1
|
Zhang K, Chen M, He H, Kou H, Lin L, Liang R. Genome-wide identification and characterization of toll-like receptor 5 ( TLR5) in fishes. Front Genet 2023; 13:1083578. [PMID: 36685837 PMCID: PMC9857387 DOI: 10.3389/fgene.2022.1083578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors 5 (TLR5), a member of the toll-like receptors (TLRs) family, is a class of pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). It responds to vertebrate recognition of bacterial flagellin and participates in innate immune responses. However, genome-wide identification and characterization of TLR5 in fishes have not been investigated. Here, three TLR5M isotypes (TLR5Ma, TLR5Mb1, and TLR5Mb2) and a TLR5S are all extracted from fish genomes on the basis of phylogenetic and synteny analyses. We confirmed that the non-teleost fishes have one TLR5M gene, as well as additional TLR5 genes (TLR5M and TLR5S) in teleost fishes. In addition, some special teleost fishes possess two to three TLR5 genes, which have undergone the fourth whole-genome duplication (WGD). According to our results, we inferred that the diversity of TLR5 genes in fishes seems to be the result of combinations of WGD and gene loss. Furthermore, TLR5 isoforms displayed differences at the flagellin interaction sites and viral binding sites, and showed lineage-specific, which indicated that TLR5 duplicates may generate functional divergence. Bacterial experiments also supported the idea that CiTLR5Ma and CiTLR5Mb are subfunctionalized to sense bacterial flagellin. In summary, our present comparative genomic survey will benefit for further functional investigations of TLR5 genes in fish.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Ming Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Haobin He
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongyan Kou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Li Lin
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China,*Correspondence: Rishen Liang, ; Li Lin,
| | - Rishen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China,*Correspondence: Rishen Liang, ; Li Lin,
| |
Collapse
|
2
|
Redwan EM, Aljadawi AA, Uversky VN. Hepatitis C Virus Infection and Intrinsic Disorder in the Signaling Pathways Induced by Toll-Like Receptors. BIOLOGY 2022; 11:1091. [PMID: 36101469 PMCID: PMC9312352 DOI: 10.3390/biology11071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
In this study, we examined the interplay between protein intrinsic disorder, hepatitis C virus (HCV) infection, and signaling pathways induced by Toll-like receptors (TLRs). To this end, 10 HCV proteins, 10 human TLRs, and 41 proteins from the TLR-induced downstream pathways were considered from the prevalence of intrinsic disorder. Mapping of the intrinsic disorder to the HCV-TLR interactome and to the TLR-based pathways of human innate immune response to the HCV infection demonstrates that substantial levels of intrinsic disorder are characteristic for proteins involved in the regulation and execution of these innate immunity pathways and in HCV-TLR interaction. Disordered regions, being commonly enriched in sites of various posttranslational modifications, may play important functional roles by promoting protein-protein interactions and support the binding of the analyzed proteins to other partners such as nucleic acids. It seems that this system represents an important illustration of the role of intrinsic disorder in virus-host warfare.
Collapse
Affiliation(s)
- Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Abdullah A. Aljadawi
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Chen J, Qiao Y, Chen G, Chang C, Dong H, Tang B, Cheng X, Liu X, Hua Z. Salmonella flagella confer anti-tumor immunological effect via activating Flagellin/TLR5 signalling within tumor microenvironment. Acta Pharm Sin B 2021; 11:3165-3177. [PMID: 34729307 PMCID: PMC8546927 DOI: 10.1016/j.apsb.2021.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
mediated cancer therapy has achieved remarkable anti-tumor effects in experimental animal models, but the detailed mechanism remains unsolved. In this report, the active involvement of the host immune response in this process was confirmed by comparing the tumor-suppressive effects of Salmonella in immunocompetent and immunodeficient mice bearing melanoma allografts. Since flagella are key inducers of the host immune response during bacterial infection, flagella were genetically disrupted to analyse their involvement in Salmonella-mediated cancer therapy. The results showed that flagellum-deficient strains failed to induce significant anti-tumor effects, even when more bacteria were administered to offset the difference in invasion efficiency. Flagella mainly activate immune cells via Flagellin/Toll-like receptor 5 (TLR5) signalling pathway. Indeed, we showed that exogenous activation of TLR5 signalling by recombinant Flagellin and exogenous expression of TLR5 both enhanced the therapeutic efficacy of flagellum-deficient Salmonella against melanoma. Our study highlighted the therapeutic value of the interaction between Salmonella and the host immune response through Flagellin/TLR5 signalling pathway during Salmonella-mediated cancer therapy, thereby suggesting the potential application of TLR5 agonists in the cancer immune therapy.
Collapse
Key Words
- AKT, Akt serine/threonine kinase
- Bacteria-mediated cancer therapy
- CFU, colony-forming units
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cancer immune therapy
- DN, dominant-negative
- ERBB2, Erb-B2 receptor tyrosine kinase 2
- ERKl, extracellular regulated protein kinase 1
- Flagellin
- Flagellum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GFP, green fluorescent protein
- IFN-γ, interferon-γ
- IL, interleukins
- IκB, inhibitor of NF-κB
- JNK, c-Jun N-terminal kinase
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MyD88, myeloid differentiation factor 88
- NF-κB
- NF-κB, nuclear factor kappa-B
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death-ligand 1
- PEI, polyethylenimine
- Salmonella
- TIR, Toll/Interleukin-1 receptor
- TLR, Toll-like receptor
- TLR5
- TME, tumor microenvironment
- TRAF6, TNF receptor associated factor 6
- VNP20009
- i.p., intraperitoneally
- i.t., intratumorally
Collapse
|
4
|
Gruber E, Heyward C, Cameron J, Leifer C. Toll-like receptor signaling in macrophages is regulated by extracellular substrate stiffness and Rho-associated coiled-coil kinase (ROCK1/2). Int Immunol 2019; 30:267-278. [PMID: 29800294 DOI: 10.1093/intimm/dxy027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages participate in immunity, tissue repair and tissue homeostasis. Activation of Toll-like receptors (TLRs) by conserved exogenous or endogenous structures initiates signaling cascades that result in the release of cytokines such as tumor necrosis factor α (TNFα). Extracellular substrate stiffness is known to regulate functions of non-immune cells through a process called mechanotransduction, yet less is known about how physical cues affect macrophage function or TLR signaling. To investigate this question, we cultured murine primary bone marrow-derived macrophages (BMMs) and RAW264.7 cells on fibronectin-coated polyacrylamide (PA) gels of defined stiffnesses (1, 20 and 150 kPa) that approximate the physical properties of physiologic tissues. BMMs on all gels were smaller and more circular than those on rigid glass. Macrophages on intermediate stiffness 20 kPa PA gels were slightly larger and less circular than those on either 1 or 150 kPa. Secretion of the pro-inflammatory cytokine, TNFα, in response to stimulation of TLR4 and TLR9 was increased in macrophages grown on soft gels versus more rigid gels, particularly for BMMs. Inhibition of the rho-associated coiled-coil kinase 1/2 (ROCK1/2), key mediators in cell contractility and mechanotransduction, enhanced release of TNFα in response to stimulation of TLR4. ROCK1/2 inhibition enhanced phosphorylation of the TLR downstream signaling molecules, p38, ERK1/2 and NFκB. Our data indicate that physical cues from the extracellular environment regulate macrophage morphology and TLR signaling. These findings have important implications in the regulation of macrophage function in diseased tissues and offer a novel pharmacological target for the manipulation of macrophage function in vivo.
Collapse
Affiliation(s)
- Erika Gruber
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christa Heyward
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jody Cameron
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Cynthia Leifer
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Tahoun A, Jensen K, Corripio-Miyar Y, McAteer S, Smith DGE, McNeilly TN, Gally DL, Glass EJ. Host species adaptation of TLR5 signalling and flagellin recognition. Sci Rep 2017; 7:17677. [PMID: 29247203 PMCID: PMC5732158 DOI: 10.1038/s41598-017-17935-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
Toll-like receptor 5 (TLR5) recognition of flagellin instigates inflammatory signalling. Significant sequence variation in TLR5 exists between animal species but its impact on activity is less well understood. Building on our previous research that bovine TLR5 (bTLR5) is functional, we compared human and bovine TLR5 activity and signalling in cognate cell lines. bTLR5 induced higher levels of CXCL8 when expressed in bovine cells and reciprocal results were found for human TLR5 (hTLR5) in human cells, indicative of host cell specificity in this response. Analysis of Toll/interleukin-1 receptor (TIR) sequences indicated that these differential responses involve cognate MyD88 recognition. siRNA knockdowns and inhibitor experiments demonstrated that there are some host differences in signalling. Although, PI3K activation is required for bTLR5 signalling, mutating bTLR5 F798 to hTLR5 Y798 within a putative PI3K motif resulted in a significantly reduced response. All ruminants have F798 in contrast to most other species, suggesting that TLR5 signalling has evolved differently in ruminants. Evolutionary divergence between bovine and human TLR5 was also apparent in relation to responses measured to diverse bacterial flagellins. Our results underscore the importance of species specific studies and how differences may alter efficacy of TLR-based vaccine adjuvants.
Collapse
Affiliation(s)
- Amin Tahoun
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Faculty of Veterinary Medicine, Kafrelsheikh University, 33516, Kafr el-Sheikh, Egypt
| | - Kirsty Jensen
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yolanda Corripio-Miyar
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK
| | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David G E Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK.,University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK
| | - David L Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Elizabeth J Glass
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
6
|
Rostami H, Ebtekar M, Ardestani MS, Yazdi MH, Mahdavi M. Co-utilization of a TLR5 agonist and nano-formulation of HIV-1 vaccine candidate leads to increased vaccine immunogenicity and decreased immunogenic dose: A preliminary study. Immunol Lett 2017; 187:19-26. [PMID: 28479111 DOI: 10.1016/j.imlet.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022]
Abstract
Vaccines currently available for AIDS show poor efficiency, demonstrating the need for new strategies to increase their immunogenicity. In this study, the HIV-1P24-Nef peptide was used as a model vaccine, followed by utilization of a novel strategy to increase its immunogenicity. There is a growing interest in using TLR agonists for vaccine formulations. Such molecules bind to their receptors on immune cells, especially the cell surface of antigen presenting cells, thereby activating these cells and inflammatory responses. In the present study, FLiC (flagellin molecule sequence from Pseudomonas aeruginosa) was used as a TLR5 agonist. In addition, PLGA nanoparticles were used as a transmitter system to enhance vaccine efficiency and its effective transfer to immune systems. In light of this, the P24-Nef peptide was conjugated to FLiC through chemical reactions. The HIV-1P24-Nef/FLiC conjugate was constructed as a nano-vaccine using PLGA particles. Subsequently, mice were immunized intradermally three times with three-week intervals with HIV-p24-Nef/FLiC/PLGA, HIV-p24-Nef/PLGA, FLiC/PLGA, PLGA, and PBS in two doses (20 and 5μg). Three weeks after the last booster injection, cell proliferation was assessed using the Brdu/ELISA assay, and cytotoxicity was evaluated by CFSE and splenocyte cytokine secretion (IL-4 and IFN-γ); in addition, IgG1 and IgG2a antibody isotype titers were determined using a commercial ELISA kit. Our results showed that Co-utilization of TLR5 and nano-particles not only improves vaccine immunogenicity but also decreases the immunogenic dose of vaccine candidate required. We showed that the immune system was effectively stimulated via the nano-vaccination strategy using the TLR5 agonists. The effect of this strategy showed variations in different parameters of the immune system; in this regard, cellular immune responses had a higher stimulation level, compared with humoral immune responses.
Collapse
Affiliation(s)
- Hajar Rostami
- Department of Immunology, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Evidence Based Medicine Group, Pharmaceutical Biotechnology Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol 2016; 100:927-941. [PMID: 27343013 DOI: 10.1189/jlb.2mr0316-117rr] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023] Open
Abstract
TLRs play a critical role in the detection of microbes and endogenous "alarmins" to initiate host defense, yet they can also contribute to the development and progression of inflammatory and autoimmune diseases. To avoid pathogenic inflammation, TLR signaling is subject to multilayer regulatory control mechanisms, including cooperation with coreceptors, post-translational modifications, cleavage, cellular trafficking, and interactions with negative regulators. Nucleic acid-sensing TLRs are particularly interesting in this regard, as they can both recognize host-derived structures and require internalization of their ligand as a result of intracellular sequestration of the nucleic acid-sensing TLRs. This review summarizes the regulatory mechanisms of TLRs, including regulation of their access to ligands, receptor folding, intracellular trafficking, and post-translational modifications, as well as how altered control mechanism could contribute to inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA; and
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Heath Center, Farmington, Connecticut, USA
| |
Collapse
|
8
|
Coulombe G, Langlois A, De Palma G, Langlois MJ, McCarville JL, Gagné-Sanfaçon J, Perreault N, Feng GS, Bercik P, Boudreau F, Verdu EF, Rivard N. SHP-2 Phosphatase Prevents Colonic Inflammation by Controlling Secretory Cell Differentiation and Maintaining Host-Microbiota Homeostasis. J Cell Physiol 2016; 231:2529-40. [PMID: 27100271 PMCID: PMC5330278 DOI: 10.1002/jcp.25407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Polymorphisms in the PTPN11 gene encoding for the tyrosine phosphatase SHP‐2 were described in patients with ulcerative colitis. We have recently demonstrated that mice with an intestinal epithelial cell‐specific deletion of SHP‐2 (SHP‐2IEC‐KO) develop severe colitis 1 month after birth. However, the mechanisms by which SHP‐2 deletion induces colonic inflammation remain to be elucidated. We generated SHP‐2IEC‐KO mice lacking Myd88 exclusively in the intestinal epithelium. The colonic phenotype was histologically analyzed and cell differentiation was determined by electron microscopy and lysozyme or Alcian blue staining. Microbiota composition was analyzed by 16S sequencing. Results show that innate defense genes including those specific to Paneth cells were strongly up‐regulated in SHP‐2‐deficient colons. Expansion of intermediate cells (common progenitors of the Goblet and Paneth cell lineages) was found in the colon of SHP‐2IEC‐KO mice whereas Goblet cell number was clearly diminished. These alterations in Goblet/intermediate cell ratio were noticed 2 weeks after birth, before the onset of inflammation and were associated with significant alterations in microbiota composition. Indeed, an increase in Enterobacteriaceae and a decrease in Firmicutes were observed in the colon of these mice, indicating that dysbiosis also occurred prior to inflammation. Importantly, loss of epithelial Myd88 expression inhibited colitis development in SHP‐2IEC‐KO mice, rescued Goblet/intermediate cell ratio, and prevented NFκB hyperactivation and inflammation. These data indicate that SHP‐2 is functionally important for the maintenance of appropriate barrier function and host‐microbiota homeostasis in the large intestine. J. Cell. Physiol. 231: 2529–2540, 2016. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Geneviève Coulombe
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Langlois
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marie-Josée Langlois
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Justin L McCarville
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jessica Gagné-Sanfaçon
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gen-Sheng Feng
- Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - François Boudreau
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Nathalie Rivard
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
9
|
Hasan M, Gruber E, Cameron J, Leifer CA. TLR9 stability and signaling are regulated by phosphorylation and cell stress. J Leukoc Biol 2016; 100:525-33. [PMID: 26957214 DOI: 10.1189/jlb.2a0815-337r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/02/2016] [Indexed: 12/27/2022] Open
Abstract
Innate sensing of pathogens elicits protective immune responses through pattern recognition receptors, including Toll-like receptors. Although signaling by Toll-like receptors is regulated at multiple steps, including localization, trafficking, proteolytic cleavage, and phosphorylation, the significance of post-translational modifications and cellular stress response on Toll-like receptor stability and signaling is still largely unknown. In the present study, we investigated the role of cytoplasmic tyrosine motifs in Toll-like receptor-9 stability, proteolytic cleavage, and signaling. We demonstrated that tyrosine phosphorylation is essential for mouse Toll-like receptor-9 protein stability and signaling. Upon inhibition of tyrosine kinases with piceatannol, Toll-like receptor-9 tyrosine phosphorylation induced by CpG deoxyribonucleic acid was inhibited, which correlated with decreased signaling. Furthermore, inhibition of Src kinases with 1-tert-Butyl-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine also inhibited response to CpG deoxyribonucleic acid. Toll-like receptor-9 protein stability was also sensitive to autophagy, the cellular stress response pathway, and infection by a deoxyribonucleic acid virus. Whereas autophagy induced by rapamycin or low serum levels caused a preferential loss of the mature p80 proteolytic cleavage product, infection with herpes simplex virus-1 and induction of cell stress with tunicamycin caused preferential loss of full-length Toll-like receptor-9, which is localized to the endoplasmic reticulum. Our data reveal new information about the stability and signaling of Toll-like receptor-9 and suggest that immune evasion mechanisms may involve targeted loss of innate sensing receptors.
Collapse
Affiliation(s)
- Maroof Hasan
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Erika Gruber
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Jody Cameron
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Sharma N, Akhade AS, Qadri A. Src kinases central to T-cell receptor signaling regulate TLR-activated innate immune responses from human T cells. Innate Immun 2016; 22:238-44. [PMID: 26888964 DOI: 10.1177/1753425916632305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/20/2016] [Indexed: 01/09/2023] Open
Abstract
TLRs have a fundamental role in immunity. We have recently reported that stimulation of TLR2 and TLR5 in freshly isolated and activated human T cells with microbial ligands without concomitant activation through the TCR brings about secretion of neutrophil chemoattractant, CXCL8, and effector cytokine, IFN-γ, respectively. However, the mechanism of TLR signaling in T cells has not been worked out. Here, we show that the Src family kinases, p56(lck)(Lck) and p59(fyn)(Fyn), which are essential for activation of T cells through the TCR, are also critical for signal transduction through TLRs in human T cells. The secretion of CXCL8 following stimulation of the model human T cell line, Jurkat, with the TLR5 ligand, flagellin, was reduced in presence of the Src-kinase inhibitor, PP2 and specific inhibitors of Lck and Fyn. These inhibitors suppressed generation of activated JNK and p38, which were both required for TLR-induced CXCL8 production. The Lck-deficient derivative of Jurkat, JCam1.6, responded poorly to TLR2, TLR5 and TLR7 agonists, and did not generate active signaling intermediates. Lck and Fyn inhibitors also reduced TLR5-induced IFN-γ secretion from the activated T cell phenotype-representing T cell line, HuT78, without modulating JNK and p38 activation. These results reveal that TCR and TLRs share key proximal signaling regulators in T cells.
Collapse
Affiliation(s)
- Naveen Sharma
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ajay Suresh Akhade
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
11
|
Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition. Sci Rep 2016; 6:19046. [PMID: 26738735 PMCID: PMC4703953 DOI: 10.1038/srep19046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.
Collapse
|
12
|
Tahoun A, Jensen K, Corripio-Miyar Y, McAteer SP, Corbishley A, Mahajan A, Brown H, Frew D, Aumeunier A, Smith DGE, McNeilly TN, Glass EJ, Gally DL. Functional analysis of bovine TLR5 and association with IgA responses of cattle following systemic immunisation with H7 flagella. Vet Res 2015; 46:9. [PMID: 25827709 PMCID: PMC4333180 DOI: 10.1186/s13567-014-0135-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/11/2014] [Indexed: 11/14/2022] Open
Abstract
Flagellin subunits are important inducers of host immune responses through activation of TLR5 when extracellular and the inflammasome if cytosolic. Our previous work demonstrated that systemic immunization of cattle with flagella generates systemic and mucosal IgA responses. The IgA response in mice is TLR5-dependent and TLR5 can impact on the general magnitude of the adaptive response. However, due to sequence differences between bovine and human/murine TLR5 sequences, it is not clear whether bovine TLR5 (bTLR5) is able to stimulate an inflammatory response following interaction with flagellin. To address this we have examined the innate responses of both human and bovine cells containing bTLR5 to H7 flagellin from E. coli O157:H7. Both HEK293 (human origin) and embryonic bovine lung (EBL) cells transfected with bTLR5 responded to addition of H7 flagellin compared to non-transfected controls. Responses were significantly reduced when mutations were introduced into the TLR5-binding regions of H7 flagellin, including an R90T substitution. In bovine primary macrophages, flagellin-stimulated CXCL8 mRNA and secreted protein levels were significantly reduced when TLR5 transcript levels were suppressed by specific siRNAs and stimulation was reduced with the R90T-H7 variant. While these results indicate that the bTLR5 sequence produces a functional flagellin-recognition receptor, cattle immunized with R90T-H7 flagella also demonstrated systemic IgA responses to the flagellin in comparison to adjuvant only controls. This presumably either reflects our findings that R90T-H7 still activates bTLR5, albeit with reduced efficiency compared to WT H7 flagellin, or that other flagellin recognition pathways may play a role in this mucosal response.
Collapse
|
13
|
Osvaldova A, Woodman S, Patterson N, Offord V, Mwangi D, Gibson AJ, Matiasovic J, Werling D. Replacement of two aminoacids in the bovine Toll-like receptor 5 TIR domain with their human counterparts partially restores functional response to flagellin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:90-94. [PMID: 25020193 DOI: 10.1016/j.dci.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
Flagellin potently induces inflammatory responses in mammalian cells by activating Toll-like receptor (TLR) 5. Recently, we were able to show that stimulation of bovine TLR5 resulted in neither NFκB signalling nor CXCL8 production. Like other TLRs, TLR5 recruits signalling molecules to its intracellular TIR domain, leading to inflammatory responses. Analysis of available TLR5 sequences revealed substitutions in all artiodactyl sequences at amo acid (AA) position 798 and 799. Interestingly, a putative binding site for PI3K was identified at tyrosine 798 in the human TLR5 TIR domain, analogous to the PI3K recruitment domain in the IL-1 receptor. Mutation of the artiodactyl residues at position 798, 799 or both with their corresponding human counterparts partially restored the response of bovine (bo)TLR5 to flagellin as well as phosphorylation of PI3K. Together, our results suggest a potential lack of phosphorylation of F798 and H799 in boTLR5 partially explains the lack in observed response.
Collapse
Affiliation(s)
- Alena Osvaldova
- Veterinary Research Institute, Department of Immunology, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Sally Woodman
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Nicholas Patterson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Victoria Offord
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | | | - Amanda J Gibson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Jan Matiasovic
- Veterinary Research Institute, Department of Immunology, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Dirk Werling
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.
| |
Collapse
|
14
|
Tyrosine phosphorylation in Toll-like receptor signaling. Cytokine Growth Factor Rev 2014; 25:533-41. [PMID: 25022196 DOI: 10.1016/j.cytogfr.2014.06.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 12/28/2022]
Abstract
There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge of the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways.
Collapse
|
15
|
Leifer CA, Rose WA, Botelho F. Traditional biochemical assays for studying toll-like receptor 9. J Immunoassay Immunochem 2013; 34:1-15. [PMID: 23323977 DOI: 10.1080/15321819.2012.666222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the mechanistic basis of receptor activation and regulation can offer therapeutic targets for disease treatment. Evidence is emerging for a role of the normally foreign responsive Toll-like receptors (TLRs) in the development of autoimmunity through response to self-patterns. Regulatory mechanisms governing this class of receptors are poorly understood, and failures within this system likely contribute to development of autoimmunity. In this article, we review biochemical assays used to study one of the self-pattern responsive TLRs, TLR9, and suggest that these studies are critical for development of new targets for autoimmune therapies.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
16
|
Sheridan J, Mack DR, Amre DK, Israel DM, Cherkasov A, Li H, Grimard G, Steiner TS. A non-synonymous coding variant (L616F) in the TLR5 gene is potentially associated with Crohn's disease and influences responses to bacterial flagellin. PLoS One 2013; 8:e61326. [PMID: 23593463 PMCID: PMC3623901 DOI: 10.1371/journal.pone.0061326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/07/2013] [Indexed: 01/12/2023] Open
Abstract
Background and Objectives Although numerous studies have implicated TLR5, or its ligands, bacterial flagellins, in the pathogenesis of Crohn's disease (CD), genome-wide association studies (GWAS) have not reported associations with the TLR5 gene. We aimed to examine potential CD-associated TLR5 variants and assess whether they modified inflammatory responses to bacterial flagellins. Methods and Principal Results A two-stage study was carried out. In stage 1, we genotyped tagging single-nucleotide polymorphisms (tag-SNPs) in the TLR5 gene in a sample of CD cases (<20 years of age, N = 566) and controls (N = 536). Single SNP and haplotype analysis was carried out. In Stage 2, we assessed the functional significance of potential CD-associated variant(s) vis-à-vis effects on the inflammatory response to bacterial flagellin using HEK293T cells. We observed marginal association between a non-synonymous coding SNP rs5744174 (p = 0.05) and CD. Associations between SNP rs851139 that is in high linkage disequilibrium (LD) with SNP rs5744174 were also suggested (p = 0.07). Haplotype analysis revealed that a 3 marker haplotype was significantly associated with CD (p = 0.01). Functional studies showed that the risk allele (616F) (corresponding to the C allele of SNP rs5744174) conferred significantly greater production of CCL20 in response to a range of flagellin doses than the comparator allele (616L). Conclusions Our findings suggest that a non-synonymous coding variation in the TLR5 gene may confer modest susceptibility for CD.
Collapse
Affiliation(s)
- Jared Sheridan
- Division of Infectious Diseases, Vancouver Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - David R. Mack
- Division of Gastroenterology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Devendra K. Amre
- Research Centre, CHU-Ste-Justine, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
- * E-mail: (DKA); (TSS)
| | - David M. Israel
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia's Children's Hospital, Vancouver, Canada
| | - Artem Cherkasov
- Prostate Centre, Vancouver Coastal Research Institute, Vancouver, British Columbia, Canada
| | - Huifang Li
- Prostate Centre, Vancouver Coastal Research Institute, Vancouver, British Columbia, Canada
| | - Guy Grimard
- Research Centre, CHU-Ste-Justine, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Theodore S. Steiner
- Division of Infectious Diseases, Vancouver Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (DKA); (TSS)
| |
Collapse
|
17
|
Knezević J, Pavlinić D, Rose WA, Leifer CA, Bendelja K, Gabrilovac J, Parcina M, Lauc G, Kubarenko AV, Petricevic B, Vrbanec D, Bulat-Kardum L, Bekeredjian-Ding I, Pavelić J, Dembić Z, Weber ANR. Heterozygous carriage of a dysfunctional Toll-like receptor 9 allele affects CpG oligonucleotide responses in B cells. J Biol Chem 2012; 287:24544-53. [PMID: 22613717 DOI: 10.1074/jbc.m111.337477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Toll-like receptors (TLR) are employed by the innate immune system to detect microbial pathogens based on conserved microbial pathogen molecules. For example, TLR9 is a receptor for CpG-containing microbial DNA, and its activation results in the production of cytokines and type I interferons from human B cells and plasmacytoid dendritic cells, respectively. Both are required for mounting an efficient antibacterial or antiviral immune response. These effects are mimicked by synthetic CpG oligodeoxynucleotides (ODN). Although several hyporesponsive TLR9 variants have been reported, their functional relevance in human primary cells has not been addressed. Here we report a novel TLR9 allele, R892W, which is hyporesponsive to CpG ODN and acts as a dominant-negative in a cellular model system. The R892W variant is characterized by increased MyD88 binding and defective co-localization with CpG ODN. Whereas primary plasmacytoid dendritic cells isolated from a heterozygous R892W carrier responded normally to CpG by interferon-α production, carrier B cells showed impaired IL-6 and IL-10 production. This suggests that heterozygous carriage of a hyporesponsive TLR9 allele is not associated with complete loss of TLR9 function but that TLR9 signals elicited in different cell types are regulated differently in human primary cells.
Collapse
Affiliation(s)
- Jelena Knezević
- Laboratories of Molecular Oncology, Division of Molecular Medicine, Ruðer Bosković Institute, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The role of phosphoinositide 3-kinase signaling in intestinal inflammation. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:358476. [PMID: 22570785 PMCID: PMC3337621 DOI: 10.1155/2012/358476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/29/2011] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase signaling pathway plays a central role in regulating the host inflammatory response. The net effect can either be pro- or anti-inflammatory depending on the system and cellular context studied. This paper focuses on phosphatidylinositol 3-kinase signaling in innate and adaptive immune cells of the intestinal mucosa. The role of phosphatidylinositol 3-kinase signaling in mouse models of inflammatory bowel disease is also discussed. With the development of new isoform specific inhibitors, we are beginning to understand the specific role of this complex pathway, in particular the role of the γ isoform in intestinal inflammation. Continued research on this complex pathway will enhance our understanding of its role and provide rationale for the design of new approaches to intervention in chronic inflammatory conditions such as inflammatory bowel disease.
Collapse
|
19
|
Zhou K, Kanai R, Lee P, Wang HW, Modis Y. Toll-like receptor 5 forms asymmetric dimers in the absence of flagellin. J Struct Biol 2011; 177:402-9. [PMID: 22173220 DOI: 10.1016/j.jsb.2011.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022]
Abstract
The structure of full-length human TLR5 determined by electron microscopy single-particle image reconstruction at 26Å resolution shows that TLR5 forms an asymmetric homodimer via ectodomain interactions. The structure shows that like TLR9, TLR5 dimerizes in the absence of ligand. The asymmetry of the dimer suggests that TLR5 may recognize two flagellin molecules cooperatively to establish an optimal flagellin response threshold. A TLR5 homology model was generated and fitted into the electron microscopy structure. All seven predicted N-linked glycosylation sites are exposed on the molecular surface, away from the dimer interface. Glycosylation at the first five sites was confirmed by tandem mass spectrometry. Two aspartate residues proposed to interact with flagellin (Asp294 and Asp366) are sterically occluded by a glycan at position 342. In contrast, the central region of the ectodomains near the dimer interface is unobstructed by glycans. Ligand binding in this region would be consistent with the ligand binding sites of other TLRs.
Collapse
Affiliation(s)
- Kaifeng Zhou
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
20
|
Fraser-Pitt DJ, Cameron P, McNeilly TN, Boyd A, Manson EDT, Smith DGE. Phosphorylation of the epidermal growth factor receptor (EGFR) is essential for interleukin-8 release from intestinal epithelial cells in response to challenge with Escherichia coli O157 : H7 flagellin. MICROBIOLOGY-SGM 2011; 157:2339-2347. [PMID: 21546588 DOI: 10.1099/mic.0.047670-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enterohaemorrhagic Escherichia coli O157 : H7 is a major foodborne and environmental pathogen responsible for both sporadic cases and outbreaks of food poisoning, which can lead to serious sequelae, such as haemolytic uraemic syndrome. The structural subunit of E. coli O157 : H7 flagella is flagellin, which is both the antigenic determinant of the H7 serotype, an important factor in colonization, and an immunomodulatory protein that has been determined to be a major pro-inflammatory component through the instigation of host cell signalling pathways. Flagellin has highly conserved N- and C-terminal regions that are recognized by the host cell pattern recognition receptor Toll-like receptor (TLR) 5. Activation of this receptor triggers cell signalling cascades, which are known to activate host cell kinases and transcription factors that respond with the production of inflammatory mediators such as the chemokine interleukin-8 (IL-8), although the exact components of this pathway are not yet fully characterized. We demonstrate that E. coli O157 : H7-derived flagellin induces rapid phosphorylation of the epidermal growth factor receptor (EGFR), as an early event in intestinal epithelial cell signalling, and that this is required for the release of the pro-inflammatory cytokine IL-8.
Collapse
Affiliation(s)
- Douglas J Fraser-Pitt
- Biomedical Sciences and Microbiology Group, School of Life, Sport and Social Sciences, Faculty of Health, Life and Social Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - Pamela Cameron
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Amanda Boyd
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Erin D T Manson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - David G E Smith
- Institute for Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
21
|
Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J 2009; 422:1-10. [PMID: 19627256 DOI: 10.1042/bj20090616] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TLRs (Toll-like receptors) are essential modulators of the innate immune response through their ability to respond to a diverse range of conserved structures within microbes. Recent advances have been made in our understanding of the initiation of TLR signals as a result of the elucidation of crystal structures of TLRs interacting with their ligands. Most notably the structure of TLR1/2 with triacylated lipopeptide and TLR4 in a complex with LPS (lipopolysaccharide) and MD2 has been solved. These explain the basis for TLR dimerization which initiates signalling. Modifications of TLRs and their receptor proximal signalling proteins have also been uncovered. Phosphorylation of adaptor proteins and ubiquitination (both Lys48- and Lys63-linked) of TLRs, IRAKs (interleukin-1 receptor-associated kinase), Pellinos and TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) have been described, which promote signalling and lead to signal termination. A detailed molecular account of the initiation and termination of TLR signalling is presented.
Collapse
|
22
|
Brennan K, Jefferies CA. Proteomic analysis of protein complexes in Toll-like receptor biology. Methods Mol Biol 2009; 517:91-104. [PMID: 19378014 DOI: 10.1007/978-1-59745-541-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Purification of protein complexes and identification of the constituent components therein have been made relatively simple by the recent advances in proteomics. Uniting good biochemical and protein chemistry techniques with protein identification by mass spectrometry (MS) has resulted in advances in this field that are unprecedented. Our knowledge of Toll-like receptor (TLR) biology has been considerably advanced through the use of such techniques, with key intermediates such as TRAF3, TANK, RIP1 all being identified using proteomic strategies. Applying these techniques to key questions in TLR -biology will undoubtedly serve to further advance the field.
Collapse
Affiliation(s)
- Kiva Brennan
- RCSI Research Institute, Royal College of Surgeons in Ireland, Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
23
|
Abstract
Both ubiquitination and phosphorylation are crucial mediators involved in controlling the functions of numerous proteins belonging to the Toll-like receptor (TLR) signaling pathways. Altering the aforementioned post-translational events can be detrimental to the host survival. Therefore, the importance of these modifications cannot be overestimated. This chapter describes techniques used to examine if a protein is ubiquitinated and/or phosphorylated. In addition, a method is provided to identify the modified amino acids. We have previously shown using these techniques that the protein MyD88 adapter-like (Mal) is phosphorylated and ubiquitinated following activation of the TLR2 and TLR4 signaling pathways. Both post-translational modifications are essential for the activation and degradation of Mal, and thus are crucial steps, in regulating these TLR signaling cascades and consequently the innate immune response.
Collapse
Affiliation(s)
- Pearl Gray
- Division of Pediatric Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90048, USA.
| |
Collapse
|
24
|
Abstract
Toll-like receptors (TLRs) are principal innate immune sensors critically involved in the recognition of evolutionary conserved microbial and viral structures called "pathogen-associated molecular patterns" (PAMPs). Although recognition patterns of many TLRs have been characterized, molecular mechanisms that initiate TLR signaling are poorly understood. Since posttranslational modifications of many receptor systems are important in initiating signaling, we studied whether tyrosine phosphorylation of TLR4, the principal sensor of Gram-negative bacterial lipopolysaccharide (LPS) plays a role in TLR4 signal-transducing functions. We found that LPS induced TLR4 tyrosine phosphorylation and mutations of tyrosine residues in the Toll-IL-1R signaling domain markedly suppressed TLR4-mediated activation of JNK and p38 MAP kinases and transcription factors NF-kappaB, RANTES, and IFN-beta. This chapter summarizes a combination of methodological approaches that can be used to demonstrate an indispensable role of TLR4 tyrosine phosphorylation in receptor signaling, including transient transfections, site-directed mutagenesis, immunoprecipitation and immunoblot analyses, and analyses of transcription factor activation in reporter assays.
Collapse
|
25
|
Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev 2008; 21:13-25. [PMID: 18202435 DOI: 10.1128/cmr.00022-07] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Toll-like receptors (TLRs) form a major group of transmembrane receptors that are involved in the detection of invading pathogens. Double-stranded RNA is a marker for viral infection that is recognized by TLR3. TLR3 triggering activates specific signaling pathways that culminate in the activation of NF-kappaB and IRF3 transcription factors, as well as apoptosis, enabling the host to mount an effective innate immune response through the induction of cytokines, chemokines, and other proinflammatory mediators. In this review, we describe the paradoxical role of TLR3 in innate immunity against different viruses and in viral pathogenesis but also the evidence for TLR3 as a "danger" receptor in nonviral diseases. We also discuss the structure and cellular localization of TLR3, as well as the complex signaling and regulatory events that contribute to TLR3-mediated immune responses.
Collapse
|
26
|
Piao W, Song C, Chen H, Wahl LM, Fitzgerald KA, O'Neill LA, Medvedev AE. Tyrosine phosphorylation of MyD88 adapter-like (Mal) is critical for signal transduction and blocked in endotoxin tolerance. J Biol Chem 2008; 283:3109-3119. [PMID: 18070880 PMCID: PMC2705934 DOI: 10.1074/jbc.m707400200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) recognition of lipopolysaccharide triggers signalosome assembly among TLR4, sorting (e.g. MyD88 adapter-like (Mal)) and signaling (e.g. MyD88) adapters, initiating recruitment and activation of kinases, activation of transcription factors, and production of inflammatory mediators. In this study we examined whether tyrosine phosphorylation of Mal regulates its interactions with TLR4, MyD88, interleukin-1 (IL-1) receptor-associated kinase (IRAK)-2, and tumor necrosis factor receptor-associated factor (TRAF)-6 and is important for signaling. Overexpression of wild-type Mal in human embryonic kidney 293T cells induced its constitutive tyrosine phosphorylation and led to activation of p38, NF-kappaB, and IL-8 gene expression. Mutagenesis of Tyr-86, Tyr-106, and Tyr-159 residues within the Toll-IL-1 receptor domain impaired Mal tyrosine phosphorylation, interactions with Bruton tyrosine kinase, phosphorylation of p38, and NF-kappaB activation. Lipopolysaccharide triggered tyrosine phosphorylation of endogenous Mal and initiated Mal-Bruton-tyrosine kinase interactions in 293/TLR4/MD-2 cells and human monocytes that were suppressed in endotoxin-tolerant cells. Compared with wild-type Mal, Y86A-, Y06A-, and Y159A-Mal variants exhibited higher interactions with TLR4 and MyD88, whereas associations with IRAK-2 and TRAF-6 were not affected. Overexpression of Y86A- and Y106A-Mal in 293/TLR4/MD-2 cells exerted dominant-negative effects on TLR4-inducible p38 phosphorylation and NF-kappaB reporter activation to the extent comparable with P125H-Mal-mediated suppression. In contrast, tyrosine-deficient Mal species did not affect NF-kappaB activation when signaling was initiated at the post-receptor level by overexpression of MyD88, IRAK-2, or TRAF-6. Thus, tyrosine phosphorylation of Mal is required for adapter signaling, regulates Mal interactions with TLR4 and receptor signaling, and is inhibited in endotoxin tolerance.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Chang Song
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Haiyan Chen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Larry M Wahl
- NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Andrei E Medvedev
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
27
|
He H, Genovese KJ, Nisbet DJ, Kogut MH. Phospholipase C, phosphatidylinositol 3-kinase, and intracellular [Ca(2+)] mediate the activation of chicken HD11 macrophage cells by CpG oligodeoxynucleotide. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1111-8. [PMID: 18403015 DOI: 10.1016/j.dci.2008.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/25/2008] [Accepted: 02/27/2008] [Indexed: 05/22/2023]
Abstract
The activation of phospholipases is one of the earliest key events in receptor-mediated cellular responses to a number of extracellular signaling molecules. Oligodeoxynucleotides containing CpG motifs (CpG ODN) mimic microbial DNA and are immunostimulatory to most vertebrate species. In the present study, we used the production of nitric oxide (NO) as an indicator to evaluate the involvement of the signaling cascades of phospholipases and phosphatidylinositol 3-kinase (PI3K) in the activation of chicken HD11 macrophage cells by CpG ODN. Using selective inhibitors, we have identified the involvement of phosphatidylinositol (PI)-phospholipase C (PI-PLC), but not phosphatidylcholine (PC)-phospholipase C (PC-PLC) and PC-phospholipase D (PC-PLD), in CpG ODN-induced NO production in HD11 cells. Preincubation with PI-PLC selective inhibitors (U-73122) completely abrogated CpG ODN-induced NO production in HD11 cells, whereas PC-PLC inhibitor (D609) and PC-PLD inhibitor (n-butanol) had no inhibitory effects. Additionally, inhibition of PI3K and protein kinase C (PKC) with selective inhibitors and chelation of intracellular [Ca(2+)] also significantly attenuated NO production in CpG ODN-activated HD11 cells. Our results demonstrate that PI-PLC, PI3 K, PKC, and intracellular [Ca(2+)] are important components of the CpG ODN-induced signaling pathway that leads to the production of NO in avian macrophage cells.
Collapse
Affiliation(s)
- Haiqi He
- Southern Plain Agricultural Research Center, USDA-ARS, 2881 F&B Road, College Station, TX 77845, USA.
| | | | | | | |
Collapse
|
28
|
Miao EA, Andersen-Nissen E, Warren SE, Aderem A. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 2007; 29:275-88. [PMID: 17690885 DOI: 10.1007/s00281-007-0078-z] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/21/2007] [Indexed: 12/26/2022]
Abstract
The innate immune system precisely modulates the intensity of immune activation in response to infection. Flagellin is a microbe-associated molecular pattern that is present on both pathogenic and nonpathogenic bacteria. Macrophages and dendritic cells are able to determine the virulence of flagellated bacteria by sensing whether flagellin remains outside the mammalian cell, or if it gains access to the cytosol. Extracellular flagellin is detected by TLR5, which induces expression of proinflammatory cytokines, while flagellin within the cytosol of macrophages is detected through the Nod-like receptor (NLR) Ipaf, which activates caspase-1. In macrophages infected with Salmonella typhimurium or Legionella pneumophila, Ipaf becomes activated in response to flagellin that appears to be delivered to the cytosol via specific virulence factor transport systems (the SPI1 type III secretion system (T3SS) and the Dot/Icm type IV secretion system (T4SS), respectively). Thus, TLR5 responds more generally to flagellated bacteria, while Ipaf responds to bacteria that express both flagellin and virulence factors.
Collapse
Affiliation(s)
- Edward A Miao
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | | | | |
Collapse
|
29
|
Ivison SM, Graham NR, Bernales CQ, Kifayet A, Ng N, Shobab LA, Steiner TS. Protein kinase D interaction with TLR5 is required for inflammatory signaling in response to bacterial flagellin. THE JOURNAL OF IMMUNOLOGY 2007; 178:5735-43. [PMID: 17442957 DOI: 10.4049/jimmunol.178.9.5735] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein kinase D (PKD), also called protein kinase C (PKC)mu, is a serine-threonine kinase that is involved in diverse areas of cellular function such as lymphocyte signaling, oxidative stress, and protein secretion. After identifying a putative PKD phosphorylation site in the Toll/IL-1R domain of TLR5, we explored the role of this kinase in the interaction between human TLR5 and enteroaggregative Escherichia coli flagellin in human epithelial cell lines. We report several lines of evidence that implicate PKD in TLR5 signaling. First, PKD phosphorylated the TLR5-derived target peptide in vitro, and phosphorylation of the putative target serine 805 in HEK 293T cell-derived TLR5 was identified by mass spectrometry. Furthermore, mutation of serine 805 to alanine abrogated responses of transfected HEK 293T cells to flagellin. Second, TLR5 interacted with PKD in coimmunoprecipitation experiments, and this association was rapidly enhanced by flagellin treatment. Third, pharmacologic inhibition of PKC or PKD with Gö6976 resulted in reduced expression and secretion of IL-8 and prevented the flagellin-induced activation of p38 MAPK, but treatment with the PKC inhibitor Gö6983 had no significant effects on these phenotypes. Finally, involvement of PKD in the p38-mediated IL-8 response to flagellin was confirmed by small hairpin RNA-mediated gene silencing. Together, these results suggest that phosphorylation of TLR5 by PKD may be one of the proximal elements in the cellular response to flagellin, and that this event contributes to p38 MAPK activation and production of inflammatory cytokines in epithelial cells.
Collapse
Affiliation(s)
- Sabine M Ivison
- Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|