1
|
Deng L, Gòdia M, Derks MFL, Harlizius B, Farhangi S, Tang Z, Groenen MAM, Madsen O. Comprehensive expression genome-wide association study of long non-coding RNAs in four porcine tissues. Genomics 2025; 117:111026. [PMID: 40049421 DOI: 10.1016/j.ygeno.2025.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of non-coding RNA molecules, are known to play critical regulatory roles in various biological processes. However, the functions of the majority of lncRNAs remain largely unknown, and little is understood about the regulation of lncRNA expression. In this study, high-throughput DNA genotyping and RNA sequencing were applied to investigate genomic regions associated with lncRNA expression, commonly referred to as lncRNA expression quantitative trait loci (eQTLs). We analyzed the liver, lung, spleen, and muscle transcriptomes of 100 three-way crossbred sows to identify lncRNA transcripts, explore genomic regions that might influence lncRNA expression, and identify potential regulators interacting with these regions. RESULT We identified 6380 lncRNA transcripts and 3733 lncRNA genes. Correlation tests between the expression of lncRNAs and protein-coding genes were performed. Subsequently, functional enrichment analyses were carried out on protein-coding genes highly correlated with lncRNAs. Our correlation results of these protein-coding genes uncovered terms that are related to tissue specific functions. Additionally, heatmaps of lncRNAs and protein-coding genes at different correlation levels revealed several distinct clusters. An expression genome-wide association study (eGWAS) was conducted using 535,896 genotypes and 1829, 1944, 2089, and 2074 expressed lncRNA genes for liver, spleen, lung, and muscle, respectively. This analysis identified 520,562 significant associations and 6654, 4525, 4842, and 7125 eQTLs for the respective tissues. Only a small portion of these eQTLs were classified as cis-eQTLs. Fifteen regions with the highest eQTL density were selected as eGWAS hotspots and potential mechanisms of lncRNA regulation in these hotspots were explored. However, we did not identify any interactions between the transcription factors or miRNAs in the hotspots and the lncRNAs, nor did we observe a significant enrichment of regulatory elements in these hotspots. While we could not pinpoint the key factors regulating lncRNA expression, our results suggest that the regulation of lncRNAs involves more complex mechanisms. CONCLUSION Our findings provide insights into several features and potential functions of lncRNAs in various tissues. However, the mechanisms by which lncRNA eQTLs regulate lncRNA expression remain unclear. Further research is needed to explore the regulation of lncRNA expression and the mechanisms underlying lncRNA interactions with small molecules and regulatory proteins.
Collapse
Affiliation(s)
- Liyan Deng
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Marta Gòdia
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands; Topigs Norsvin Research Center, 's-Hertogenbosch, the Netherlands
| | | | - Samin Farhangi
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Dayal Aggarwal D, Mishra P, Yadav G, Mitra S, Patel Y, Singh M, Sahu RK, Sharma V. Decoding the connection between lncRNA and obesity: Perspective from humans and Drosophila. Heliyon 2024; 10:e35327. [PMID: 39166041 PMCID: PMC11334870 DOI: 10.1016/j.heliyon.2024.e35327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Background Obesity is a burgeoning global health problem with an escalating prevalence and severe implications for public health. New evidence indicates that long non-coding RNAs (lncRNAs) may play a pivotal role in regulating adipose tissue function and energy homeostasis across various species. However, the molecular mechanisms underlying obesity remain elusive. Scope of review This review discusses obesity and fat metabolism in general, highlighting the emerging importance of lncRNAs in modulating adipogenesis. It describes the regulatory networks, latest tools, techniques, and approaches to enhance our understanding of obesity and its lncRNA-mediated epigenetic regulation in humans and Drosophila. Major conclusions This review analyses large datasets of human and Drosophila lncRNAs from published databases and literature with experimental evidence supporting lncRNAs role in fat metabolism. It concludes that lncRNAs play a crucial role in obesity-related metabolism. Cross-species comparisons highlight the relevance of Drosophila findings to human obesity, emphasizing their potential role in adipose tissue biology. Furthermore, it discusses how recent technological advancements and multi-omics data integration enhance our capacity to characterize lncRNAs and their function. Additionally, this review briefly touches upon innovative methodologies like experimental evolution and advanced sequencing technologies for identifying novel genes and lncRNA regulators in Drosophila, which can potentially contribute to obesity research.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Prachi Mishra
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Gaurav Yadav
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Shrishti Mitra
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Yashvant Patel
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Manvender Singh
- Department of Biotechnology, UIET, MD University, Rohtak, India
| | - Ranjan Kumar Sahu
- Department of Neurology, Houston Methodist Research Insititute, Houston, Tx, USA
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Ontario, Canada
| |
Collapse
|
3
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Liu Z, Zhang Y, Han X, Li C, Yang X, Gao J, Xie G, Du N. Identifying Cancer-Related lncRNAs Based on a Convolutional Neural Network. Front Cell Dev Biol 2020; 8:637. [PMID: 32850792 PMCID: PMC7432192 DOI: 10.3389/fcell.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Millions of people are suffering from cancers, but accurate early diagnosis and effective treatment are still tough for all doctors. In recent years, long non-coding RNAs (lncRNAs) have been proven to play an important role in diseases, especially cancers. These lncRNAs execute their functions by regulating gene expression. Therefore, identifying lncRNAs which are related to cancers could help researchers gain a deeper understanding of cancer mechanisms and help them find treatment options. A large number of relationships between lncRNAs and cancers have been verified by biological experiments, which give us a chance to use computational methods to identify cancer-related lncRNAs. In this paper, we applied the convolutional neural network (CNN) to identify cancer-related lncRNAs by lncRNA's target genes and their tissue expression specificity. Since lncRNA regulates target gene expression and it has been reported to have tissue expression specificity, their target genes and expression in different tissues were used as features of lncRNAs. Then, the deep belief network (DBN) was used to unsupervised encode features of lncRNAs. Finally, CNN was used to predict cancer-related lncRNAs based on known relationships between lncRNAs and cancers. For each type of cancer, we built a CNN model to predict its related lncRNAs. We identified more related lncRNAs for 41 kinds of cancers. Ten-cross validation has been used to prove the performance of our method. The results showed that our method is better than several previous methods with area under the curve (AUC) 0.81 and area under the precision–recall curve (AUPR) 0.79. To verify the accuracy of our results, case studies have been done.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.,Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Xudong Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chenxi Li
- Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuhui Yang
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jie Gao
- Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ganfeng Xie
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Nan Du
- Department of Oncology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.,Department of Oncology, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Chen X, Zhang R. Microtia epigenetics: An overview of review and new viewpoint. Medicine (Baltimore) 2019; 98:e17468. [PMID: 31593107 PMCID: PMC6799854 DOI: 10.1097/md.0000000000017468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Microtia is a congenital malformation of the external and middle ear caused by the abnormal development of the first and second zygomatic arch and the first sulcus. There is currently no consensus concerning the pathogenesis and etiology of microtia; genetic and environmental factors may play a role. Gene-based studies have focused on finding the genes that cause microtia and on gene function defects. However, no clear pathogenic genes have so far been identified. Microtia is multifactorial; gene function defects cannot completely explain its pathogenesis. In recent years, the epigenetic aspects of microtia have begun to receive attention. CONCLUSIONS Analysis of the existing data suggests that certain key genes and pathways may be the underlying cause of congenital microtia. However, further exploration is needed.
Collapse
|
6
|
Ku KH, Subramaniam N, Marsden PA. Epigenetic Determinants of Flow-Mediated Vascular Endothelial Gene Expression. Hypertension 2019; 74:467-476. [PMID: 31352815 DOI: 10.1161/hypertensionaha.119.13342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kyung Ha Ku
- From the Department of Laboratory Medicine and Pathobiology (K.H.K., P.A.M.), University of Toronto, Ontario, Canada.,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital (K.H.K., N.S., P.A.M.) Toronto, Ontario, Canada
| | - Noeline Subramaniam
- Institute of Medical Science (N.S., P.A.M.), University of Toronto, Ontario, Canada.,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital (K.H.K., N.S., P.A.M.) Toronto, Ontario, Canada
| | - Philip A Marsden
- From the Department of Laboratory Medicine and Pathobiology (K.H.K., P.A.M.), University of Toronto, Ontario, Canada.,Institute of Medical Science (N.S., P.A.M.), University of Toronto, Ontario, Canada.,Department of Medicine (P.A.M.), University of Toronto, Ontario, Canada.,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital (K.H.K., N.S., P.A.M.) Toronto, Ontario, Canada
| |
Collapse
|
7
|
Identification and Expression Analysis of Long Noncoding RNAs in Fat-Tail of Sheep Breeds. G3-GENES GENOMES GENETICS 2019; 9:1263-1276. [PMID: 30787031 PMCID: PMC6469412 DOI: 10.1534/g3.118.201014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) participate in the regulation of a diverse range of biological processes. However, most studies have been focused on a few established model organisms and little is known about lncRNAs in fat-tail development in sheep. Here, the first profile of lncRNA in sheep fat-tail along with their possible roles in fat deposition were investigated, based on a comparative transcriptome analysis between fat-tailed (Lori-Bakhtiari) and thin-tailed (Zel) Iranian sheep breeds. Among all identified lncRNAs candidates, 358 and 66 transcripts were considered novel intergenic (lincRNAs) and novel intronic (ilncRNAs) corresponding to 302 and 58 gene loci, respectively. Our results indicated that a low percentage of the novel lncRNAs were conserved. Also, synteny analysis identified 168 novel lincRNAs with the same syntenic region in human, bovine and chicken. Only seven lncRNAs were identified as differentially expressed genes between fat and thin tailed breeds. Q-RT-PCR results were consistent with the RNA-Seq data and validated the findings. Target prediction analysis revealed that the novel lncRNAs may act in cis or trans and regulate the expression of genes that are involved in the lipid metabolism. A gene regulatory network including lncRNA-mRNA interactions were constructed and three significant modules were found, with genes relevant to lipid metabolism, insulin and calcium signaling pathway. Moreover, integrated analysis with AnimalQTLdb database further suggested six lincRNAs and one ilncRNAs as candidates of sheep fat-tail development. Our results highlighted the putative contributions of lncRNAs in regulating expression of genes associated with fat-tail development in sheep.
Collapse
|
8
|
Bush SJ, Muriuki C, McCulloch MEB, Farquhar IL, Clark EL, Hume DA. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome. Genet Sel Evol 2018; 50:20. [PMID: 29690875 PMCID: PMC5926538 DOI: 10.1186/s12711-018-0391-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Results Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Conclusions Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species. Electronic supplementary material The online version of this article (10.1186/s12711-018-0391-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, UK.
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Mary E B McCulloch
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Iseabail L Farquhar
- Centre for Synthetic and Systems Biology, CH Waddington Building, Max Borne Crescent, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Translational Research Institute, Mater Research-University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
9
|
Ayana R, Singh S, Pati S. Decoding Crucial LncRNAs Implicated in Neurogenesis and Neurological Disorders. Stem Cells Dev 2017; 26:541-553. [PMID: 28095733 DOI: 10.1089/scd.2016.0290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unraveling transcriptional heterogeneity and the labyrinthine nature of neurodevelopment can probe insights into neuropsychiatric disorders. It is noteworthy that adult neurogenesis is restricted to the subventricular and subgranular zones of the brain. Recent studies suggest long non-coding RNAs (lncRNAs) as an avant-garde class of regulators implicated in neurodevelopment. But, paucity exists in the knowledge regarding lncRNAs in neurogenesis and their associations with neurodevelopmental defects. To address this, we extensively reviewed the existing literature databases as well as performed relevant in-silico analysis. We utilized Allen Brain Atlas (ABA) differential search module and generated a catalogue of ∼30,000 transcripts specific to the neurogenic zones, including coding and non-coding transcripts. To explore the existing lncRNAs reported in neurogenesis, we performed extensive literature mining and identified 392 lncRNAs. These degenerate lncRNAs were mapped onto the ABA transcript list leading to detection of 20 lncRNAs specific to neurogenic zones (Dentate gyrus/Lateral ventricle), among which 10 showed associations to several neurodevelopmental disorders following in-silico mapping onto brain disease databases like Simons Foundation Autism Research Initiative, AutDB, and lncRNADisease. Notably, using ABA correlation module, we could establish lncRNA-to-mRNA coexpression networks for the above 10 candidate lncRNAs. Finally, pathway prediction revealed physical, biochemical, or regulatory interactions for nine lncRNAs. In addition, ABA differential search also revealed 54 novel significant lncRNAs from the null set (∼30,000). Conclusively, this review represents an updated catalogue of lncRNAs in neurogenesis and neurological diseases, and overviews the field of OMICs-based data analysis for understanding lncRNome-based regulation in neurodevelopment.
Collapse
Affiliation(s)
- R Ayana
- 1 Department of Life Sciences, School of Natural Sciences, Shiv Nadar University , Greater Noida, Uttar Pradesh, India
| | - Shailja Singh
- 1 Department of Life Sciences, School of Natural Sciences, Shiv Nadar University , Greater Noida, Uttar Pradesh, India .,2 Special Center for Molecular Medicine, Jawaharlal Nehru University , Delhi, India
| | - Soumya Pati
- 1 Department of Life Sciences, School of Natural Sciences, Shiv Nadar University , Greater Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Muys BR, Lorenzi JCC, Zanette DL, Bueno RDBLE, de Araújo LF, Dinarte-Santos AR, Alves CP, Ramão A, de Molfetta GA, Vidal DO, Silva WA. Placenta-Enriched LincRNAs MIR503HG and LINC00629 Decrease Migration and Invasion Potential of JEG-3 Cell Line. PLoS One 2016; 11:e0151560. [PMID: 27023770 PMCID: PMC4833476 DOI: 10.1371/journal.pone.0151560] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
Abstract
LINC00629 and MIR503HG are long intergenic non-coding RNAs (lincRNAs) mapped on chromosome X (Xq26), a region enriched for genes associated with human reproduction. Genes highly expressed in normal reproductive tissues and cancers (CT genes) are well known as potential tumor biomarkers. This study aimed to characterize the structure, expression, function and regulation mechanism of MIR503HG and LINC00629 lincRNAs. According to our data, MIR503HG expression was almost exclusive to placenta and LINC00629 was highly expressed in placenta and other reproductive tissues. Further analysis, using a cancer cell lines panel, showed that MIR503HG and LINC00629 were expressed in 50% and 100% of the cancer cell lines, respectively. MIR503HG was expressed predominantly in the nucleus of JEG-3 choriocarcinoma cells. We observed a positively correlated expression between MIR503HG and LINC00629, and between the lincRNAs and neighboring miRNAs. Also, both LINC00629 and MIR503GH could be negatively regulated by DNA methylation in an indirect way. Additionally, we identified new transcripts for MIR503HG and LINC00629 that are relatively conserved when compared to other primates. Furthermore, we found that overexpression of MIR503HG2 and the three-exon LINC00629 new isoforms decreased invasion and migration potential of JEG-3 tumor cell line. In conclusion, our results suggest that lincRNAs MIR503HG and LINC00629 impaired migration and invasion capacities in a choriocarcinoma in vitro model, indicating a potential role in human reproduction and tumorigenesis. Moreover, the MIR503HG expression pattern found here could indicate a putative new tumor biomarker.
Collapse
Affiliation(s)
- Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Júlio Cesar Cetrulo Lorenzi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | | | - Rafaela de Barros Lima e Bueno
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Luíza Ferreira de Araújo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Anemari Ramos Dinarte-Santos
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Cleidson Pádua Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Greice Andreotti de Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Daniel Onofre Vidal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Ward M, McEwan C, Mills JD, Janitz M. Conservation and tissue-specific transcription patterns of long noncoding RNAs. ACTA ACUST UNITED AC 2015; 1:2-9. [PMID: 27335896 PMCID: PMC4894084 DOI: 10.3109/23324015.2015.1077591] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022]
Abstract
Over the past decade, the focus of molecular biology has shifted from being predominately DNA and protein-centric to having a greater appreciation of RNA. It is now accepted that the genome is pervasively transcribed in tissue- and cell-specific manner, to produce not only protein-coding RNAs, but also an array of noncoding RNAs (ncRNAs). Many of these ncRNAs have been found to interact with DNA, protein and other RNA molecules where they exert regulatory functions. Long ncRNAs (lncRNAs) are a subclass of ncRNAs that are particularly interesting due to their cell-specific and species-specific expression patterns and unique conservation patterns. Currently, individual lncRNAs have been classified functionally; however, for the vast majority the functional relevance is unknown. To better categorize lncRNAs, an understanding of their specific expression patterns and evolutionary constraints are needed.
Collapse
Affiliation(s)
- Melanie Ward
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW 2052, Australia
| | - Callum McEwan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW 2052, Australia
| | - James D Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Identification and comparative analysis of ncRNAs in human, mouse and zebrafish indicate a conserved role in regulation of genes expressed in brain. PLoS One 2012; 7:e52275. [PMID: 23284966 PMCID: PMC3527520 DOI: 10.1371/journal.pone.0052275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022] Open
Abstract
ncRNAs (non-coding RNAs), in particular long ncRNAs, represent a significant proportion of the vertebrate transcriptome and probably regulate many biological processes. We used publically available ESTs (Expressed Sequence Tags) from human, mouse and zebrafish and a previously published analysis pipeline to annotate and analyze the vertebrate non-protein-coding transcriptome. Comparative analysis confirmed some previously described features of intergenic ncRNAs, such as a positionally biased distribution with respect to regulatory or development related protein-coding genes, and weak but clear sequence conservation across species. Significantly, comparative analysis of developmental and regulatory genes proximate to long ncRNAs indicated that the only conserved relationship of these genes to neighbor long ncRNAs was with respect to genes expressed in human brain, suggesting a conserved, ncRNA cis-regulatory network in vertebrate nervous system development. Most of the relationships between long ncRNAs and proximate coding genes were not conserved, providing evidence for the rapid evolution of species-specific gene associated long ncRNAs. We have reconstructed and annotated over 130,000 long ncRNAs in these three species, providing a significantly expanded number of candidates for functional testing by the research community.
Collapse
|
13
|
Mizutani R, Wakamatsu A, Tanaka N, Yoshida H, Tochigi N, Suzuki Y, Oonishi T, Tani H, Tano K, Ijiri K, Isogai T, Akimitsu N. Identification and characterization of novel genotoxic stress-inducible nuclear long noncoding RNAs in mammalian cells. PLoS One 2012; 7:e34949. [PMID: 22532836 PMCID: PMC3330809 DOI: 10.1371/journal.pone.0034949] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/08/2012] [Indexed: 02/02/2023] Open
Abstract
Whole transcriptome analyses have revealed a large number of novel transcripts including long and short noncoding RNAs (ncRNAs). Currently, there is great interest in characterizing the functions of the different classes of ncRNAs and their relevance to cellular processes. In particular, nuclear long ncRNAs may be involved in controlling various aspects of biological regulation, such as stress responses. By a combination of bioinformatic and experimental approaches, we identified 25 novel nuclear long ncRNAs from 6,088,565 full-length human cDNA sequences. Some nuclear long ncRNAs were conserved among vertebrates, whereas others were found only among primates. Expression profiling of the nuclear long ncRNAs in human tissues revealed that most were expressed ubiquitously. A subset of the identified nuclear long ncRNAs was induced by the genotoxic agents mitomycin C or doxorubicin, in HeLa Tet-off cells. There were no commonly altered nuclear long ncRNAs between mitomycin C- and doxorubicin-treated cells. These results suggest that distinct sets of nuclear long ncRNAs play roles in cellular defense mechanisms against specific genotoxic agents, and that particular long ncRNAs have the potential to be surrogate indicators of a specific cell stress.
Collapse
Affiliation(s)
- Rena Mizutani
- Radioisotope Center, The University of Tokyo, Tokyo, Japan
| | - Ai Wakamatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | - Hidenori Tani
- Radioisotope Center, The University of Tokyo, Tokyo, Japan
| | - Keiko Tano
- Radioisotope Center, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ijiri
- Radioisotope Center, The University of Tokyo, Tokyo, Japan
| | - Takao Isogai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
14
|
Knowling S, Morris KV. Non-coding RNA and antisense RNA. Nature's trash or treasure? Biochimie 2011; 93:1922-7. [PMID: 21843589 DOI: 10.1016/j.biochi.2011.07.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/29/2011] [Indexed: 01/13/2023]
Abstract
Although control of cellular function has classically been considered the responsibility of proteins, research over the last decade has elucidated many roles for RNA in regulation of not only the proteins that control cellular functions but also for the cellular functions themselves. In parallel to this advancement in knowledge about the regulatory roles of RNA there has been an explosion of knowledge about the role that epigenetics plays in controlling not only long-term cellular fate but also the short-term regulatory control of genes. Of particular interest is the crossover between these two worlds, a world where RNA can act out its part and subsequently elicit chromatin modifications that alter cellular function. Two main categories of RNA are examined here, non-coding RNA and antisense RNA both of which perform vital functions in controlling numerous genes, proteins and RNA itself. As the activities of non-coding and antisense RNA in both normal and aberrant cellular function are elucidated, so does the number of possible targets for pharmacopeic intervention.
Collapse
Affiliation(s)
- Stuart Knowling
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
15
|
Seim I, Josh P, Cunningham P, Herington A, Chopin L. Ghrelin axis genes, peptides and receptors: recent findings and future challenges. Mol Cell Endocrinol 2011; 340:3-9. [PMID: 21616122 DOI: 10.1016/j.mce.2011.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 12/15/2022]
Abstract
The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come.
Collapse
Affiliation(s)
- Inge Seim
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
16
|
A thymus-specific noncoding RNA, Thy-ncR1, is a cytoplasmic riboregulator of MFAP4 mRNA in immature T-cell lines. BMC Mol Biol 2010; 11:99. [PMID: 21162727 PMCID: PMC3023731 DOI: 10.1186/1471-2199-11-99] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/16/2010] [Indexed: 12/13/2022] Open
Abstract
Background Postgenomic transcriptome analyses have identified large numbers of noncoding (nc)RNAs in mammalian cells. However, the biological function of long ncRNAs in mammalian cells remains largely unknown. Our recent expression profiling of selected human long ncRNAs revealed that a majority were expressed in an organ-specific manner, suggesting their function was linked to specific physiological phenomena in each organ. We investigated the characteristics and function of ncRNAs that were specifically expressed in the thymus, the site of T-cell selection and maturation. Results Expression profiling of 10 thymus-specific ncRNAs in 17 T-cell leukemia cell lines derived from various stages of T-cell maturation revealed that HIT14168 ncRNA, named Thy-ncR1, was specifically expressed in cell lines derived from stage III immature T cells in which the neighbouring CD1 gene cluster is also specifically activated. The Thy-ncR1 precursor exhibited complex alternative splicing patterns and differential usage of the 5' terminus leading to the production of an estimated 24 isoforms, which were predominantly located in the cytoplasm. Selective RNAi knockdown of each Thy-ncR1 isoform demonstrated that microfibril-associated glycoprotein 4 (MFAP4) mRNA was negatively regulated by two major Thy-ncR1 isoforms. Intriguingly, the MFAP4 mRNA level was controlled by a hUPF1-dependent mRNA degradation pathway in the cytoplasm distinct from nonsense-mediated decay. Conclusions This study identified Thy-ncR1 ncRNA to be specifically expressed in stage III immature T cells in which the neighbouring CD1 gene cluster was activated. Complex alternative splicing produces multiple Thy-ncR1 isoforms. Two major Thy-ncR1 isoforms are cytoplasmic riboregulators that suppress the expression of MFAP4 mRNA, which is degraded by an uncharacterized hUPF1-dependent pathway.
Collapse
|
17
|
Seim I, Amorim L, Walpole C, Carter S, Chopin LK, Herington AC. Ghrelin gene-related peptides: Multifunctional endocrine / autocrine modulators in health and disease. Clin Exp Pharmacol Physiol 2010; 37:125-31. [DOI: 10.1111/j.1440-1681.2009.05241.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Dinger ME, Amaral PP, Mercer TR, Mattick JS. Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:407-23. [PMID: 19770204 DOI: 10.1093/bfgp/elp038] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome-wide analyses of the eukaryotic transcriptome have revealed that the majority of the genome is transcribed, producing large numbers of non-protein-coding RNAs (ncRNAs). This surprising observation challenges many assumptions about the genetic programming of higher organisms and how information is stored and organized within the genome. Moreover, the rapid advances in genomics have given little opportunity for biologists to integrate these emerging findings into their intellectual and experimental frameworks. This problem has been compounded by the perception that genome-wide studies often generate more questions than answers, which in turn has led to confusion and controversy. In this article, we address common questions associated with the phenomenon of pervasive transcription and consider the indices that can be used to evaluate the function (or lack thereof) of the resulting ncRNAs. We suggest that many lines of evidence, including expression profiles, conservation signatures, chromatin modification patterns and examination of increasing numbers of individual cases, argue in favour of the widespread functionality of non-coding transcription. We also discuss how informatic and experimental approaches used to analyse protein-coding genes may not be applicable to ncRNAs and how the general perception that protein-coding genes form the main informational output of the genome has resulted in much of the misunderstanding surrounding pervasive transcription and its potential significance. Finally, we present the conceptual implications of the majority of the eukaryotic genome being functional and describe how appreciating this perspective will provide considerable opportunity to further understand the molecular basis of development and complex diseases.
Collapse
Affiliation(s)
- Marcel E Dinger
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
19
|
Seim I, Herington AC, Chopin LK. New insights into the molecular complexity of the ghrelin gene locus. Cytokine Growth Factor Rev 2009; 20:297-304. [DOI: 10.1016/j.cytogfr.2009.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A 2009; 106:2525-30. [PMID: 19188602 DOI: 10.1073/pnas.0807899106] [Citation(s) in RCA: 486] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent transcriptome analyses have shown that thousands of noncoding RNAs (ncRNAs) are transcribed from mammalian genomes. Although the number of functionally annotated ncRNAs is still limited, they are known to be frequently retained in the nucleus, where they coordinate regulatory networks of gene expression. Some subnuclear organelles or nuclear bodies include RNA species whose identity and structural roles are largely unknown. We identified 2 abundant overlapping ncRNAs, MENepsilon and MENbeta (MENepsilon/beta), which are transcribed from the corresponding site in the multiple endocrine neoplasia (MEN) I locus and which localize to nuclear paraspeckles. This finding raises the intriguing possibility that MENepsilon/beta are involved in paraspeckle organization, because paraspeckles are, reportedly, RNase-sensitive structures. Successful removal of MENepsilon/beta by a refined knockdown method resulted in paraspeckle disintegration. Furthermore, the reassembly of paraspeckles disassembled by transcriptional arrest appeared to be unsuccessful in the absence of MENepsilon/beta. RNA interference and immunoprecipitation further revealed that the paraspeckle proteins p54/nrb and PSF selectively associate with and stabilize the longer MENbeta, thereby contributing to the organization of the paraspeckle structure. The paraspeckle protein PSP1 is not directly involved in either MENepsilon/beta stabilization or paraspeckle organization. We postulate a model for nuclear paraspeckle body organization where specific ncRNAs and RNA-binding proteins cooperate to maintain and, presumably, establish the structure.
Collapse
|
21
|
Seim I, Carter SL, Herington AC, Chopin LK. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene. BMC Mol Biol 2008; 9:95. [PMID: 18954468 PMCID: PMC2621237 DOI: 10.1186/1471-2199-9-95] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/28/2008] [Indexed: 12/13/2022] Open
Abstract
Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis.
Collapse
Affiliation(s)
- Inge Seim
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | |
Collapse
|
22
|
Abstract
Non-protein-coding sequences increasingly dominate the genomes of multicellular organisms as their complexity increases, in contrast to protein-coding genes, which remain relatively static. Most of the mammalian genome and indeed that of all eukaryotes is expressed in a cell- and tissue-specific manner, and there is mounting evidence that much of this transcription is involved in the regulation of differentiation and development. Different classes of small and large noncoding RNAs (ncRNAs) have been shown to regulate almost every level of gene expression, including the activation and repression of homeotic genes and the targeting of chromatin-remodeling complexes. ncRNAs are involved in developmental processes in both simple and complex eukaryotes, and we illustrate this in the latter by focusing on the animal germline, brain, and eye. While most have yet to be systematically studied, the emerging evidence suggests that there is a vast hidden layer of regulatory ncRNAs that constitutes the majority of the genomic programming of multicellular organisms and plays a major role in controlling the epigenetic trajectories that underlie their ontogeny.
Collapse
|
23
|
Singh J, Saxena A, Christodoulou J, Ravine D. MECP2 genomic structure and function: insights from ENCODE. Nucleic Acids Res 2008; 36:6035-47. [PMID: 18820302 PMCID: PMC2577328 DOI: 10.1093/nar/gkn591] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MECP2, a relatively small gene located in the human X chromosome, was initially described with three exons transcribing RNA from which the protein MeCP2 was translated. It is now known to have four exons from which two isoforms are translated; however, there is also evidence of additional functional genomic structures within MECP2, including exons potentially transcribing non-coding RNAs. Accompanying the recognition of a higher level of intricacy within MECP2 has been a recent surge of knowledge about the structure and function of human genes more generally, to the extent that the definition of a gene is being revisited. It is timely now to review the published and novel functional elements within MECP2, which is proving to have a complexity far greater than was previously thought.
Collapse
Affiliation(s)
- Jasmine Singh
- Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Australia
| | | | | | | |
Collapse
|
24
|
Torarinsson E, Yao Z, Wiklund ED, Bramsen JB, Hansen C, Kjems J, Tommerup N, Ruzzo WL, Gorodkin J. Comparative genomics beyond sequence-based alignments: RNA structures in the ENCODE regions. Genome Res 2007; 18:242-51. [PMID: 18096747 DOI: 10.1101/gr.6887408] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment methods to misalign, or even refuse to align, homologous ncRNAs, consequently obscuring that structural signal. We have used CMfinder, a structure-oriented local alignment tool, to search the ENCODE regions of vertebrate multiple alignments. In agreement with other studies, we find a large number of potential RNA structures in the ENCODE regions. We report 6587 candidate regions with an estimated false-positive rate of 50%. More intriguingly, many of these candidates may be better represented by alignments taking the RNA secondary structure into account than those based on primary sequence alone, often quite dramatically. For example, approximately one-quarter of our predicted motifs show revisions in >50% of their aligned positions. Furthermore, our results are strongly complementary to those discovered by sequence-alignment-based approaches--84% of our candidates are not covered by Washietl et al., increasing the number of ncRNA candidates in the ENCODE region by 32%. In a group of 11 ncRNA candidates that were tested by RT-PCR, 10 were confirmed to be present as RNA transcripts in human tissue, and most show evidence of significant differential expression across tissues. Our results broadly suggest caution in any analysis relying on multiple sequence alignments in less well-conserved regions, clearly support growing appreciation for the biological significance of ncRNAs, and strongly support the argument for considering RNA structure directly in any searches for these elements.
Collapse
Affiliation(s)
- Elfar Torarinsson
- Section for Genetics and Bioinformatics, IBVH, Faculty of Life Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ideue T, Sasaki YT, Hagiwara M, Hirose T. Introns play an essential role in splicing-dependent formation of the exon junction complex. Genes Dev 2007; 21:1993-8. [PMID: 17675447 PMCID: PMC1948854 DOI: 10.1101/gad.1557907] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pre-mRNA splicing specifically deposits the exon junction complex (EJC) onto spliced mRNA, which is important for downstream events. Here, we show that EJC components are primarily recruited to the spliceosome by association with the intron via the intron-binding protein, IBP160. This initial association of EJC components occurs in the absence of the final EJC-binding site on the exon. RNA interference (RNAi) knockdown of IBP160 arrested EJC association with cytoplasmic RNAs following nonsense-mediated decay. We propose that the intron has a crucial role in the early steps of EJC formation and is indispensable for the subsequent formation of a functional EJC.
Collapse
Affiliation(s)
- Takashi Ideue
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Tokyo 135-0064, Japan
- Japan Biological Informatics Consortium (JBIC), Koto-Ku, Tokyo 135-0064, Japan
| | - Yasnory T.F. Sasaki
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Tokyo 135-0064, Japan
| | - Masatoshi Hagiwara
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 110-8510, Japan
| | - Tetsuro Hirose
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Tokyo 135-0064, Japan
- Corresponding author.E-MAIL ; FAX 81-3-3599-8521
| |
Collapse
|