze and discuss the applications of Mg and Mg-based materials in reconstructive oral and maxillofacial surgery in the fields of guided bone regeneration, dental implantology, fixation of facial bone fractures and soft tissue regeneration.
Collapse
Affiliation(s)
- Sanja Vujović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jana Desnica
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stanišić
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irena Ognjanović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Correspondence: (M.S.); (G.R.); Tel.: +381-641-327752 (M.S.); +381-633-92812 (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Correspondence: (M.S.); (G.R.); Tel.: +381-641-327752 (M.S.); +381-633-92812 (G.R.)
| |
Collapse
|
2
|
Picone G, Cappadone C, Pasini A, Lovecchio J, Cortesi M, Farruggia G, Lombardo M, Gianoncelli A, Mancini L, Ralf H. M, Donato S, Giordano E, Malucelli E, Iotti S. Analysis of Intracellular Magnesium and Mineral Depositions during Osteogenic Commitment of 3D Cultured Saos2 Cells. Int J Mol Sci 2020; 21:ijms21072368. [PMID: 32235449 PMCID: PMC7177893 DOI: 10.3390/ijms21072368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, we explore the behaviour of intracellular magnesium during bone phenotype modulation in a 3D cell model built to mimic osteogenesis. In addition, we measured the amount of magnesium in the mineral depositions generated during osteogenic induction. A two-fold increase of intracellular magnesium content was found, both at three and seven days from the induction of differentiation. By X-ray microscopy, we characterized the morphology and chemical composition of the mineral depositions secreted by 3D cultured differentiated cells finding a marked co-localization of Mg with P at seven days of differentiation. This is the first experimental evidence on the presence of Mg in the mineral depositions generated during biomineralization, suggesting that Mg incorporation occurs during the bone forming process. In conclusion, this study on the one hand attests to an evident involvement of Mg in the process of cell differentiation, and, on the other hand, indicates that its multifaceted role needs further investigation.
Collapse
Affiliation(s)
- Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
| | - Alice Pasini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna 50, 47522 Cesena, Italy
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna 50, 47522 Cesena, Italy
| | - Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna 50, 47522 Cesena, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
- National Institute of Biostructures and Biosystems (NIBB), 00136 Rome, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum–Università di Bologna, via Selmi 2, I-40126 Bologna, Italy
| | | | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, 34149 Basovizza, Italy
| | - Menk Ralf H.
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, 34149 Basovizza, Italy
- INFN section of Trieste, 2-34127 Trieste, Italy
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Sandro Donato
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, 34149 Basovizza, Italy
- Department of Physics, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna 50, 47522 Cesena, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
- Correspondence: ; Tel.: +39-051-209-5414
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
- National Institute of Biostructures and Biosystems (NIBB), 00136 Rome, Italy
| |
Collapse
|
3
|
Răduț R, Crăciun AM, Silaghi CN. BONE MARKERS IN ARTHROPATHIES. Acta Clin Croat 2019; 58:716-725. [PMID: 32595257 PMCID: PMC7314293 DOI: 10.20471/acc.2019.58.04.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bone endures a lifelong course of construction and destruction, with bone marker (BM) molecules released during this cycle. The field of measuring BM levels in synovial fluid and peripheral blood is a cardinal part of bone research within modern clinical medicine and has developed extensively in the last years. The purpose of our work was to convey an up-to-date overview on synovial fluid and serum BMs in the most common arthropathies.
Collapse
Affiliation(s)
| | - Alexandra M Crăciun
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian N Silaghi
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Abstract
Calcification is a regulated physiological process occurring in bones and teeth. However, calcification is commonly found in soft tissues in association with aging and in a variety of diseases. Over the last two decades, it has emerged that calcification occurring in diseased arteries is not simply an inevitable build-up of insoluble precipitates of calcium phosphate. In some cases, it is an active process in which transcription factors drive conversion of vascular cells to an osteoblast or chondrocyte-like phenotype, with the subsequent production of mineralizing "matrix vesicles." Early studies of bone and cartilage calcification suggested roles for cellular calcium signaling in several of the processes involved in the regulation of bone calcification. Similarly, calcium signaling has recently been highlighted as an important component in the mechanisms regulating pathological calcification. The emerging hypothesis is that ectopic/pathological calcification occurs in tissues in which there is an imbalance in the regulatory mechanisms that actively prevent calcification. This review highlights the various ways that calcium signaling regulates tissue calcification, with a particular focus on pathological vascular calcification.
Collapse
Affiliation(s)
- Diane Proudfoot
- Signalling Division, Babraham Institute, Babraham, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
5
|
Yue J, Jin S, Gu S, Sun R, Liang Q. High concentration magnesium inhibits extracellular matrix calcification and protects articular cartilage via Erk/autophagy pathway. J Cell Physiol 2019; 234:23190-23201. [PMID: 31161622 DOI: 10.1002/jcp.28885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
Abstract
The significant cytopathological changes of osteoarthritis are chondrocyte hypertrophy, proteoglycan loss, extracellular matrix (ECM) calcification, and terminally, the replacement of cartilage by bone. Meanwhile, magnesium ion (Mg2+ ), as the second most abundant divalent cation in the human body, has been proved to inhibit the ECM calcification of hBMSCs (human bone marrow stromal cells), hVSMCs (Human vascular smooth muscle cells), and TDSCs (tendon-derived stem cells) in vitro studies. The ATDC5 cell line, which holds chondrocyte characteristics, was used in this study as an in vitro subject. We found that Mg2+ can efficiently suppress the ECM calcification and downregulate both hypertrophy and matrix metalloproteinase-related genes. Meanwhile, Mg2+ inhibits the formation of autophagy by inhibiting Erk phosphorylation signaling and lowers the expression of LC3, and eventually effectively reduces the formation of ECM calcification in vitro. In this study, we also used destabilization of the medial meniscus (DMM)-induced osteoarthritis (OA) animal model to further confirm the protective effect of Mg2+ on articular cartilage. Compared with the control group (saline-injected), continuous intra-articular magnesium chloride (MgCl2 ) injection can significantly alleviate the severity of cartilage calcification in OA animal model. Immunofluorescence staining also revealed that saline-injected DMM group had a higher positive rate of LC3 expression in cartilage chondrocytes, compared with MgCl2 -injected DMM group. In general, Mg2+ can significantly downregulate the hypertrophic gene Runx2, MMP13, and Col10α1, upregulate the chondrogenic genes Sox9 and Col1α1, inhibit the Erk phosphorylation signaling, reduce the expression of autophagy protein LC3, and effectively inhibit the ECM calcification of ATDC5. In vivo study also proved that intra-articular injection of Mg2+ protected knee cartilage by inhibiting the autophagy formation.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shanzi Jin
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shizhong Gu
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Rui Sun
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Qingwei Liang
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
6
|
Dai Y, Tang Y, Xu X, Luo Z, Zhang Y, Li Z, Lin Z, Zhao S, Zeng M, Sun B, Cheng L, Zhu J, Xiong Z, Long H, Zhu Y, Yu K. Evaluation of the mechanisms and effects of Mg-Ag-Y alloy on the tumor growth and metastasis of the MG63 osteosarcoma cell line. J Biomed Mater Res B Appl Biomater 2019; 107:2537-2548. [PMID: 30779430 DOI: 10.1002/jbm.b.34344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 12/11/2022]
Abstract
Osteosarcoma is a malignant primary bone tumor, which often associates with pulmonary metastasis. The radical surgery of osteosarcoma often requires internal orthopedic implants. Therefore, implants with antitumor properties should be developed. Magnesium (Mg) and its alloys possess great potential as orthopedic materials, given their biodegradable properties, superior osteogenesis performance, and antitumor features. However, problems arise with their uncontrolled degradation rates and their unknown antitumor mechanisms. In our study, when compared with pure Mg, the rare element silver alloyed with yttrium (Ag-Y) could extremely enhance the corrosion resistance of these elements, giving the Ex-Mg-1Ag-1Y alloy better anticorrosion rates. Here, we implanted the Ex-Mg-1Ag-1Y alloy and pure Mg and Ti alloy in vivo around tumors in nude mice (BALB/c). Notably, the local tumor weight in Mg alloy and pure Mg groups were much smaller than that in Ti alloy group in 36 days after surgery (6.59 ± 0.70, 6.76 ± 0.62, and 8.54 ± 0.56 g), while the general scores of lung metastasis in Mg alloy and pure Mg groups were also lower than Ti alloy group (64.50 ± 7.64, 62.73 ± 7.84, and 87.60 ± 9.43). Therefore, the Mg and Ex-Mg-1Ag-1Y alloy, both demonstrated resisting effects against local tumor growth and pulmonary metastasis, which could be performed by changing the extracellular acidosis microenvironment, elevating the Mg concentration, suppressing C-X-C chemokine receptor type 4 (CXCR4) levels, and increasing prostacyclin (PGI2 ) synthesis. Our work revealed that the Ex-Mg-1Ag-1Y alloy may be a promising orthopedic implant for treating osteosarcoma due to its better corrosion resistance and antitumor attributes. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2537-2548, 2019.
Collapse
Affiliation(s)
- Yilong Dai
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.,Science and Technology on High Strength Structural Materials Laboratory, Central South University, Changsha 410083, China
| | - Yifu Tang
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xuemei Xu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Zhongwei Luo
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaohui Li
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhangyuan Lin
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shushan Zhao
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Min Zeng
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Buhua Sun
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Liang Cheng
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jianxi Zhu
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zeng Xiong
- Department of Radiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Haitao Long
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yong Zhu
- Department of Orthopaedics and Traumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kun Yu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.,Science and Technology on High Strength Structural Materials Laboratory, Central South University, Changsha 410083, China.,Department of Materials Science and Engineering, Yantai Nanshan University, 265713, China
| |
Collapse
|
7
|
Glenske K, Donkiewicz P, Köwitsch A, Milosevic-Oljaca N, Rider P, Rofall S, Franke J, Jung O, Smeets R, Schnettler R, Wenisch S, Barbeck M. Applications of Metals for Bone Regeneration. Int J Mol Sci 2018; 19:E826. [PMID: 29534546 PMCID: PMC5877687 DOI: 10.3390/ijms19030826] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023] Open
Abstract
The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.
Collapse
Affiliation(s)
- Kristina Glenske
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | | | | | - Nada Milosevic-Oljaca
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | | | - Sven Rofall
- Botiss Biomaterials, D-12109 Berlin, Germany.
| | - Jörg Franke
- Clinic for Trauma Surgery and Orthopedics, Elbe Kliniken Stade-Buxtehude, D-21682 Stade, Germany.
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| | | | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | - Mike Barbeck
- Botiss Biomaterials, D-12109 Berlin, Germany.
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| |
Collapse
|
8
|
Li Y, Wang J, Yue J, Wang Y, Yang C, Cui Q. High magnesium prevents matrix vesicle-mediated mineralization in human bone marrow-derived mesenchymal stem cells via mitochondrial pathway and autophagy. Cell Biol Int 2017; 42:205-215. [PMID: 29024399 DOI: 10.1002/cbin.10888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/07/2017] [Indexed: 01/02/2023]
Abstract
Magnesium, as a physiological calcium antagonist, plays a vital role in the bone metabolism and the balance between magnesium and calcium is crucial in bone physiology. We recently demonstrated that matrix mineralization in human bone marrow-derived mesenchymal stem cells (hBMSCs) can be suppressed by high Mg2+ . However, a complete understanding of the mechanisms involved still remains to be elucidated. As mitochondrial calcium phosphate granules depletion manifests concurrently with the appearance of matrix vesicles (MVs) and autophagy are associated with matrix mineralization, we studied the effect of high extracellular Mg2+ on these pathways. Our results first demonstrated that high Mg2+ has a significant inhibitory effect on the generalization of extracellular mineral aggregates and the expression of collagen 1 along which the mineral crystals grow. Transmission electron microscope results showed that less amount of MVs were observed inside hBMSCs treated with high Mg2+ and high Mg2+ inhibited the release of MVs. In addition, high Mg2+ significantly suppressed mitochondrial Ca2+ accumulation. Autophagy is promoted as a response to osteogenesis of hBMSCs. High Mg2+ inhibited the level of autophagy upon osteogenesis and autophagy inhibitor 3-MA significantly suppressed mineralization. Exogenous ATP can reverse the inhibitory effect of high Mg2+ by increasing the level of autophagy. Taken together, our results indicate that high Mg2+ may modulate MVs-mediated mineralization via suppressing mitochondrial Ca2+ intensity and regulates autophagy of hBMSCs upon osteogenesis, resulting in decreased extracellular mineralized matrix deposition. Our results contribute to the understanding of the role of magnesium homeostasis in osteoporosis and the design of magnesium alloys.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China.,Tongji University School of medicine, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Jing Wang
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Institute of Textile Composite, Tianjin Polytechnic University, Tianjin, 300387, P.R. China
| | - Jiaji Yue
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China.,Tongji University School of medicine, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Yu Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China
| | - Chunxi Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, P.R. China
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, 22903
| |
Collapse
|
9
|
Martinez Sanchez AH, Feyerabend F, Laipple D, Willumeit-Römer R, Weinberg A, Luthringer BJ. Chondrogenic differentiation of ATDC5-cells under the influence of Mg and Mg alloy degradation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:378-388. [DOI: 10.1016/j.msec.2016.11.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/11/2016] [Indexed: 11/27/2022]
|
10
|
Tsao YT, Shih YY, Liu YA, Liu YS, Lee OK. Knockdown of SLC41A1 magnesium transporter promotes mineralization and attenuates magnesium inhibition during osteogenesis of mesenchymal stromal cells. Stem Cell Res Ther 2017; 8:39. [PMID: 28222767 PMCID: PMC5320718 DOI: 10.1186/s13287-017-0497-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/09/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Magnesium is essential for numerous physiological functions. Magnesium exists mostly in bone and the amount is dynamically regulated by skeletal remodeling. Accelerating bone mass loss occurs when magnesium intake is insufficient; whereas high magnesium could lead to mineralization defects. However, the underlying magnesium regulatory mechanisms remain elusive. In the present study, we investigated the effects of high extracellular magnesium concentration on osteogenic differentiation of mesenchymal stromal/stem cells (MSCs) and the role of magnesium transporter SLC41A1 in the mineralization process. METHODS Murine MSCs derived from the bone marrow of BALB/c mouse or commercially purchased human MSCs were treated with osteogenic induction medium containing 5.8 mM magnesium chloride and the osteogenic differentiation efficiency was compared with that of MSCs in normal differentiation medium containing 0.8 mM magnesium chloride by cell morphology, gene expression profile of osteogenic markers, and Alizarin Red staining. Slc41a1 gene knockdown in MSCs was performed by siRNA transfection using Lipofectamine RNAiMAX, and the differentiation efficiency of siRNA-treated MSCs was also assessed. RESULTS High concentration of extracellular magnesium ion inhibited mineralization during osteogenic differentiation of MSCs. Early osteogenic marker genes including osterix, alkaline phosphatase, and type I collagen were significantly downregulated in MSCs under high concentration of magnesium, whereas late marker genes such as osteopontin, osteocalcin, and bone morphogenetic protein 2 were upregulated with statistical significance compared with those in normal differentiation medium containing 0.8 mM magnesium. siRNA treatment targeting SLC41A1 magnesium transporter, a member of the solute carrier family with a predominant Mg2+ efflux system, accelerated the mineralization process and ameliorated the inhibition of mineralization caused by high concentration of magnesium. High concentration of magnesium significantly upregulated Dkk1 gene expression and the upregulation was attenuated after the Slc41a1 gene was knocked down. Immunofluorescent staining showed that Slc41a1 gene knockdown promoted the translocation of phosphorylated β-catenin into nuclei. In addition, secreted MGP protein was elevated after Slc41a1 was knocked down. CONCLUSIONS High concentration of extracellular magnesium modulates gene expression of MSCs during osteogenic differentiation and inhibits the mineralization process. Additionally, we identified magnesium transporter SLC41A1 that regulates the interaction of magnesium and MSCs during osteogenic differentiation. Wnt signaling is suggested to be involved in SLC41A1-mediated regulation. Tissue-specific SLC41A1 could be a potential treatment for bone mass loss; in addition, caution should be taken regarding the role of magnesium in osteoporosis and the design of magnesium alloys for implantation.
Collapse
Affiliation(s)
- Yu-Tzu Tsao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
- Division of Nephrology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 33004 Taiwan
| | - Ya-Yi Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Yu-An Liu
- Stem Cell Research Center, National Yang-Ming University, Rm. 825, Chih-Teh Building, No.322, Sec.2, Shih-Pai Rd, Taipei, 11221 Taiwan
| | - Yi-Shiuan Liu
- Stem Cell Research Center, National Yang-Ming University, Rm. 825, Chih-Teh Building, No.322, Sec.2, Shih-Pai Rd, Taipei, 11221 Taiwan
| | - Oscar K. Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
- Stem Cell Research Center, National Yang-Ming University, Rm. 825, Chih-Teh Building, No.322, Sec.2, Shih-Pai Rd, Taipei, 11221 Taiwan
- Taipei City Hospital, 145 Zhengzhou Road, Taipei, 10341 Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217 Taiwan
| |
Collapse
|
11
|
Cavaco S, Viegas CSB, Rafael MS, Ramos A, Magalhães J, Blanco FJ, Vermeer C, Simes DC. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol Life Sci 2016; 73:1051-65. [PMID: 26337479 PMCID: PMC11108449 DOI: 10.1007/s00018-015-2033-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a whole-joint disease characterized by articular cartilage loss, tissue inflammation, abnormal bone formation and extracellular matrix (ECM) mineralization. Disease-modifying treatments are not yet available and a better understanding of osteoarthritis pathophysiology should lead to the discovery of more effective treatments. Gla-rich protein (GRP) has been proposed to act as a mineralization inhibitor and was recently shown to be associated with OA in vivo. Here, we further investigated the association of GRP with OA mineralization-inflammation processes. Using a synoviocyte and chondrocyte OA cell system, we showed that GRP expression was up-regulated following cell differentiation throughout ECM calcification, and that inflammatory stimulation with IL-1β results in an increased expression of COX2 and MMP13 and up-regulation of GRP. Importantly, while treatment of articular cells with γ-carboxylated GRP inhibited ECM calcification, treatment with either GRP or GRP-coated basic calcium phosphate (BCP) crystals resulted in the down-regulation of inflammatory cytokines and mediators of inflammation, independently of its γ-carboxylation status. Our results strengthen the calcification inhibitory function of GRP and strongly suggest GRP as a novel anti-inflammatory agent, with potential beneficial effects on the main processes responsible for osteoarthritis progression. In conclusion, GRP is a strong candidate target to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Sofia Cavaco
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Carla S B Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Marta S Rafael
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Acácio Ramos
- Department of Orthopedics and Traumatology, Algarve Medical Centre (CHAlgarve), Faro, Portugal
| | - Joana Magalhães
- Grupo de Bioingeniería Tisular y Terapia Celular (GBTTC-CHUAC), Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad de A Coruña (UDC), A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Francisco J Blanco
- Grupo de Bioingeniería Tisular y Terapia Celular (GBTTC-CHUAC), Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad de A Coruña (UDC), A Coruña, Spain
| | - Cees Vermeer
- VitaK, Maastricht University, Maastricht, The Netherlands
| | - Dina C Simes
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
12
|
Li Y, Yue J, Yang C. Unraveling the role of Mg(++) in osteoarthritis. Life Sci 2016; 147:24-9. [PMID: 26800786 DOI: 10.1016/j.lfs.2016.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/03/2016] [Accepted: 01/18/2016] [Indexed: 12/29/2022]
Abstract
Mg(++) is widely involved in human physiological processes that may play key roles in the generation and progression of diseases. Osteoarthritis (OA) is a complex joint disorder characterized by articular cartilage degradation, abnormal mineralization and inflammation. Magnesium deficiency is considered to be a major risk factor for OA development and progression. Magnesium deficiency is active in several pathways that have been implicated in OA, including increased inflammatory mediators, cartilage damage, defective chondrocyte biosynthesis, aberrant calcification and a weakened effect of analgesics. Abundant in vitro and in vivo evidence in animal models now suggests that the nutritional supplementation or local infiltration of Mg(++) represent effective therapies for OA. The goal of this review is to summarize the current understanding of the role of Mg(++) in OA with particular emphasis on the related molecular mechanisms involved in OA progression.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China; School of medicine, Tongji University, Shanghai, China
| | - Jiaji Yue
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China; School of medicine, Tongji University, Shanghai, China
| | - Chunxi Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China; School of medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Bai Y, Zhang J, Xu J, Cui L, Zhang H, Zhang S, Feng X. Magnesium prevents β-glycerophosphate-induced calcification in rat aortic vascular smooth muscle cells. Biomed Rep 2015; 3:593-597. [PMID: 26171172 DOI: 10.3892/br.2015.473] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/21/2015] [Indexed: 02/02/2023] Open
Abstract
Vascular calcification (VC), in which high serum phosphate plays a critical role, is one major problem in patients with chronic kidney disease. Clinical studies report that magnesium has a protective effect on VC. However, the studies regarding the impact of high serum magnesium on VC at a cellular level are few and require further investigation. Therefore, the present study explored the effect of magnesium on calcification induced by β-glycerophosphate (BGP) in rat aortic vascular smooth muscle cells (RAVSMCs). In the present study, the addition of magnesium decreased calcium deposition, which was increased by BGP. Higher magnesium levels inhibited BGP-induced alkaline phosphatase (ALP) activity and decreased the expression of core-binding factor α-1 (Cbfα1). In conclusion, higher magnesium levels prevented BGP-induced calcification in RAVSMCs and inhibited the expression of Cbfα1 and ALP. Thus, magnesium is influencing the expression of Cbfα1 and ALP associated with VC and may have the potential to serve as a role for VC in clinical situations.
Collapse
Affiliation(s)
- Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junxia Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liwen Cui
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Huiran Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xunwei Feng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
14
|
Zhang L, Yang C, Li J, Zhu Y, Zhang X. High extracellular magnesium inhibits mineralized matrix deposition and modulates intracellular calcium signaling in human bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2014; 450:1390-5. [PMID: 25010642 DOI: 10.1016/j.bbrc.2014.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into several cell types and provide an attractive source of autologous cells for regenerative medicine. However, their cellular biology is not fully understood. Similar to Ca(2+), extracellular Mg(2+) plays an important role in the functions of the skeletal system. Here, we examined the effects of extracellular Mg(2+) on the deposition of calcium phosphate matrix and Ca(2+) signaling with or without ATP stimulation in human bone marrow-derived mesenchymal stem cells (hBMSCs). We found that high extracellular Mg(2+) concentration ([Mg(2+)]e) inhibited extracellular matrix mineralization in hBMSCs in vitro. hBMSCs also produced a dose-dependent decrease in the frequency of calcium oscillations during [Mg(2+)]e elevation with a slight suppression on oscillation amplitude. In addition, spontaneous ATP release was inhibited under high [Mg(2+)]e levels and exogenous ATP addition stimulated oscillation reappear. Taken together, our results indicate that high [Mg(2+)]e modulates calcium oscillations via suppression of spontaneous ATP release and inactivates purinergic receptors, resulting in decreased extracellular mineralized matrix deposition in hBMSCs. Therefore, the high magnesium environment created by the rapid corrosion of Mg alloys may result in the dysfunction of calcium-dependent physiology processes and be disadvantageous to hBMSCs physiology.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedics, Tenth People's Hospital, Shanghai Tong Ji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China; The First Clinical Medical College, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, People's Republic of China
| | - Chunxi Yang
- Department of Orthopedics, Tenth People's Hospital, Shanghai Tong Ji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Jiao Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, People's Republic of China
| | - Yuchang Zhu
- Department of Orthopedics, Tenth People's Hospital, Shanghai Tong Ji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Xiaoling Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, People's Republic of China.
| |
Collapse
|
15
|
Afsar B, Elsurer R. The relationship between magnesium and ambulatory blood pressure, augmentation index, pulse wave velocity, total peripheral resistance, and cardiac output in essential hypertensive patients. ACTA ACUST UNITED AC 2014; 8:28-35. [DOI: 10.1016/j.jash.2013.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 01/09/2023]
|
16
|
Louvet L, Büchel J, Steppan S, Passlick-Deetjen J, Massy ZA. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol Dial Transplant 2012; 28:869-78. [PMID: 23229924 PMCID: PMC3611891 DOI: 10.1093/ndt/gfs520] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease. Factors promoting calcification include abnormalities in mineral metabolism, particularly high phosphate levels. Inorganic phosphate (Pi) is a classical inducer of in vitro VC. Recently, an inverse relationship between serum magnesium concentrations and VC has been reported. The present study aimed to investigate the effects of magnesium on Pi-induced VC at the cellular level using primary HAVSMC. Methods Alive and fixed HAVSMC were assessed during 14 days in the presence of Pi with increasing concentrations of magnesium (Mg2+) chloride. Mineralization was measured using quantification of calcium, von Kossa and alizarin red stainings. Cell viability and secretion of classical VC markers were also assessed using adequate tests. Involvement of transient receptor potential melastatin (TRPM) 7 was assessed using 2-aminoethoxy-diphenylborate (2-APB) inhibitor. Results Co-incubation with Mg2+ significantly decreased Pi-induced VC in live HAVSMC, no effect was found in fixed cells. At potent concentrations in Pi-induced HAVSMC, Mg2+ significantly improved cell viability and restored to basal level increased secretions of osteocalcin and matrix gla protein, whereas a decrease in osteopontin secretion was partially restored. The block of TRPM7 with 2-APB at 10−4 M led to the inefficiency of Mg2+ to prevent VC. Conclusions Increasing Mg2+ concentrations significantly reduced VC, improved cell viability and modulated secretion of VC markers during cell-mediated matrix mineralization clearly pointing to a cellular role for Mg2+ and 2-APB further involved TRPM7 and a potential Mg2+ entry to exert its effects. Further investigations are needed to shed light on additional cellular mechanism(s) by which Mg2+ is able to prevent VC.
Collapse
|
17
|
Cunningham J, Rodríguez M, Messa P. Magnesium in chronic kidney disease Stages 3 and 4 and in dialysis patients. Clin Kidney J 2012; 5:i39-i51. [PMID: 26069820 PMCID: PMC4455820 DOI: 10.1093/ndtplus/sfr166] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The kidney has a vital role in magnesium homeostasis and, although the renal handling of magnesium is highly adaptable, this ability deteriorates when renal function declines significantly. In moderate chronic kidney disease (CKD), increases in the fractional excretion of magnesium largely compensate for the loss of glomerular filtration rate to maintain normal serum magnesium levels. However, in more advanced CKD (as creatinine clearance falls <30 mL/min), this compensatory mechanism becomes inadequate such that overt hypermagnesaemia develops frequently in patients with creatinine clearances <10 mL/min. Dietary calcium and magnesium may affect the intestinal uptake of each other, though results are conflicting, and likewise the role of vitamin D on intestinal magnesium absorption is somewhat uncertain. In patients undergoing dialysis, the effect of various magnesium and calcium dialysate concentrations has been investigated in haemodialysis (HD) and peritoneal dialysis (PD). Results generally show that dialysate magnesium, at 0.75 mmol/L, is likely to cause mild hypermagnesaemia, results for a magnesium dialysate concentration of 0.5 mmol/L were less consistent, whereas serum magnesium levels were mostly normal to hypomagnesaemic when 0.2 and 0.25 mmol/L were used. While dialysate magnesium concentration is a major determinant of HD or PD patients' magnesium balance, other factors such as nutrition and medications (e.g. laxatives or antacids) also play an important role. Also examined in this review is the role of magnesium on parathyroid hormone (PTH) levels in dialysis patients. Although various studies have shown that patients with higher serum magnesium tend to have lower PTH levels, many of these suffer from methodological limitations. Finally, we examine the complex and often conflicting results concerning the interplay between magnesium and bone in uraemic patients. Although the exact role of magnesium in bone metabolism is unclear, it may have both positive and negative effects, and it is uncertain what the optimal magnesium levels are in uraemic patients.
Collapse
Affiliation(s)
- John Cunningham
- UCL Centre for Nephrology Royal Free, University College London Medical School, London, UK
| | - Mariano Rodríguez
- Nephrology Service, IMIBIC, University Hospital Reina Sofia, Cordoba, Spain
| | | |
Collapse
|
18
|
Kircelli F, Peter ME, Sevinc Ok E, Celenk FG, Yilmaz M, Steppan S, Asci G, Ok E, Passlick-Deetjen J. Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner. Nephrol Dial Transplant 2011; 27:514-21. [PMID: 21750166 PMCID: PMC3275783 DOI: 10.1093/ndt/gfr321] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background. Vascular calcification (VC), mainly due to elevated phosphate levels, is one major problem in patients suffering from chronic kidney disease. In clinical studies, an inverse relationship between serum magnesium and VC has been reported. However, there is only few information about the influence of magnesium on calcification on a cellular level available. Therefore, we investigated the effect of magnesium on calcification induced by β-glycerophosphate (BGP) in bovine vascular smooth muscle cells (BVSMCs). Methods. BVSMCs were incubated with calcification media for 14 days while simultaneously increasing the magnesium concentration. Calcium deposition, transdifferentiation of cells and apoptosis were measured applying quantification of calcium, von Kossa and Alizarin red staining, real-time reverse transcription–polymerase chain reaction and annexin V staining, respectively. Results. Calcium deposition in the cells dramatically increased with addition of BGP and could be mostly prevented by co-incubation with magnesium. Higher magnesium levels led to inhibition of BGP-induced alkaline phosphatase activity as well as to a decreased expression of genes associated with the process of transdifferentiation of BVSMCs into osteoblast-like cells. Furthermore, estimated calcium entry into the cells decreased with increasing magnesium concentrations in the media. In addition, higher magnesium concentrations prevented cell damage (apoptosis) induced by BGP as well as progression of already established calcification. Conclusions. Higher magnesium levels prevented BVSMC calcification, inhibited expression of osteogenic proteins, apoptosis and further progression of already established calcification. Thus, magnesium is influencing molecular processes associated with VC and may have the potential to play a role for VC also in clinical situations.
Collapse
Affiliation(s)
- Fatih Kircelli
- Division of Nephrology, Ege University School of Medicine, Izmir, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cailotto F, Reboul P, Sebillaud S, Netter P, Jouzeau JY, Bianchi A. Calcium input potentiates the transforming growth factor (TGF)-beta1-dependent signaling to promote the export of inorganic pyrophosphate by articular chondrocyte. J Biol Chem 2011; 286:19215-28. [PMID: 21471198 DOI: 10.1074/jbc.m110.175448] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transforming growth factor (TGF)-β1 stimulates extracellular PP(i) (ePP(i)) generation and promotes chondrocalcinosis, which also occurs secondary to hyperparathyroidism-induced hypercalcemia. We previously demonstrated that ANK was up-regulated by TGF-β1 activation of ERK1/2 and Ca(2+)-dependent protein kinase C (PKCα). Thus, we investigated mechanisms by which calcium could affect ePP(i) metabolism, especially its main regulating proteins ANK and PC-1 (plasma cell membrane glycoprotein-1). We stimulated articular chondrocytes with TGF-β1 under extracellular (eCa(2+)) or cytosolic Ca(2+) (cCa(2+)) modulations. We studied ANK, PC-1 expression (quantitative RT-PCR, Western blotting), ePP(i) levels (radiometric assay), and cCa(2+) input (fluorescent probe). Voltage-operated Ca(2+)-channels (VOC) and signaling pathways involved were investigated with selective inhibitors. Finally, Ank promoter activity was evaluated (gene reporter). TGF-β1 elevated cCa(2+) and ePP(i) levels (by up-regulating Ank and PC-1 mRNA/proteins) in an eCa(2+) dose-dependent manner. TGF-β1 effects were suppressed by cCa(2+) chelation or L- and T-VOC blockade while being mostly reproduced by ionomycin. In the same experimental conditions, the activation of Ras, the phosphorylation of ERK1/2 and PKCα, and the stimulation of Ank promoter activity were affected similarly. Activation of SP1 (specific protein 1) and ELK-1 (Ets-like protein-1) transcription factors supported the regulatory role of Ca(2+). SP1 or ELK-1 overexpression or blockade experiments demonstrated a major contribution of ELK-1, which acted synergistically with SP1 to activate Ank promoter in response to TGF-β1. TGF-β1 promotes input of eCa(2+) through opening of L- and T-VOCs, to potentiate ERK1/2 and PKCα signaling cascades, resulting in an enhanced activation of Ank promoter and ePP(i) production in chondrocyte.
Collapse
Affiliation(s)
- Frederic Cailotto
- Laboratoire de Physiopathologie, Pharmacologie et Ingénierie Articulaires, Faculté de Médecine, UMR 7561 CNRS-Nancy-Université, Vandœuvre-Lès-Nancy, France.
| | | | | | | | | | | |
Collapse
|
20
|
Mendoza FJ, Martinez-Moreno J, Almaden Y, Rodriguez-Ortiz ME, Lopez I, Estepa JC, Henley C, Rodriguez M, Aguilera-Tejero E. Effect of calcium and the calcimimetic AMG 641 on matrix-Gla protein in vascular smooth muscle cells. Calcif Tissue Int 2011; 88:169-78. [PMID: 21161195 DOI: 10.1007/s00223-010-9442-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
Vascular calcification (VC) is frequently observed in patients with chronic renal failure and appears to be an active process involving transdifferentiation of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Reports of VC prevention in uremic rodents by calcimimetics coupled with identification of the calcium-sensing receptor (CaSR) in VSMCs led us to hypothesize that CaSR activation in arterial cells and VSMCs may elicit expression of an endogenous inhibitor of VC. Toward this end, we determined the effects of calcium and the calcimimetic AMG 641 on arterial wall and isolated VSMC expression of matrix-Gla protein (MGP). Bovine VSMCs were incubated with increasing calcium chloride or AMG 641 concentrations, while in vivo experiments were carried out on healthy and uremic rats. Both AMG 641 and hypercalcemia induced MGP expression in the arterial wall in healthy and uremic rats. The results obtained in vitro supported those from in vivo experiments. In conclusion, selective CaSR activation, either by extracellular calcium or AMG 641, increased MGP expression in vivo in the arterial wall and in vitro in bovine VSMCs. This local upregulation of MGP expression provides one potential mechanism by which calcimimetics prevent VC.
Collapse
Affiliation(s)
- Francisco J Mendoza
- Departamento de Medicina y Cirugia Animal, Universidad de Cordoba, Campus Universitario Rabanales, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakatani S, Mano H, Sampei C, Shimizu J, Wada M. Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo. Osteoarthritis Cartilage 2009; 17:1620-7. [PMID: 19615963 DOI: 10.1016/j.joca.2009.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 06/19/2009] [Accepted: 07/02/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the direct effect of prolyl-hydroxyproline (Pro-Hyp) on chondrocytes under in vivo and in vitro conditions in an attempt to identify Pro-Hyp as the bioactive peptide in collagen hydrolysate (CH). METHODS The in vivo effects of CH and Pro-Hyp intake on articular cartilage were studied by microscopic examination of sections of dissected articular cartilage from treated C57BL/6J mice. In this study, mice that were fed diets containing excess phosphorus were used as an in vivo model. This mouse line showed loss of chondrocytes and reduced thickness of articular cartilage, with abnormality of the subchondral bone. The in vitro effects of CH, Pro-Hyp, amino acids and other peptides on proliferation, differentiation, glycosaminoglycan content and mineralization of chondrocytes were determined by MTT activity and staining with alkaline phosphatase, alcian blue and alizarin red. Expression of chondrogenesis-specific genes in ATDC5 cells was determined by semiquantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR). RESULTS In vivo, CH and Pro-Hyp inhibited the loss of chondrocytes and thinning of the articular cartilage layer caused by phosphorus-induced degradation. In the in vitro study, CH and Pro-Hyp did not affect chondrocyte proliferation but inhibited their differentiation into mineralized chondrocytes. A combination of amino acids such as proline, hydroxyproline and prolyl-hydroxyprolyl-glycine did not affect chondrocyte proliferation or differentiation. Moreover, CH and Pro-Hyp caused two and threefold increases, respectively, in the staining area of glycosaminoglycan in the extracellular matrix of ATDC5 cells. RT-PCR indicated that Pro-Hyp increased the aggrecan mRNA level approximately twofold and decreased the Runx1 and osteocalcin mRNA levels by two-thirds and one-tenth, respectively. CONCLUSION Pro-Hyp is the first bioactive edible peptide derived from CH to be shown to affect chondrocyte differentiation under pathological conditions.
Collapse
Affiliation(s)
- S Nakatani
- Department of Food Functional Science, Graduate School of Pharmacology, Josai University, Keyakidai 1-1, Sakado, Saitama 3500295, Japan
| | | | | | | | | |
Collapse
|
22
|
Wang L, Sun Y, Jiang M, Zhang S, Wolfl S. FOS proliferating network construction in early colorectal cancer (CRC) based on integrative significant function cluster and inferring analysis. Cancer Invest 2009; 27:816-24. [PMID: 19557575 DOI: 10.1080/07357900802672753] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim is to setup single distinguished molecular network. We constructed FOS proliferating network from 22 colorectal samples of the same GEO dataset by GRNInfer tool and DAVID based on linear programming and a decomposition procedure with integrated Kappa statistics and fuzzy heuristic clustering. In the control, we found no proliferating subnetwork. In CRC, we identified one FOS proliferating module (SFRP2, ADAMTS1, SYNPO2, VIP, ADAM33 inhibition to FOS and MGP, FOSB activation to FOS. FOS activation to IGFBP5, LGI1, GAS1 and FOS inhibition to VIP). These results may be useful for developing novel prognostic markers and therapeutic targets in CRC.
Collapse
Affiliation(s)
- Lin Wang
- Center for Biomedical Engineering, Beijing University of Posts and Telecommunications, China.
| | | | | | | | | |
Collapse
|
23
|
Nakatani S, Mano H, Im R, Shimizu J, Wada M. Glucosamine regulates differentiation of a chondrogenic cell line, ATDC5. Biol Pharm Bull 2007; 30:433-8. [PMID: 17329833 DOI: 10.1248/bpb.30.433] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is a slowly progressing chronic joint disease. Glucosamine (GlcN) is a saccharide that is widely used to relieve symptoms associated with OA. However, the mechanism of the effects of GlcN on articular cartilage remains unclear. We studied the effects of GlcN and its analogues, including chitin derivatives included in health supplements containing GlcN, on a chondrogenic cell line, ATDC5. We examined the effects of these saccharides on the proliferation and differentiation of ATDC5 cells. Glucosamine analogues, such as N-acetyl glucosamine and chitobiose, did not affect the proliferation or differentiation of ATDC5 cells. While GlcN did not affect the proliferation of ATDC5 cells, it inhibited their differentiation. Next, we examined whether GlcN affects mineralization and glycosaminoglycan (GAG) production by ATDC5 cells. Mineralization was markedly inhibited by addition of GlcN to the cell culture medium. Moreover, GlcN induced the formation of sulfated GAG in ATDC5. We also analyzed the mRNA levels in ATDC5 cells. GlcN reduced the mRNA levels of Smad2, Smad4 and MGP. GlcN might inhibit expression of MGP mRNA and induce the production of chondroitin sulfate in ATDC5 cells. The mechanism by which GlcN inhibits mineralization may be by regulating the expression of mRNA for the Smad2 and Smad4 chondrogenic master genes.
Collapse
Affiliation(s)
- Sachie Nakatani
- Department of Food Functional Science, Graduate School of Pharmacology, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0248, Japan
| | | | | | | | | |
Collapse
|