1
|
Garrott K, Bifulco S, Ramirez D, Koop B. Lesion Formation in Cardiac Pulsed-Field Ablation: Acute to Chronic Cellular Level Changes. Pacing Clin Electrophysiol 2025. [PMID: 39871407 DOI: 10.1111/pace.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/26/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
As pulsed-field ablation (PFA) emerges as a promising therapy for atrial arrhythmias, an understanding of the cellular injury to cardiac tissue is critical to evaluating and interpreting results for each PFA system. This review aims to detail the mechanism of cell death for PFA, compare the cell death mechanism to thermal ablation modalities, clarify common histology markers, detail the progression of PFA lesions from the acute, to subacute, to chronic maturation states, and discuss clinical indicators of PFA lesions.
Collapse
Affiliation(s)
- Kara Garrott
- Boston Scientific, Corporation: Electrophysiology Research & Development, Arden Hills, Minnesota, USA
| | - Savannah Bifulco
- Boston Scientific, Corporation: Electrophysiology Research & Development, Arden Hills, Minnesota, USA
| | - David Ramirez
- Boston Scientific, Corporation: Electrophysiology Research & Development, Arden Hills, Minnesota, USA
| | - Brendan Koop
- Boston Scientific, Corporation: Electrophysiology Research & Development, Arden Hills, Minnesota, USA
| |
Collapse
|
2
|
Yun SH, Mansurov V, Yang L, Yoon J, Leblanc N, Craviso GL, Zaklit J. Modulating Ca 2+ influx into adrenal chromaffin cells with short-duration nanosecond electric pulses. Biophys J 2024; 123:2537-2556. [PMID: 38909279 PMCID: PMC11365113 DOI: 10.1016/j.bpj.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Isolated bovine adrenal chromaffin cells exposed to single 2-, 4-, or 5-ns pulses undergo a rapid, transient rise in intracellular Ca2+ mediated by Ca2+ entry via voltage-gated Ca2+ channels (VGCCs), mimicking the activation of these cells in vivo by acetylcholine. However, pulse durations 150 ns or longer elicit larger amplitude and longer-lived Ca2+ responses due to Ca2+ influx via both VGCCs and a yet to be identified plasma membrane pathway(s). To further our understanding of the differential effects of ultrashort versus longer pulse durations on Ca2+ influx, chromaffin cells were loaded with calcium green-1 and exposed to single 3-, 5-, 11-, 25-, or 50-ns pulses applied at their respective Ca2+ activation threshold electric fields. Increasing pulse duration from 3 or 5 ns to only 11 ns was sufficient to elicit increased amplitude and longer-lived Ca2+ responses in the majority of cells, a trend that continued as pulse duration increased to 50 ns. The amplification of Ca2+ responses was not the result of Ca2+ release from intracellular stores and was accompanied by a decreased effectiveness of VGCC inhibitors to block the responses and a reduced reliance on extracellular Na+ and membrane depolarization to evoke the responses. Inhibitors of pannexin channels, P2X receptors, or non-selective cation channels failed to attenuate 50-ns-elicited Ca2+ responses, ruling out these Ca2+-permeable channels as secondary Ca2+ entry pathways. Analytical calculations and numerical modeling suggest that the parameter that best determines the response of chromaffin cells to increasing pulse durations is the time the membrane charges to its peak voltage. These results highlight the pronounced sensitivity of a neuroendocrine cell to pulse durations differing by only tens of nanoseconds, which has important implications for the future development of nanosecond pulse technologies enabling electrostimulation applications for spatially focused and graded in vivo neuromodulation.
Collapse
Affiliation(s)
- Sung Hae Yun
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Vasilii Mansurov
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Jihwan Yoon
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Gale L Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Josette Zaklit
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, Nevada.
| |
Collapse
|
3
|
Asadipour K, Hani MB, Potter L, Ruedlinger BL, Lai N, Beebe SJ. Nanosecond Pulsed Electric Fields (nsPEFs) Modulate Electron Transport in the Plasma Membrane and the Mitochondria. Bioelectrochemistry 2024; 155:108568. [PMID: 37738861 DOI: 10.1016/j.bioelechem.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a pulsed power technology known for ablating tumors, but they also modulate diverse biological mechanisms. Here we show that nsPEFs regulate trans-plasma membrane electron transport (tPMET) rates in the plasma membrane redox system (PMRS) shown as a reduction of the cell-impermeable, WST-8 tetrazolium dye. At lower charging conditions, nsPEFs enhance, and at higher charging conditions inhibit tPMET in H9c2 non-cancerous cardiac myoblasts and 4T1-luc breast cancer cells. This biphasic nsPEF-induced modulation of tPMET is typical of a hormetic stimulus that is beneficial and stress-adaptive at lower levels and damaging at higher levels. NsPEFs also attenuated mitochondrial electron transport system (ETS) activity (O2 consumption) at Complex I when coupled and uncoupled to oxidative phosphorylation. NsPEFs generated more reactive oxygen species (ROS) in mitochondria (mROS) than in the cytosol (cROS) in non-cancer H9c2 heart cells but more cROS than mROS in 4T1-luc cancer cells. Under lower charging conditions, nsPEFs support glycolysis while under higher charging conditions, nsPEFs inhibit electron transport in the PMRS and the mitochondrial ETS producing ROS, ultimately causing cell death. The impact of nsPEF on ETS presents a new paradigm for considering nsPEF modulation of redox functions, including redox homeostasis and metabolism.
Collapse
Affiliation(s)
- Kamal Asadipour
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Maisoun Bani Hani
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA
| | - Lucas Potter
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | | | - Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA.
| |
Collapse
|
4
|
Chittams-Miles AE, Malik A, Purcell EB, Muratori C. Nanosecond pulsed electric fields increase antibiotic susceptibility in methicillin-resistant Staphylococcus aureus. Microbiol Spectr 2024; 12:e0299223. [PMID: 38092563 PMCID: PMC10783032 DOI: 10.1128/spectrum.02992-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE We have found that treatment with short electric pulses potentiates the effects of multiple antibiotics against methicillin-resistant Staphylococcus aureus. By reducing the dose of antibiotic necessary to be effective, co-treatment with electric pulses could amplify the effects of standard antibiotic dosing to treat S. aureus infections such as skin and soft-tissue infections (SSTIs). SSTIs are accessible to physical intervention and are good candidates for electric pulse co-treatment, which could be adopted as a step-in wound and abscess debridement.
Collapse
Affiliation(s)
- Alexandra E. Chittams-Miles
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
- Biomedical Sciences Program, Old Dominion University, Norfolk, Virginia, USA
| | - Areej Malik
- Biomedical Sciences Program, Old Dominion University, Norfolk, Virginia, USA
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | - Erin B. Purcell
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | - Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, USA
| |
Collapse
|
5
|
Jerbic K, Svejda JT, Sievert B, Rennings A, Fröhlich J, Erni D. The Importance of Subcellular Structures to the Modeling of Biological Cells in the Context of Computational Bioelectromagnetics Simulations. Bioelectromagnetics 2023; 44:26-46. [PMID: 36794844 DOI: 10.1002/bem.22436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
Numerical investigation of the interaction of electromagnetic fields with eukaryotic cells requires specifically adapted computer models. Virtual microdosimetry, used to investigate exposure, requires volumetric cell models, which are numerically challenging. For this reason, a method is presented here to determine the current and volumetric loss densities occurring in single cells and their distinct compartments in a spatially accurate manner as a first step toward multicellular models within the microstructure of tissue layers. To achieve this, 3D models of the electromagnetic exposure of generic eukaryotic cells of different shape (i.e. spherical and ellipsoidal) and internal complexity (i.e. different organelles) are performed in a virtual, finite element method-based capacitor experiment in the frequency range from 10 Hz to 100 GHz. In this context, the spectral response of the current and loss distribution within the cell compartments is investigated and any effects that occur are attributed either to the dispersive material properties of these compartments or to the geometric characteristics of the cell model investigated in each case. In these investigations, the cell is represented as an anisotropic body with an internal distributed membrane system of low conductivity that mimics the endoplasmic reticulum in a simplified manner. This will be used to determine which details of the cell interior need to be modeled, how the electric field and the current density will be distributed in this region, and where the electromagnetic energy is absorbed in the microstructure regarding electromagnetic microdosimetry. Results show that for 5 G frequencies, membranes make a significant contribution to the absorption losses. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Kevin Jerbic
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| | - Jan T Svejda
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| | - Benedikt Sievert
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| | - Andreas Rennings
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| | | | - Daniel Erni
- General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany
| |
Collapse
|
6
|
Sowa PW, Kiełbik AS, Pakhomov AG, Gudvangen E, Mangalanathan U, Adams V, Pakhomova ON. How to alleviate cardiac injury from electric shocks at the cellular level. Front Cardiovasc Med 2022; 9:1004024. [PMID: 36620647 PMCID: PMC9812960 DOI: 10.3389/fcvm.2022.1004024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Electric shocks, the only effective therapy for ventricular fibrillation, also electroporate cardiac cells and contribute to the high-mortality post-cardiac arrest syndrome. Copolymers such as Poloxamer 188 (P188) are known to preserve the membrane integrity and viability of electroporated cells, but their utility against cardiac injury from cardiopulmonary resuscitation (CPR) remains to be established. We studied the time course of cell killing, mechanisms of cell death, and protection with P188 in AC16 human cardiomyocytes exposed to micro- or nanosecond pulsed electric field (μsPEF and nsPEF) shocks. A 3D printer was customized with an electrode holder to precisely position electrodes orthogonal to a cell monolayer in a nanofiber multiwell plate. Trains of nsPEF shocks (200, 300-ns pulses at 1.74 kV) or μsPEF shocks (20, 100-μs pulses at 300 V) produced a non-uniform electric field enabling efficient measurements of the lethal effect in a wide range of the electric field strength. Cell viability and caspase 3/7 expression were measured by fluorescent microscopy 2-24 h after the treatment. nsPEF shocks caused little or no caspase 3/7 activation; most of the lethally injured cells were permeable to propidium dye already at 2 h after the exposure. In contrast, μsPEF shocks caused strong activation of caspase 3/7 at 2 h and the number of dead cells grew up to 24 h, indicating the prevalence of the apoptotic death pathway. P188 at 0.2-1% reduced cell death, suggesting its potential utility in vivo to alleviate electric injury from defibrillation.
Collapse
Affiliation(s)
- Pamela W. Sowa
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States,Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany,Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany,*Correspondence: Pamela W. Sowa,
| | - Aleksander S. Kiełbik
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States,Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Uma Mangalanathan
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Olga N. Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
7
|
Novickij V, Rembiałkowska N, Szlasa W, Kulbacka J. Does the shape of the electric pulse matter in electroporation? Front Oncol 2022; 12:958128. [PMID: 36185267 PMCID: PMC9518825 DOI: 10.3389/fonc.2022.958128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Electric pulses are widely used in biology, medicine, industry, and food processing. Numerous studies indicate that electroporation (EP) is a pulse-dependent process, and the electric pulse shape and duration strongly determine permeabilization efficacy. EP protocols are precisely planned in terms of the size and charge of the molecules, which will be delivered to the cell. In reversible and irreversible EP applications, rectangular or sine, polar or bipolar pulses are commonly used. The usage of pulses of the asymmetric shape is still limited to high voltage and low voltage (HV/LV) sequences in the context of gene delivery, while EP-based applications of ultra-short asymmetric pulses are just starting to emerge. This review emphasizes the importance and role of the pulse shape for membrane permeabilization by EP.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University (Vilnius TECH), Vilnius, Lithuania
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| |
Collapse
|
8
|
Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. Int J Mol Sci 2022; 23:ijms23116158. [PMID: 35682837 PMCID: PMC9181413 DOI: 10.3390/ijms23116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Nanosecond Pulsed Electric Field (nsPEF) is an electrostimulation technique first developed in 1995; nsPEF requires the delivery of a series of pulses of high electric fields in the order of nanoseconds into biological tissues or cells. They primary effects in cells is the formation of membrane nanopores and the activation of ionic channels, leading to an incremental increase in cytoplasmic Ca2+ concentration, which triggers a signaling cascade producing a variety of effects: from apoptosis up to cell differentiation and proliferation. Further, nsPEF may affect organelles, making nsPEF a unique tool to manipulate and study cells. This technique is exploited in a broad spectrum of applications, such as: sterilization in the food industry, seed germination, anti-parasitic effects, wound healing, increased immune response, activation of neurons and myocites, cell proliferation, cellular phenotype manipulation, modulation of gene expression, and as a novel cancer treatment. This review thoroughly explores both nsPEF’s history and applications, with emphasis on the cellular effects from a biophysics perspective, highlighting the role of ionic channels as a mechanistic driver of the increase in cytoplasmic Ca2+ concentration.
Collapse
Affiliation(s)
- Alvaro R. Ruiz-Fernández
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| | - Leonardo Campos
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Gonzalo Núñez
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
| | - Felipe Villanelo
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| |
Collapse
|
9
|
Cindric H, Gasljevic G, Edhemovic I, Brecelj E, Zmuc J, Cemazar M, Seliskar A, Miklavcic D, Kos B. Numerical mesoscale tissue model of electrochemotherapy in liver based on histological findings. Sci Rep 2022; 12:6476. [PMID: 35444226 PMCID: PMC9021251 DOI: 10.1038/s41598-022-10426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
Electrochemotherapy (ECT) and irreversible electroporation (IRE) are being investigated for treatment of hepatic tumours. The liver is a highly heterogeneous organ, permeated with a network of macro- and microvasculature, biliary tracts and connective tissue. The success of ECT and IRE depends on sufficient electric field established in whole target tissue; therefore, tissue heterogeneity may affect the treatment outcome. In this study, we investigate electroporation in the liver using a numerical mesoscale tissue model. We numerically reconstructed four ECT experiments in healthy porcine liver and computed the electric field distribution using our treatment planning framework. We compared the computed results with histopathological changes identified on microscopic images after treatment. The mean electric field threshold that best fitted the zone of coagulation necrosis was 1225 V/cm, while the mean threshold that best fitted the zone of partially damaged liver parenchyma attributed to IRE was 805 V/cm. We evaluated how the liver macro- and microstructures affect the electric field distribution. Our results show that the liver microstructure does not significantly affect the electric field distribution on the level needed for treatment planning. However, major hepatic vessels and portal spaces significantly affect the electric field distribution, and should be considered when planning treatments.
Collapse
Affiliation(s)
- Helena Cindric
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Gorana Gasljevic
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - Ibrahim Edhemovic
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Erik Brecelj
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - Jan Zmuc
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia
| | - Alenka Seliskar
- University of Ljubljana, Veterinary Faculty, Gerbiceva ulica 60, 1000, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Kiełbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, Kulbacka J. Effects of high-frequency nanosecond pulses on prostate cancer cells. Sci Rep 2021; 11:15835. [PMID: 34349171 PMCID: PMC8339066 DOI: 10.1038/s41598-021-95180-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Electroporation with pulsed electric fields show a potential to be applied as an experimental focal therapy of tumors. Sub-microsecond regime of electric pulses displays unique electrophysical features operative in cells and membranes. Recently, MHz compression of nanosecond pulses electric fields (nsPEFs) bursts proved to enhance the effectiveness of the therapy. High morbidity of prostate cancer (PCa) and risk of overtreatment associated with this malignancy call for new minimal-invasive treatment alternative. Herein we present the in vitro study for developing applications based on this new technology. In this study, we used flow cytometric analysis, cell viability assay, caspase activity analysis, wound healing assay, confocal microscopy study, and immunofluorescence to investigate the biological effect of high-frequency nsPEFs on PCa cells. Our results show that high-frequency nsPEFs induces the permeabilization and cell death of PCa cells. The cytotoxicity is significantly enhanced in MHz compression of pulses and with the presence of extracellular Ca2+. High-frequency nsPEFs trigger changes in PCa cells' cytoskeleton and their mobility. The presented data show a therapeutic potential of high-frequency nsPEFs in a PCa setting. The sub-microsecond regime of pulses can potentially be applied in nanosecond electroporation protocols for PCa treatment.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- grid.4495.c0000 0001 1090 049XMedical University Hospital, Borowska 213, 50-556 Wrocław, Poland ,grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Wojciech Szlasa
- grid.4495.c0000 0001 1090 049XFaculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Vitalij Novickij
- grid.9424.b0000 0004 1937 1776Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Anna Szewczyk
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland ,grid.8505.80000 0001 1010 5103Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wrocław, Poland
| | - Magdalena Maciejewska
- grid.413454.30000 0001 1958 0162Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jolanta Saczko
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Julita Kulbacka
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
11
|
Mi Y, Xu J, Liu Q, Wu X, Zhang Q, Tang J. Single-cell electroporation with high-frequency nanosecond pulse bursts: Simulation considering the irreversible electroporation effect and experimental validation. Bioelectrochemistry 2021; 140:107822. [PMID: 33915340 DOI: 10.1016/j.bioelechem.2021.107822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
To study the electroporation characteristics of cells under high-frequency nanosecond pulse bursts (HFnsPBs), the original electroporation mathematical model was improved. By setting a threshold value for irreversible electroporation (IRE) and considering the effect of an electric field on the surface tension of a cell membrane, a mathematical model of electroporation considering the effect of IRE is proposed for the first time. A typical two-dimensional cell system was discretized into nodes using MATLAB, and a mesh transport network method (MTNM) model was established for simulation. The dynamic processes of single-cell electroporation and molecular transport under the application of 50 unipolar HFnsPBs with field intensities of 9 kV cm-1 and different frequencies (10 kHz, 100 kHz and 500 kHz) to the target system was simulated with a 300 s simulation time. The IRE characteristics and molecular transport were evaluated. In addition, a PI fluorescent dye assay was designed to verify the correctness of the model by providing time-domain and spatial results that were compared with the simulation results. The simulation achieved IRE and demonstrated the cumulative effects of multipulse bursts and intraburst frequency on irreversible pores. The model can also reflect the cumulative effect of multipulse bursts on reversible pores by introducing an assumption of stable reversible pores. The experimental results agreed qualitatively with the simulation results. A relative calibration of the fluorescence data gave time-domain molecular transport results that were quantitatively similar to the simulation results. This article reveals the cell electroporation characteristics under HFnsPBs from a mechanism perspective and has important guidance for fields involving the IRE of cells.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
| | - Jin Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Quan Liu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Zhang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| | - Junying Tang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| |
Collapse
|
12
|
Nonlinear dispersive cell model for microdosimetry of nanosecond pulsed electric fields. Sci Rep 2020; 10:19456. [PMID: 33173132 PMCID: PMC7655951 DOI: 10.1038/s41598-020-76642-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023] Open
Abstract
For applications based on nanosecond pulsed electric fields (nsPEFs), the underlying transmembrane potential (TMP) distribution on the plasma membrane is influenced by electroporation (EP) of the plasma membrane and dielectric dispersion (DP) of all cell compartments which is important for predicting the bioelectric effects. In this study, the temporal and spatial distribution of TMP on the plasma membrane induced by nsPEFs of various pulse durations (3 ns, 5 ns unipolar, 5 ns bipolar, and 10 ns) is investigated with the inclusion of both DP and EP. Based on the double-shelled dielectric spherical cell model, the Debye equation describing DP is transformed into the time-domain form with the introduction of polarization vector, and then we obtain the time course of TMP by solving the combination of Laplace equation and time-domain Debye equation. Next, the asymptotic version of the Smoluchowski equation is included to characterize the EP of plasma membrane in order to observe more profound electroporation effects with larger pore density and electroporated areas in consideration of both DP and EP. Through the simulation, it is clearer to understand the relationship between the applied nsPEFs and the induced bioelectric effects.
Collapse
|
13
|
Lin X, Wang Z, Ou H, Mitragotri S, Chen M. Correlations Between Skin Barrier Integrity and Delivery of Hydrophilic Molecules in the Presence of Penetration Enhancers. Pharm Res 2020; 37:100. [PMID: 32436083 DOI: 10.1007/s11095-020-02800-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated the potential correlations between skin barrier integrity and hydrophilic drugs distribution in skin in the presence of different types of penetration enhancers (PEs) and their combinations. METHODS We measured skin conductivity to evaluate skin barrier integrity before and after the topical application of different chemical PEs, physical PE, peptide PE and their combinations in vitro. We also investigated their effect on the skin distribution profiles of two hydrophilic model drugs, Fluorescein sodium (376 Da) and Fluorescein isothiocyanate-dextrans 10 (10 KDa). RESULTS The physical PE significantly increased the skin conductivity compared to all other PEs, while the peptide PE had no effect on it. The drug deposition in different skin layers was not only dependent on PE applied but also its own molecular weight. We further found two excellent correlations: one (R2 = 0.9388) between skin barrier integrity and total skin absorption of FNa and another one(R2 = 0.9212) between skin barrier integrity and the deposition of FNa in dermis and receptor in presence of chemical or physical PEs and their combinations. CONCLUSIONS The total skin absorption or the deposition in dermis and receptor of small hydrophilic drug in the presence of chemical and physical PEs and their combinations show a good correlation with skin barrier integrity. However, such correlations hold true neither for large hydrophilic drug nor for peptide PE. All good relationships found in this work will allow screening suitable PEs or combinations by measuring the skin conductivity induced by corresponding PEs. Graphical Abstract The total skin absorption of small hydrophilic drug shows a good correlation with skin barrier integrity in the presence of chemical and physical penetration enhancers and their combinations. However, such a correlation hold true neither for large hydrophilic drug nor for peptide penetration enhancer.
Collapse
Affiliation(s)
- XueKe Lin
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Department of Marine Biological Science & Technology, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China
| | - ZhenHua Wang
- Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - HuiLong Ou
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Department of Marine Biological Science & Technology, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Ming Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Department of Marine Biological Science & Technology, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Liu H, Shi F, Tang X, Zheng S, Kolb J, Yao C. Application of bioimpedance spectroscopy to characterize chemoresistant tumor cell selectivity of nanosecond pulse stimulation. Bioelectrochemistry 2020; 135:107570. [PMID: 32526679 DOI: 10.1016/j.bioelechem.2020.107570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
The discriminating effects of nanosecond pulsed electric fields (nsPEFs) between chemoresistant tumor cells (CRTCs) and their respective homologous chemosensitive tumor cells (CSTCs) were investigated based on bioimpedance spectroscopy (BIS). The electrical properties of individual untreated cells were determined by fitting the impedance spectra to an equivalent circuit model and then using aided simulations to calculate the nuclear envelope transmembrane potential (nTMP) and electroporation area on the nuclear envelope. Additionally, fluorescence staining assays of cell monolayers after nanopulse stimulation (80 pulses, 200 ns, 3 kV) were conducted to validate the simulation results. The staining results indicated that CRTCs showed a larger ablation area and lower lethal threshold compared to CSTCs after exposure to the same nsPEF energy, which was in accordance with the higher nTMP and larger electroporation area calculated for CRTCs. The increase in the lethal effects of nsPEFs on CRTCs compared to CSTCs mainly resulted from the superposition of the changes in the electrical properties and nuclear size. The work shows that BIS can distinguish CRTCs and CSTCs and the corresponding nsPEF effects, suggesting potential applications for the optimization of novel anti-chemoresistance methods, including nsPEF-treatments.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing 400033, China
| | - Fukun Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China; Leibniz Institute for Plasma Science and Technology (INP), Greifswald 17489, Germany; Institute of Physics, University of Rostock, Rostock 18059, Germany
| | - Xiao Tang
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing 400033, China
| | - Shuang Zheng
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing 400033, China
| | - Juergen Kolb
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald 17489, Germany; Institute of Physics, University of Rostock, Rostock 18059, Germany
| | - Chenguo Yao
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing 400033, China.
| |
Collapse
|
15
|
Probing Nanoelectroporation and Resealing of the Cell Membrane by the Entry of Ca 2+ and Ba 2+ Ions. Int J Mol Sci 2020; 21:ijms21093386. [PMID: 32403282 PMCID: PMC7247012 DOI: 10.3390/ijms21093386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 kV/cm for the formation of larger pores that admitted YO-PRO-1, TO-PRO-3, or propidium dye into the cells. Ba2+ entry caused a gradual emission rise, which reached a stable level in 2 min or, with more intense nsPEF, kept rising steadily for at least 30 min. Ca2+ entry could elicit calcium-induced calcium release (CICR) followed by Ca2+ removal from the cytosol, which markedly affected the time course, polarity, amplitude, and the dose-dependence of fluorescence change. Both Ca2+ and Ba2+ proved as sensitive nanoporation markers, with Ba2+ being more reliable for monitoring membrane damage and resealing.
Collapse
|
16
|
Neuber JU, Varghese F, Pakhomov AG, Zemlin CW. Using Nanosecond Shocks for Cardiac Defibrillation. Bioelectricity 2019; 1:240-246. [PMID: 32685917 DOI: 10.1089/bioe.2019.0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this review article is to summarize our current understanding of the efficacy and safety of cardiac defibrillation with nanosecond shocks. Experiments in isolated hearts, using optical mapping of the electrical activity, have demonstrated that nanosecond shocks can defibrillate with lower energies than conventional millisecond shocks. Single defibrillation strength nanosecond shocks do not cause obvious damage, but repeated stimulation leads to deterioration of the hearts. In isolated myocytes, nanosecond pulses can also stimulate at lower energies than at longer pulses and cause less electroporation (propidium uptake). The mechanism is likely electroporation of the plasma membrane. Repeated stimulation leads to distorted calcium gradients.
Collapse
Affiliation(s)
- Johanna U Neuber
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia
| | - Frency Varghese
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Christian W Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
17
|
Wolff CM, Steuer A, Stoffels I, von Woedtke T, Weltmann KD, Bekeschus S, Kolb JF. Combination of cold plasma and pulsed electric fields – A rationale for cancer patients in palliative care. CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2020.100096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Modulation of biological responses to 2 ns electrical stimuli by field reversal. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1228-1239. [DOI: 10.1016/j.bbamem.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023]
|
19
|
Stewart MT, Haines DE, Verma A, Kirchhof N, Barka N, Grassl E, Howard B. Intracardiac pulsed field ablation: Proof of feasibility in a chronic porcine model. Heart Rhythm 2019; 16:754-764. [DOI: 10.1016/j.hrthm.2018.10.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 02/07/2023]
|
20
|
Shi F, Steuer A, Zhuang J, Kolb JF. Bioimpedance Analysis of Epithelial Monolayers after Exposure to Nanosecond Pulsed Electric Fields. IEEE Trans Biomed Eng 2018; 66:2010-2021. [PMID: 30452351 DOI: 10.1109/tbme.2018.2882299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposures to pulsed electric fields (PEFs) are known to affect cell membranes and consequently also cell-cell interactions as well as associated characteristics. Bioimpedance analysis offers direct and non-invasive insights into structural and functional changes of cell membranes and extracellular matrices through a rigorous evaluation of electrical parameters. Accordingly, the multi-frequency impedance of confluent monolayers of rat liver epithelial WB-F344 cells was monitored in situ before and after exposure to nanosecond PEFs (nsPEFs). The results were fitted by two Cole models in series to obtain the Cole parameters for the monolayer. For an interpretation of the results, dielectric parameters, were correlated with changes of the TJ protein zonula occludens (ZO-1) and the paracellular permeability of the monolayer Cole parameters in general change as a function of pulse number and time. The findings demonstrate that impedance analysis is an effective method to monitor changes of TJs cell-cell contacts and paracellular permeability and relate them to exposure parameters.
Collapse
|
21
|
Varghese F, Neuber JU, Xie F, Philpott JM, Pakhomov AG, Zemlin CW. Low-energy defibrillation with nanosecond electric shocks. Cardiovasc Res 2018; 113:1789-1797. [PMID: 29016714 DOI: 10.1093/cvr/cvx172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/28/2017] [Indexed: 02/01/2023] Open
Abstract
Aims Reliable defibrillation with reduced energy deposition has long been the focus of defibrillation research. We studied the efficacy of single shocks of 300 ns duration in defibrillating rabbit hearts as well as the tissue damage they may cause. Methods and results New Zealand white rabbit hearts were Langendorff-perfused and two planar electrodes were placed on either side of the heart. Shocks of 300 ns duration and 0.3-3 kV amplitude were generated with a transmission line generator. Single nanosecond shocks consistently induced waves of electrical activation, with a stimulation threshold of 0.9 kV (over 3 cm) and consistent activation for shock amplitudes of 1.2 kV or higher (9/9 successful attempts). We induced fibrillation (35 episodes in 12 hearts) and found that single shock nanosecond-defibrillation could consistently be achieved, with a defibrillation threshold of 2.3-2.4 kV (over 3 cm), and consistent success at 3 kV (11/11 successful attempts). Shocks uniformly depolarized the tissue, and the threshold energy needed for nanosecond defibrillation was almost an order of magnitude lower than the energy needed for defibrillation with a monophasic 10 ms shock delivered with the same electrode configuration. For the parameters studied here, nanosecond defibrillation caused no baseline shift of the transmembrane potential (that could be indicative of electroporative damage), no changes in action potential duration, and only a brief change of diastolic interval, for one beat after the shock was delivered. Histological staining with tetrazolium chloride and propidium iodide showed that effective defibrillation was not associated with tissue death or with detectable electroporation anywhere in the heart (six hearts). Conclusion Nanosecond-defibrillation is a promising technology that may allow clinical defibrillation with profoundly reduced energies.
Collapse
Affiliation(s)
- Frency Varghese
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.,Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Norfolk, VA 23508, USA
| | - Johanna U Neuber
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.,Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Norfolk, VA 23508, USA
| | - Fei Xie
- Department of Engineering, Mount Vernon Nazarene University, Mount Vernon, OH, USA
| | | | - Andrei G Pakhomov
- Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Norfolk, VA 23508, USA
| | - Christian W Zemlin
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.,Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Norfolk, VA 23508, USA
| |
Collapse
|
22
|
Semenov I, Grigoryev S, Neuber JU, Zemlin CW, Pakhomova ON, Casciola M, Pakhomov AG. Excitation and injury of adult ventricular cardiomyocytes by nano- to millisecond electric shocks. Sci Rep 2018; 8:8233. [PMID: 29844431 PMCID: PMC5974370 DOI: 10.1038/s41598-018-26521-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Intense electric shocks of nanosecond (ns) duration can become a new modality for more efficient but safer defibrillation. We extended strength-duration curves for excitation of cardiomyocytes down to 200 ns, and compared electroporative damage by proportionally more intense shocks of different duration. Enzymatically isolated murine, rabbit, and swine adult ventricular cardiomyocytes (VCM) were loaded with a Ca2+ indicator Fluo-4 or Fluo-5N and subjected to shocks of increasing amplitude until a Ca2+ transient was optically detected. Then, the voltage was increased 5-fold, and the electric cell injury was quantified by the uptake of a membrane permeability marker dye, propidium iodide. We established that: (1) Stimuli down to 200-ns duration can elicit Ca2+ transients, although repeated ns shocks often evoke abnormal responses, (2) Stimulation thresholds expectedly increase as the shock duration decreases, similarly for VCMs from different species, (3) Stimulation threshold energy is minimal for the shortest shocks, (4) VCM orientation with respect to the electric field does not affect the threshold for ns shocks, and (5) The shortest shocks cause the least electroporation injury. These findings support further exploration of ns defibrillation, although abnormal response patterns to repetitive ns stimuli are of a concern and require mechanistic analysis.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Sergey Grigoryev
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Johanna U Neuber
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| | - Christian W Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.
| |
Collapse
|
23
|
Li C, Ke Q, Yao C, Mi Y, Liu H, Lv Y, Yao C. Cell electrofusion based on nanosecond/microsecond pulsed electric fields. PLoS One 2018; 13:e0197167. [PMID: 29795594 PMCID: PMC5967737 DOI: 10.1371/journal.pone.0197167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Traditionally, microsecond pulsed electric field was widely used in cell electrofusion technology. However, it was difficult to fuse the cells with different sizes. Because the effect of electroporation based on microsecond pulses was greatly influenced by cell sizes. It had been reported that the differences between cell sizes can be ignored when cells were exposed to nanosecond pulses. However, pores induced by those short nanosecond pulses tended to be very small (0.9 nm) and the pores were more easy to recover. In this work, a finite element method was used to simulate the distribution, radius and density of the pores. The innovative idea of "cell electrofusion based on nanosecond/microsecond pulses" was proposed in order to combine the advantages of nanosecond pulses and microsecond pulses. The model consisted of two contact cells with different sizes. Three kinds of pulsed electric fields were made up of two 100-ns, 10-kV/cm pulses; two 10-μs, 1-kV/cm pulses; and a sequence of a 100-ns, 10-kV/cm pulse, followed by a 10-μs, 1-kV/cm pulse. Some obvious advantageous can be found when nanosecond/microsecond pulses were considered. The pore radius was large enough (70nm) and density was high (5×1013m-2) in the cell junction area. Moreover, pores in the non-contact area of the cell membrane were small (1-10 nm) and sparse (109-1012m-2). Areas where the transmembrane voltage was higher than 1V were only concentrated in the cell junction. The transmembrane voltage of other areas were at most 0.6V when we tested the rest of the cell membrane. Cell fusion efficiency can be improved remarkably because electroporation was concentrated in the cell contact area.
Collapse
Affiliation(s)
- Chengxiang Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Qiang Ke
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Yan Mi
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Hongmei Liu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Yanpeng Lv
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Cheng Yao
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
Sözer EB, Pocetti CF, Vernier PT. Transport of charged small molecules after electropermeabilization - drift and diffusion. BMC BIOPHYSICS 2018; 11:4. [PMID: 29581879 PMCID: PMC5861730 DOI: 10.1186/s13628-018-0044-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 11/10/2022]
Abstract
Background Applications of electric-field-induced permeabilization of cells range from cancer therapy to wastewater treatment. A unified understanding of the underlying mechanisms of membrane electropermeabilization, however, has not been achieved. Protocols are empirical, and models are descriptive rather than predictive, which hampers the optimization and expansion of electroporation-based technologies. A common feature of existing models is the assumption that the permeabilized membrane is passive, and that transport through it is entirely diffusive. To demonstrate the necessity to go beyond that assumption, we present here a quantitative analysis of the post-permeabilization transport of three small molecules commonly used in electroporation research — YO-PRO-1, propidium, and calcein — after exposure of cells to minimally perturbing, 6 ns electric pulses. Results Influx of YO-PRO-1 from the external medium into the cell exceeds that of propidium, consistent with many published studies. Both are much greater than the influx of calcein. In contrast, the normalized molar efflux of calcein from pre-loaded cells into the medium after electropermeabilization is roughly equivalent to the influx of YO-PRO-1 and propidium. These relative transport rates are correlated not with molecular size or cross-section, but rather with molecular charge polarity. Conclusions This comparison of the kinetics of molecular transport of three small, charged molecules across electropermeabilized cell membranes reveals a component of the mechanism of electroporation that is customarily taken into account only for the time during electric pulse delivery. The large differences between the influx rates of propidium and YO-PRO-1 (cations) and calcein (anion), and between the influx and efflux of calcein, suggest a significant role for the post-pulse transmembrane potential in the migration of ions and charged small molecules across permeabilized cell membranes, which has been largely neglected in models of electroporation. Electronic supplementary material The online version of this article (10.1186/s13628-018-0044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esin B Sözer
- 1Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA 23508 USA
| | - C Florencia Pocetti
- 2Department of Bioengineering, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - P Thomas Vernier
- 1Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Ste. 300, Norfolk, VA 23508 USA
| |
Collapse
|
25
|
Muratori C, Pakhomov AG, Gianulis E, Meads J, Casciola M, Mollica PA, Pakhomova ON. Activation of the phospholipid scramblase TMEM16F by nanosecond pulsed electric fields (nsPEF) facilitates its diverse cytophysiological effects. J Biol Chem 2017; 292:19381-19391. [PMID: 28982976 PMCID: PMC5702676 DOI: 10.1074/jbc.m117.803049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Indexed: 12/17/2022] Open
Abstract
Nanosecond pulsed electric fields (nsPEF) are emerging as a novel modality for cell stimulation and tissue ablation. However, the downstream protein effectors responsible for nsPEF bioeffects remain to be established. Here we demonstrate that nsPEF activate TMEM16F (or Anoctamin 6), a protein functioning as a Ca2+-dependent phospholipid scramblase and Ca2+-activated chloride channel. Using confocal microscopy and patch clamp recordings, we investigated the relevance of TMEM16F activation for several bioeffects triggered by nsPEF, including phosphatidylserine (PS) externalization, nanopore-conducted currents, membrane blebbing, and cell death. In HEK 293 cells treated with a single 300-ns pulse of 25.5 kV/cm, Tmem16f expression knockdown and TMEM16F-specific inhibition decreased nsPEF-induced PS exposure by 49 and 42%, respectively. Moreover, the Tmem16f silencing significantly decreased Ca2+-dependent chloride channel currents activated in response to the nanoporation. Tmem16f expression also affected nsPEF-induced cell blebbing, with only 20% of the silenced cells developing blebs compared with 53% of the control cells. This inhibition of cellular blebbing correlated with a 25% decrease in cytosolic free Ca2+ transient at 30 s after nanoporation. Finally, in TMEM16F-overexpressing cells, a train of 120 pulses (300 ns, 20 Hz, 6 kV/cm) decreased cell survival to 34% compared with 51% in control cells (*, p < 0.01). Taken together, these results indicate that TMEM16F activation by nanoporation mediates and enhances the diverse cellular effects of nsPEF.
Collapse
Affiliation(s)
| | | | - Elena Gianulis
- From the Frank Reidy Research Center for Bioelectrics, and
| | - Jade Meads
- From the Frank Reidy Research Center for Bioelectrics, and
| | - Maura Casciola
- From the Frank Reidy Research Center for Bioelectrics, and
| | - Peter A Mollica
- the Department of Medical Diagnostics and Translational Sciences, Old Dominion University, Norfolk, Virginia 23508
| | | |
Collapse
|
26
|
Energy dissipation mapping of cancer cells. Micron 2017; 105:24-29. [PMID: 29169143 DOI: 10.1016/j.micron.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 11/24/2022]
Abstract
The purpose of this study is to map the energy dissipation of Jurkat cells using a single 60 nanosecond pulse electric field (NsPEF), primarily through atomic force microscopy (AFM). The phase shift is generated by the sample elements that do not have a heterogeneous surface. Monitoring and manipulating the phase shift is a powerful way for determining the dissipated energy and plotting the topography. The dissipated energy is a relative value, so the silica wafer and cover slip are given a set reference while the transmission of energy between the tip of the cantilever and cell surfaces is measured. The most important finding is that the magnitude and the number of variations in the dissipated energy change with the strength of NsPEF applied. Utilizing a single low field strength NsPEF (15kV/cm), minor changes in dissipated energy were found. The application of a single high field strength NsPEF (60kV/cm) to Jurkat cells resulted in a higher dissipated energy change versus that of in the low field strength condition. Thus, the dissipated energy from the Jurkat cells changes with the strength of NsPEF. By analyzing the forces via investigation in the tapping mode of the AFM, the stabilization of the cytoskeleton and membrane of the cell are related to the strength of NsPEF applied. Furthermore, the strength of NsPEF indicates a meaningful relationship to the survival of the Jurkat cells.
Collapse
|
27
|
Burke RC, Bardet SM, Carr L, Romanenko S, Arnaud-Cormos D, Leveque P, O'Connor RP. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2040-2050. [DOI: 10.1016/j.bbamem.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
|
28
|
The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:3624613. [PMID: 29065589 PMCID: PMC5438864 DOI: 10.1155/2017/3624613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/15/2017] [Indexed: 01/04/2023]
Abstract
Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.
Collapse
|
29
|
Dutta D, Palmer XL, Asmar A, Stacey M, Qian S. Nanosecond pulsed electric field induced changes in cell surface charge density. Micron 2017; 100:45-49. [PMID: 28494437 DOI: 10.1016/j.micron.2017.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations.
Collapse
Affiliation(s)
- Diganta Dutta
- Physics and Astronomy, University of Nebraska at Kearney, NE, USA.
| | | | - Anthony Asmar
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Michael Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Shizhi Qian
- Institute of Micro & Nanotechnology, Mechanical & Aerospace Engineering Department, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
30
|
Quantitative Limits on Small Molecule Transport via the Electropermeome - Measuring and Modeling Single Nanosecond Perturbations. Sci Rep 2017; 7:57. [PMID: 28246401 PMCID: PMC5428338 DOI: 10.1038/s41598-017-00092-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/03/2017] [Indexed: 11/09/2022] Open
Abstract
The detailed molecular mechanisms underlying the permeabilization of cell membranes by pulsed electric fields (electroporation) remain obscure despite decades of investigative effort. To advance beyond descriptive schematics to the development of robust, predictive models, empirical parameters in existing models must be replaced with physics- and biology-based terms anchored in experimental observations. We report here absolute values for the uptake of YO-PRO-1, a small-molecule fluorescent indicator of membrane integrity, into cells after a single electric pulse lasting only 6 ns. We correlate these measured values, based on fluorescence microphotometry of hundreds of individual cells, with a diffusion-based geometric analysis of pore-mediated transport and with molecular simulations of transport across electropores in a phospholipid bilayer. The results challenge the “drift and diffusion through a pore” model that dominates conventional explanatory schemes for the electroporative transfer of small molecules into cells and point to the necessity for a more complex model.
Collapse
|
31
|
Denzi A, Camera F, Merla C, Benassi B, Consales C, Paffi A, Apollonio F, Liberti M. A Microdosimetric Study of Electropulsation on Multiple Realistically Shaped Cells: Effect of Neighbours. J Membr Biol 2016; 249:691-701. [PMID: 27318672 DOI: 10.1007/s00232-016-9912-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Over the past decades, the effects of ultrashort-pulsed electric fields have been used to investigate their action in many medical applications (e.g. cancer, gene electrotransfer, drug delivery, electrofusion). Promising aspects of these pulses has led to several in vitro and in vivo experiments to clarify their action. Since the basic mechanisms of these pulses have not yet been fully clarified, scientific interest has focused on the development of numerical models at different levels of complexity: atomic (molecular dynamic simulations), microscopic (microdosimetry) and macroscopic (dosimetry). The aim of this work is to demonstrate that, in order to predict results at the cellular level, an accurate microdosimetry model is needed using a realistic cell shape, and with their position and packaging (cell density) characterised inside the medium.
Collapse
Affiliation(s)
- Agnese Denzi
- Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.,Department of Information Engineering, Electronics and Telecommunication (DIET), Italian Inter-University Centre of Electromagnetic Fields and Bio-Systems (ICEmB), University of Rome "La Sapienza", 00184, Rome, Italy
| | - Francesca Camera
- Department of Information Engineering, Electronics and Telecommunication (DIET), Italian Inter-University Centre of Electromagnetic Fields and Bio-Systems (ICEmB), University of Rome "La Sapienza", 00184, Rome, Italy
| | - Caterina Merla
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy.,Vectorology and Anticancer Therapies, UMR 8203, CNRS, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Barbara Benassi
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Claudia Consales
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunication (DIET), Italian Inter-University Centre of Electromagnetic Fields and Bio-Systems (ICEmB), University of Rome "La Sapienza", 00184, Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunication (DIET), Italian Inter-University Centre of Electromagnetic Fields and Bio-Systems (ICEmB), University of Rome "La Sapienza", 00184, Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunication (DIET), Italian Inter-University Centre of Electromagnetic Fields and Bio-Systems (ICEmB), University of Rome "La Sapienza", 00184, Rome, Italy.
| |
Collapse
|
32
|
Xiao S, Semenov I, Petrella R, Pakhomov AG, Schoenbach KH. A subnanosecond electric pulse exposure system for biological cells. Med Biol Eng Comput 2016; 55:1063-1072. [PMID: 27177544 DOI: 10.1007/s11517-016-1516-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/02/2016] [Indexed: 11/30/2022]
Abstract
An exposure system adapted for use on a microscope stage was constructed for studying the effects of high electric field, subnanosecond pulses on biological cells. The system has a bandpass of 3 GHz and is capable of delivering high-voltage electric pulses (6.2 kV) to the electrodes, which are two tungsten rods (100 μm in diameter) in parallel with a gap distance of 170 μm. Electric pulses are delivered to the electrodes through a π network, which serves as an attenuator as well as an impedance matching unit to absorb the reflection at the electrodes. By minimizing the inductance of the pulse delivery system, it was possible to generate electric fields of up to 200 kV/cm with a pulse duration of 500 ps at the surface of the cover slip under the microscope. The electric field at the cover slip was found to be homogenous over an area of 50-70 μm. Within this area, neuroblastoma cells placed on the cover slip were studied with respect to membrane potential changes caused by subnanosecond pulses. This allowed us, for the first time, to demonstrate depolarization of the cell membrane potential.
Collapse
Affiliation(s)
- Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA. .,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA.
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Ross Petrella
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Karl H Schoenbach
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
33
|
Abstract
Electropermeabilization of cell membranes by micro- and nanosecond-duration stimuli has been studied extensively, whereas effects of picosecond electric pulses (psEP) remain essentially unexplored. We utilized whole-cell patch clamp and Di-8-ANEPPS voltage-sensitive dye measurements to characterize plasma membrane effects of 500 ps stimuli in rat hippocampal neurons (RHN), NG108, and CHO cells. Even a single 500-ps pulse at 190 kV/cm increased membrane conductance and depolarized cells. These effects were augmented by applying brief psEP bursts (5-125 pulses), whereas the rate of pulse delivery (8Hz - 1 kHz) played little role. psEP-treated cells displayed large inward current at negative membrane potentials but modest or no conductance changes at positive potentials. A 1-kHz burst of 25 pulses increased the whole-cell conductance in the range (-100) - (-60) mV to 22-26 nS in RHN and NG108 cells (from 3 and 0.7 nS, respectively), but only to 5 nS in CHO (from 0.3 nS). The conductance increase was reversible within about 2 min. Such pattern of cell permeabilization, with characteristic inward rectification and slow recovery, was similar to earlier reported effects of 60- and 600-ns pulses, pointing to the similarity of structural membrane rearrangements in spite of a different membrane charging mechanism.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
34
|
Son RS, Gowrishankar TR, Smith KC, Weaver JC. Modeling a Conventional Electroporation Pulse Train: Decreased Pore Number, Cumulative Calcium Transport and an Example of Electrosensitization. IEEE Trans Biomed Eng 2016; 63:571-80. [DOI: 10.1109/tbme.2015.2466234] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Xie F, Varghese F, Pakhomov AG, Semenov I, Xiao S, Philpott J, Zemlin C. Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields. PLoS One 2015; 10:e0144833. [PMID: 26658139 PMCID: PMC4687652 DOI: 10.1371/journal.pone.0144833] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/24/2015] [Indexed: 01/28/2023] Open
Abstract
Background Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations. Methods We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, at varying pulse numbers and frequencies) to create linear lesions of 12–18 mm length. Hearts were stained either with tetrazolium chloride (TTC) or propidium iodide (PI) to determine the extent of ablation. Some stained lesions were sectioned to obtain the three-dimensional geometry of the ablated volume. Results In all animals (12/12), we were able to create nonconducting lesions with less than 2 seconds of nsPEF application per site and minimal heating (< 0.2°C) of the tissue. The geometry of the ablated volume was smoother and more uniform throughout the wall than typical for RF ablation. The width of the lesions could be controlled up to 6 mm via the electrode spacing and the shock parameters. Conclusions Ablation with nsPEFs is a promising alternative to radiofrequency (RF) ablation of AF. It may dramatically reduce procedure times and produce more consistent lesion thickness than RF ablation.
Collapse
Affiliation(s)
- Fei Xie
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America.,Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Frency Varghese
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America.,Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Andrei G Pakhomov
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Iurii Semenov
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Shu Xiao
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Jonathan Philpott
- Department of Surgery, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Christian Zemlin
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America.,Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
36
|
Lamberti P, Romeo S, Sannino A, Zeni L, Zeni O. The Role of Pulse Repetition Rate in nsPEF-Induced Electroporation: A Biological and Numerical Investigation. IEEE Trans Biomed Eng 2015; 62:2234-43. [DOI: 10.1109/tbme.2015.2419813] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Semenov I, Zemlin C, Pakhomova ON, Xiao S, Pakhomov AG. Diffuse, non-polar electropermeabilization and reduced propidium uptake distinguish the effect of nanosecond electric pulses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2118-25. [PMID: 26112464 DOI: 10.1016/j.bbamem.2015.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/31/2015] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
Ca2+ activation and membrane electroporation by 10-ns and 4-ms electric pulses (nsEP and msEP) were compared in rat embryonic cardiomyocytes. The lowest electric field which triggered Ca2+ transients was expectedly higher for nsEP (36 kV/cm) than for msEP (0.09 kV/cm) but the respective doses were similar (190 and 460 mJ/g). At higher intensities, both stimuli triggered prolonged firing in quiescent cells. An increase of basal Ca2+ level by >10 nM in cells with blocked voltage-gated Ca2+ channels and depleted Ca2+ depot occurred at 63 kV/cm (nsEP) or 0.14 kV/cm (msEP) and was regarded as electroporation threshold. These electric field values were at 150-230% of stimulation thresholds for both msEP and nsEP, notwithstanding a 400,000-fold difference in pulse duration. For comparable levels of electroporative Ca2+ uptake, msEP caused at least 10-fold greater uptake of propidium than nsEP, suggesting increased yield of larger pores. Electroporation by msEP started Ca2+ entry abruptly and locally at the electrode-facing poles of cell, followed by a slow diffusion to the center. In a stark contrast, nsEP evoked a "supra-electroporation" pattern of slower but spatially uniform Ca2+ entry. Thus nsEP and msEP had comparable dose efficiency, but differed profoundly in the size and localization of electropores.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Christian Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
38
|
Effects of nanosecond pulse electric fields on cellular elasticity. Micron 2015; 72:15-20. [PMID: 25732004 DOI: 10.1016/j.micron.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 11/22/2022]
Abstract
We investigated the effects of a single 60 nanosecond pulsed electric field (nsPEF) of low (15 kV/cm) and high (60 kV/cm) field strengths on cellular morphology and membrane elasticity in Jurkat cells using fluorescent microscopy and atomic force microscopy (AFM). We performed force displacement measurements on cells using AFM and calculated the Young's modulus for membrane elasticity. Differential effects were observed depending upon pulsing conditions. We found that a single nsPEF of low field strength did not induce any apparent cytoskeletal breakdown and had minor morphological changes. Interestingly, force measurements and calculation of Young's modulus showed a significant decrease in membrane elasticity. A single nsPEF of high field strength induced stark morphological changes due to disruption of the actin cytoskeleton and a marked decrease in elasticity likely caused by irreversible membrane damage. We suggest that the cellular morphology is mainly dependent on stabilization by the actin cytoskeleton, while the elasticity changes are partially dependent on the cytoskeletal integrity.
Collapse
|
39
|
Pakhomov AG, Gianulis E, Vernier PT, Semenov I, Xiao S, Pakhomova ON. Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:958-66. [PMID: 25585279 DOI: 10.1016/j.bbamem.2014.12.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/04/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022]
Abstract
Exposure to intense, nanosecond-duration electric pulses (nsEP) opens small but long-lived pores in the plasma membrane. We quantified the cell uptake of two membrane integrity marker dyes, YO-PRO-1 (YP) and propidium (Pr) in order to test whether the pore size is affected by the number of nsEP. The fluorescence of the dyes was calibrated against their concentrations by confocal imaging of stained homogenates of the cells. The calibrations revealed a two-phase dependence of Pr emission on the concentration (with a slower rise at<4μM) and a linear dependence for YP. CHO cells were exposed to nsEP trains (1 to 100 pulses, 60ns, 13.2kV/cm, 10Hz) with Pr and YP in the medium, and the uptake of the dyes was monitored by time-lapse imaging for 3min. Even a single nsEP triggered a modest but detectable entry of both dyes, which increased linearly when more pulses were applied. The influx of Pr per pulse was constant and independent of the pulse number. The influx of YP per pulse was highest with 1- and 2-pulse exposures, decreasing to about twice the Pr level for trains from 5 to 100 pulses. The constant YP/Pr influx ratio for trains of 5 to 100 pulses suggests that increasing the number of pulses permeabilizes cells to a greater extent by increasing the pore number and not the pore diameter.
Collapse
Affiliation(s)
- Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| | - Elena Gianulis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
40
|
Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC. Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J Membr Biol 2014; 247:1209-28. [PMID: 25048527 PMCID: PMC4224743 DOI: 10.1007/s00232-014-9699-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/07/2014] [Indexed: 12/23/2022]
Abstract
Science increasingly involves complex modeling. Here we describe a model for cell electroporation in which membrane properties are dynamically modified by poration. Spatial scales range from cell membrane thickness (5 nm) to a typical mammalian cell radius (10 μm), and can be used with idealized and experimental pulse waveforms. The model consists of traditional passive components and additional active components representing nonequilibrium processes. Model responses include measurable quantities: transmembrane voltage, membrane electrical conductance, and solute transport rates and amounts for the representative "long" and "short" pulses. The long pulse--1.5 kV/cm, 100 μs--evolves two pore subpopulations with a valley at ~5 nm, which separates the subpopulations that have peaks at ~1.5 and ~12 nm radius. Such pulses are widely used in biological research, biotechnology, and medicine, including cancer therapy by drug delivery and nonthermal physical tumor ablation by causing necrosis. The short pulse--40 kV/cm, 10 ns--creates 80-fold more pores, all small (<3 nm; ~1 nm peak). These nanosecond pulses ablate tumors by apoptosis. We demonstrate the model's responses by illustrative electrical and poration behavior, and transport of calcein and propidium. We then identify extensions for expanding modeling capability. Structure-function results from MD can allow extrapolations that bring response specificity to cell membranes based on their lipid composition. After a pulse, changes in pore energy landscape can be included over seconds to minutes, by mechanisms such as cell swelling and pulse-induced chemical reactions that slowly alter pore behavior.
Collapse
Affiliation(s)
- Reuben S. Son
- />Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-213A, Cambridge, MA 02139 USA
| | - Kyle C. Smith
- />Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-213A, Cambridge, MA 02139 USA
- />Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
- />Center for Engineering in Medicine, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129 USA
| | - Thiruvallur R. Gowrishankar
- />Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-213A, Cambridge, MA 02139 USA
| | - P. Thomas Vernier
- />Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - James C. Weaver
- />Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-213A, Cambridge, MA 02139 USA
| |
Collapse
|
41
|
Pakhomov AG, Semenov I, Xiao S, Pakhomova ON, Gregory B, Schoenbach KH, Ullery JC, Beier HT, Rajulapati SR, Ibey BL. Cancellation of cellular responses to nanoelectroporation by reversing the stimulus polarity. Cell Mol Life Sci 2014; 71:4431-41. [PMID: 24748074 DOI: 10.1007/s00018-014-1626-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/26/2022]
Abstract
Nanoelectroporation of biomembranes is an effect of high-voltage, nanosecond-duration electric pulses (nsEP). It occurs both in the plasma membrane and inside the cell, and nanoporated membranes are distinguished by ion-selective and potential-sensitive permeability. Here we report a novel phenomenon of bioeffects cancellation that puts nsEP cardinally apart from the conventional electroporation and electrostimulation by milli- and microsecond pulses. We compared the effects of 60- and 300-ns monopolar, nearly rectangular nsEP on intracellular Ca(2+) mobilization and cell survival with those of bipolar 60 + 60 and 300 + 300 ns pulses. For diverse endpoints, exposure conditions, pulse numbers (1-60), and amplitudes (15-60 kV/cm), the addition of the second phase cancelled the effects of the first phase. The overall effect of bipolar pulses was profoundly reduced, despite delivering twofold more energy. Cancellation also took place when two phases were separated into two independent nsEP of opposite polarities; it gradually tapered out as the interval between two nsEP increased, but was still present even at a 10-µs interval. The phenomenon of cancellation is unique for nsEP and has not been predicted by the equivalent circuit, transport lattice, and molecular dynamics models of electroporation. The existing paradigms of membrane permeabilization by nsEP will need to be modified. Here we discuss the possible involvement of the assisted membrane discharge, two-step oxidation of membrane phospholipids, and reverse transmembrane ion transport mechanisms. Cancellation impacts nsEP applications in cancer therapy, electrostimulation, and biotechnology, and provides new insights into effects of more complex waveforms, including pulsed electromagnetic emissions.
Collapse
Affiliation(s)
- Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qi W, Guo J, Wu S, Su B, Zhang L, Pan J, Zhang J. Synergistic effect of nanosecond pulsed electric field combined with low-dose of pingyangmycin on salivary adenoid cystic carcinoma. Oncol Rep 2014; 31:2220-8. [PMID: 24604118 DOI: 10.3892/or.2014.3063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/29/2014] [Indexed: 11/05/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common malignant neoplasms in salivary glands. To evaluate the therapeutic effects of nanosecond pulsed electric field (nsPEF) combined with pingyangmycin (PYM) on salivary gland adenoid cystic carcinoma (SACC), ACC high metastatic cell line (SACC-LM) and low metastatic cell line (SACC‑83) were tested by CCK-8 assay, cell clonogenic assay, flow cytometry and Transwell assay. Extracellular matrix metalloproteinase inducer (EMMPRIN) expression was tested by western blotting to verify the synergistic mechanism of nsPEF and PYM. The results showed that nsPEF inhibited the cell proliferation of both cell lines, and the inhibitory effect was strongly associated with time and electrical field strength. Moreover, PYM combined with nsPEF may enhance the suppression effect significantly, even at a very low dose (0.01 µg/ml). The synergistic effects may contribute to the downregulation of EMMPRIN expression resulting from the application of nsPEF. For SACC, nsPEF combined with chemotherapy agents may be a valuable strategy not only to improve the treatment effect and prognosis, but also to reduce the side-effects of chemotherapy.
Collapse
Affiliation(s)
- Wei Qi
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Jinsong Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Shan Wu
- College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Bo Su
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Lei Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Jie Pan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
43
|
Romeo S, Wu YH, Levine ZA, Gundersen MA, Vernier PT. Water influx and cell swelling after nanosecond electropermeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1715-22. [DOI: 10.1016/j.bbamem.2013.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/20/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
|
44
|
Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration. Cell Calcium 2013; 54:145-50. [PMID: 23777980 DOI: 10.1016/j.ceca.2013.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/20/2013] [Accepted: 05/24/2013] [Indexed: 01/25/2023]
Abstract
Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca(2+)-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200-300 nM, the transients were amplified by calcium-induced calcium release. We conclude that nanosecond stimuli mimic Ca2+ signaling while bypassing the usual receptor- and channels-mediated cascades. The recruitment of the intracellular Ca2+ can be controlled by the duration of the stimulus.
Collapse
|
45
|
Semenov I, Xiao S, Pakhomov AG. Primary pathways of intracellular Ca(2+) mobilization by nanosecond pulsed electric field. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:981-9. [PMID: 23220180 DOI: 10.1016/j.bbamem.2012.11.032] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 02/03/2023]
Abstract
Permeabilization of cell membranous structures by nanosecond pulsed electric field (nsPEF) triggers transient rise of cytosolic Ca(2+) concentration ([Ca(2+)](i)), which determines multifarious downstream effects. By using fast ratiometric Ca(2+) imaging with Fura-2, we quantified the external Ca(2+) uptake, compared it with Ca(2+) release from the endoplasmic reticulum (ER), and analyzed the interplay of these processes. We utilized CHO cells which lack voltage-gated Ca(2+) channels, so that the nsPEF-induced [Ca(2+)](i) changes could be attributed primarily to electroporation. We found that a single 60-ns pulse caused fast [Ca(2+)](i) increase by Ca(2+) influx from the outside and Ca(2+) efflux from the ER, with the E-field thresholds of about 9 and 19kV/cm, respectively. Above these thresholds, the amplitude of [Ca(2+)](i) response increased linearly by 8-10nM per 1kV/cm until a critical level between 200 and 300nM of [Ca(2+)](i) was reached. If the critical level was reached, the nsPEF-induced Ca(2+) signal was amplified up to 3000nM by engaging the physiological mechanism of Ca(2+)-induced Ca(2+)-release (CICR). The amplification was prevented by depleting Ca(2+) from the ER store with 100nM thapsigargin, as well as by blocking the ER inositol-1,4,5-trisphosphate receptors (IP(3)R) with 50μM of 2-aminoethoxydiphenyl borate (2-APB). Mobilization of [Ca(2+)](i) by nsPEF mimicked native Ca(2+) signaling, but without preceding activation of plasma membrane receptors or channels. NsPEF stimulation may serve as a unique method to mobilize [Ca(2+)](i) and activate downstream cascades while bypassing the plasma membrane receptors.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| | | | | |
Collapse
|
46
|
Pakhomova ON, Khorokhorina VA, Bowman AM, Rodaitė-Riševičienė R, Saulis G, Xiao S, Pakhomov AG. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch Biochem Biophys 2012; 527:55-64. [PMID: 22910297 PMCID: PMC3459148 DOI: 10.1016/j.abb.2012.08.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 02/03/2023]
Abstract
Nanosecond pulsed electric field (nsPEF) is a novel modality for permeabilization of membranous structures and intracellular delivery of xenobiotics. We hypothesized that oxidative effects of nsPEF could be a separate primary mechanism responsible for bioeffects. ROS production in cultured cells and media exposed to 300-ns PEF (1-13 kV/cm) was assessed by oxidation of 2',7'-dichlorodihydrofluoresein (H(2)DCF), dihidroethidium (DHE), or Amplex Red. When a suspension of H(2)DCF-loaded cells was subjected to nsPEF, the yield of fluorescent 2',7'-dichlorofluorescein (DCF) increased proportionally to the pulse number and cell density. DCF emission increased with time after exposure in nsPEF-sensitive Jurkat cells, but remained stable in nsPEF-resistant U937 cells. In cell-free media, nsPEF facilitated the conversion of H(2)DCF into DCF. This effect was not related to heating and was reduced by catalase, but not by mannitol or superoxide dismutase. Formation of H(2)O(2) in nsPEF-treated media was confirmed by increased oxidation of Amplex Red. ROS increase within individual cells exposed to nsPEF was visualized by oxidation of DHE. We conclude that nsPEF can generate both extracellular (electrochemical) and intracellular ROS, including H(2)O(2) and possibly other species. Therefore, bioeffects of nsPEF are not limited to electropermeabilization; concurrent ROS formation may lead to cell stimulation and/or oxidative cell damage.
Collapse
Affiliation(s)
- Olga N. Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Vera A. Khorokhorina
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Angela M. Bowman
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | | | - Gintautas Saulis
- Department of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
- Dept. of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| |
Collapse
|
47
|
Yu Z, Zhang X, Ren P, Zhang M, Qian J. Therapeutic potential of irreversible electroporation in sarcoma. Expert Rev Anticancer Ther 2012; 12:177-84. [PMID: 22316365 DOI: 10.1586/era.11.211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation is a newly developed nonthermal tissue ablation technique in which certain short-duration electrical fields are used to permanently permeabilize the cell membrane to disrupt cellular homeostasis. This disruption of cellular homeostasis initiates apoptosis, which leads to permanent cell death. Sarcomas are generally divided into soft-tissue and bone sarcomas based on their different mesenchymal origins and anatomical locations. Each of these sarcomas present in different ways, exhibit different behaviors and prognoses, and present unique therapeutic challenges. In this article, a series of recently conducted irreversible electroporation treatment for sarcomas based on local nonthermal ablation are summarized, and the therapeutic potential of this newly developed technique is assessed.
Collapse
Affiliation(s)
- Zhe Yu
- Center of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China.
| | | | | | | | | |
Collapse
|
48
|
Wang J, Guo J, Wu S, Feng H, Sun S, Pan J, Zhang J, Beebe SJ. Synergistic effects of nanosecond pulsed electric fields combined with low concentration of gemcitabine on human oral squamous cell carcinoma in vitro. PLoS One 2012; 7:e43213. [PMID: 22927951 PMCID: PMC3426536 DOI: 10.1371/journal.pone.0043213] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/20/2012] [Indexed: 01/04/2023] Open
Abstract
Treatment of cancer often involves uses of multiple therapeutic strategies with different mechanisms of action. In this study we investigated combinations of nanosecond pulsed electric fields (nsPEF) with low concentrations of gemcitabine on human oral cancer cells. Cells (Cal-27) were treated with pulse parameters (20 pulses, 100 ns in duration, intensities of 10, 30 and 60 kV/cm) and then cultured in medium with 0.01 µg/ml gemcitabine. Proliferation, apoptosis/necrosis, invasion and morphology of those cells were examined using MTT, flow cytometry, clonogenics, transwell migration and TEM assay. Results show that combination treatments of gemcitabine and nsPEFs exhibited significant synergistic activities versus individual treatments for inhibiting oral cancer cell proliferation and inducing apoptosis and necrosis. However, there was no apparent synergism for cell invasion. By this we demonstrated synergistic inhibition of Cal-27 cells in vitro by nsPEFs and gemcitabine. Synergistic behavior indicates that these two treatments have different sites of action and combination treatment allows reduced doses of gemcitabine and lower nsPEF conditions, which may provide better treatment for patients than either treatment alone while reducing systemic toxicities.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oral Medicine, School of Stomatology, Lanzhou University, Lanzhou Gansu, China
| | - Jinsong Guo
- Department of Oral Medicine, School of Stomatology, Lanzhou University, Lanzhou Gansu, China
- College of Engineering, Peking University, Beijing, China
| | - Shan Wu
- College of Engineering, Peking University, Beijing, China
| | - Hongqing Feng
- College of Engineering, Peking University, Beijing, China
| | - Shujun Sun
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jie Pan
- Department of General Dentistry, School of Stomatology, Peking University, Beijing, China
| | - Jue Zhang
- College of Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Stephen J. Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
49
|
Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar TR. A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 2012; 87:236-43. [PMID: 22475953 DOI: 10.1016/j.bioelechem.2012.02.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/09/2012] [Accepted: 02/28/2012] [Indexed: 12/22/2022]
Abstract
Electroporation (EP) of outer cell membranes is widely used in research, biotechnology and medicine. Now intracellular effects by organelle EP are of growing interest, mainly due to nanosecond pulsed electric fields (nsPEF). For perspective, here we provide an approximate overview of EP pulse strength-duration space. This overview locates approximately some known effects and applications in strength-duration space, and includes a region where additional intracellular EP effects are expected. A feature of intracellular EP is direct, electrical redistribution of endogenous biochemicals among cellular compartments. For example, intracellular EP may initiate a multistep process for apoptosis. In this hypothesis, initial EP pulses release calcium from the endoplasmic reticulum, followed by calcium redistribution within the cytoplasm. With further EP pulses calcium penetrates mitochondrial membranes and causes changes that trigger release of cytochrome c and other death molecules. Apoptosis may therefore occur even in the presence of apoptotic inhibitors, using pulses that are smaller, but longer, than nsPEF.
Collapse
Affiliation(s)
- James C Weaver
- Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
50
|
Yang W, Wu YH, Yin D, Koeffler HP, Sawcer DE, Vernier PT, Gundersen MA. Differential sensitivities of malignant and normal skin cells to nanosecond pulsed electric fields. Technol Cancer Res Treat 2011; 10:281-6. [PMID: 21517135 DOI: 10.7785/tcrt.2012.500204] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pulsed electric fields with nanosecond duration and high amplitude have effects on biological subjects and bring new venue in disease diagnosis and therapy. To address this respect, we investigated the responses of paired tumor and normal human skin cells - a basal cell carcinoma (BCC) cell line, and its sister normal cell line (TE) - to nanosecond, megavolt-per-meter pulses. When BCC (TE 354.T) and TE (TE 353.SK) cells, cultured under standard conditions, were exposed to 30 ns, 3 MV/m, 50 Hz pulses and tested for membrane permeabilization, viability, morphology, and caspase activation, we found that nanoelectropulse exposure: 1) increased cell membrane permeability in both cell lines but to a greater extent in BCC cells than in normal cells; 2) decreased cell viabilities with BCC cells affected more than normal cells; 3) induced morphological changes in both cell lines including condensed and fragmented chromatin with enlarged nuclei; 4) induced about twice as much caspase activation in BCC cells compared to normal cells. We concluded that in paired tumor and normal skin cell lines, the response of the tumor cells to nanoelectropulse exposure is stronger than the response of normal cells, indicating the potential for selectivity in therapeutic applications.
Collapse
Affiliation(s)
- W Yang
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering (VSoE), University of Southern California (USC), Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | |
Collapse
|