1
|
Zhang H, Li Y. Potential roles of PIWI-interacting RNAs in breast cancer, a new therapeutic strategy. Pathol Res Pract 2024; 257:155318. [PMID: 38688203 DOI: 10.1016/j.prp.2024.155318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Breast cancer (BC) has been the focus of numerous studies aimed at identifying novel biological markers for its early detection. PIWI-interacting RNAs (piRNAs), a subset of small non-coding RNAs, have emerged as potential markers due to their aberrant expression in various cancers. PiRNAs have recently gained attention due to their aberrant expression in various cancers, including BC. PiRNAs, exhibit diverse biological activities, such as epigenetic regulation of gene and protein expression and their association with cell proliferation and metastasis has been well-established. As the field of non-coding RNAs rapidly evolves, there is great anticipation that therapies targeting piRNAs will advance swiftly. This review will delve into the various biological functions of piRNAs, such as gene suppression, transposon silencing, and epigenetic regulation of genes. The review will also highlight the role of piRNAs as either progenitors or suppressors in cancers, with a particular focus on BC. Lastly, it will touch upon the potential of piRNAs as biomarkers and therapeutic targets for BC.
Collapse
Affiliation(s)
- Hongpeng Zhang
- The Second Clinical College, China Medical University, Shenyang 110122, China
| | - Yanshu Li
- School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Garcia-Borja E, Siegl F, Mateu R, Slaby O, Sedo A, Busek P, Sana J. Critical appraisal of the piRNA-PIWI axis in cancer and cancer stem cells. Biomark Res 2024; 12:15. [PMID: 38303021 PMCID: PMC10836005 DOI: 10.1186/s40364-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Small noncoding RNAs play an important role in various disease states, including cancer. PIWI proteins, a subfamily of Argonaute proteins, and PIWI-interacting RNAs (piRNAs) were originally described as germline-specific molecules that inhibit the deleterious activity of transposable elements. However, several studies have suggested a role for the piRNA-PIWI axis in somatic cells, including somatic stem cells. Dysregulated expression of piRNAs and PIWI proteins in human tumors implies that, analogously to their roles in undifferentiated cells under physiological conditions, these molecules may be important for cancer stem cells and thus contribute to cancer progression. We provide an overview of piRNA biogenesis and critically review the evidence for the role of piRNA-PIWI axis in cancer stem cells. In addition, we examine the potential of piRNAs and PIWI proteins to become biomarkers in cancer.
Collapse
Affiliation(s)
- Elena Garcia-Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic.
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Pathology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
3
|
Sohn EJ, Han ME, Park YM, Kim YH, Oh SO. The potential of piR-823 as a diagnostic biomarker in oncology: A systematic review. PLoS One 2023; 18:e0294685. [PMID: 38060527 PMCID: PMC10703285 DOI: 10.1371/journal.pone.0294685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Emerging evidence has demonstrated that PIWI-interacting RNAs (piRNAs) play important roles in various physiological processes and contribute to cancer progression. Moreover, piRNAs and PIWI protein levels are associated with the prognosis and chemoresistance of various cancers. The limitations of biomarkers challenge early detection and monitoring of chemoresistance and cancer relapse. METHODS To evaluate the potential of piRNA as a diagnostic biomarker in oncology, we systematically reviewed previous studies on the subject. PubMed, Embase, and Cochrane databases were searched to evaluate the diagnostic relevance of piRNAs in cancer. Eighteen studies (2,352 patients) were included. The quality of each study was evaluated with AMSTAR and QUADAS-2 tool. RESULTS & CONCLUSIONS The area under the curve (AUC) values of 26 piRNAs in patients with cancer ranged from 0.624 to 0.978, with piR-9491 showing the highest value (0.978). The sensitivity of the total of 21 piRNAs in cancer patients was between 42.86 and 100, with piR-9491 showing the highest sensitivity (100). The specificity of these 21 piRNAs ranged from 60.10 to 96.67 (with piR-018569 showing the highest specificity (96.67)). Their odds ratios were between 1.61 and 44.67, and piR-12488 showed the highest odds ratio (44.67). Generally, the piRNAs in this review showed better sensitivity and AUC values than current clinical diagnostic biomarkers, although current biomarkers appear to be more specific. Reviewed piRNAs showed better diagnostic performance than currently used clinical biomarkers. Notably, piR-823 showed a significant diagnostic performance in four types of cancer (colorectal, esophageal, gastric, and renal cell cancer). However, all 18 studies included in this review were a case-control study. So, further prospective studies are required for their validation.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Myoung-Eun Han
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Young Mok Park
- Department of Surgery, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Taverna S, Masucci A, Cammarata G. PIWI-RNAs Small Noncoding RNAs with Smart Functions: Potential Theranostic Applications in Cancer. Cancers (Basel) 2023; 15:3912. [PMID: 37568728 PMCID: PMC10417041 DOI: 10.3390/cancers15153912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a new class of small noncoding RNAs (ncRNAs) that bind components of the PIWI protein family. piRNAs are specifically expressed in different human tissues and regulate important signaling pathways. Aberrant expressions of piRNAs and PIWI proteins have been associated with tumorigenesis and cancer progression. Recent studies reported that piRNAs are contained in extracellular vesicles (EVs), nanosized lipid particles, with key roles in cell-cell communication. EVs contain several bioactive molecules, such as proteins, lipids, and nucleic acids, including emerging ncRNAs. EVs are one of the components of liquid biopsy (LB) a non-invasive method for detecting specific molecular biomarkers in liquid samples. LB could become a crucial tool for cancer diagnosis with piRNAs as biomarkers in a precision oncology approach. This review summarizes the current findings on the roles of piRNAs in different cancer types, focusing on potential theranostic applications of piRNAs contained in EVs (EV-piRNAs). Their roles as non-invasive diagnostic and prognostic biomarkers and as new therapeutic options have been also discussed.
Collapse
Affiliation(s)
- Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| | - Anna Masucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, Laboratory Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
5
|
Jian Z, Han Y, Li H. Potential roles of PIWI-interacting RNAs in lung cancer. Front Oncol 2022; 12:944403. [PMID: 36324572 PMCID: PMC9618814 DOI: 10.3389/fonc.2022.944403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/21/2022] [Indexed: 07/29/2023] Open
Abstract
Lung cancer is a malignant tumor with high morbidity and mortality in the world today. Emerging evidence suggests that PIWI-interacting RNAs (piRNAs) are aberrantly expressed in various human cancers, including lung cancer. Despite of the poorly understood mechanism, piRNAs may work as carcinogenic roles or tumor suppressors by engaging in a variety of cancer-associated signaling pathways. Therefore, they might serve as potential therapeutic targets, diagnostic indicators, or prognostic indicators in lung cancer. This review will discuss the new findings of piRNAs, including their biosynthetic processes, mechanisms of gene suppression, and the significance of these piRNAs tested in lung cancer samples to determine their involvement in cancer progression.
Collapse
|
6
|
Zhang J, Zhang W, Liu Y, Pi M, Jiang Y, Ainiwaer A, Mao S, Chen H, Ran Y, Sun S, Li W, Yao X, Chang Z, Yan Y. Emerging roles and potential application of PIWI-interacting RNA in urological tumors. Front Endocrinol (Lausanne) 2022; 13:1054216. [PMID: 36733811 PMCID: PMC9887041 DOI: 10.3389/fendo.2022.1054216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The piRNA (PIWI-interacting RNA) is P-Element induced wimpy testis (PIWI)-interacting RNA which is a small molecule, non-coding RNA with a length of 24-32nt. It was originally found in germ cells and is considered a regulator of germ cell function. It can interact with PIWI protein, a member of the Argonaute family, and play a role in the regulation of gene transcription and epigenetic silencing of transposable factors in the nucleus. More and more studies have shown that piRNAs are abnormally expressed in a variety of cancer tissues and patient fluids, and may become diagnostic tools, therapeutic targets, staging markers, and prognostic evaluation tools for cancer. This article reviews the recent research on piRNA and summarizes the structural characteristics, production mechanism, applications, and its role in urological tumors, to provide a reference value for piRNA to regulate urological tumors.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Man Pi
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yufeng Jiang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ailiyaer Ainiwaer
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuefei Ran
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shuwen Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| |
Collapse
|
7
|
Mokarram P, Niknam M, Sadeghdoust M, Aligolighasemabadi F, Siri M, Dastghaib S, Brim H, Ashktorab H. PIWI interacting RNAs perspectives: a new avenues in future cancer investigations. Bioengineered 2021; 12:10401-10419. [PMID: 34723746 PMCID: PMC8809986 DOI: 10.1080/21655979.2021.1997078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a currently identified small non-coding RNAs (ncRNAs) category, the PIWI-interacting RNAs (piRNAs) are crucial mediators of cell biology. The human genome comprises over 30.000 piRNA genes. Although considered a new field in cancer research, the piRNA pathway is shown by the existing evidence as an active pathway in a variety of different types of cancers with critical impacts on main aspects of cancer progression. Among the regulatory molecules that contribute to maintaining the dynamics of cancer cells, the P-element Induced WImpy testis (PIWI) proteins and piRNAs, as new players, have not been broadly studied so far. Therefore, the identification of cancer-related piRNAs and the assessment of target genes of piRNAs may lead to better cancer prevention and therapy strategies. This review articleaimed to highlight the role and function of piRNAs based on existing data. Understanding the role of piRNA in cancer may provide perspectives on their applications as particular biomarker signature in diagnosis in early stage, prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran,CONTACT Pooneh Mokarram Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Niknam
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadamin Sadeghdoust
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Farnaz Aligolighasemabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Brim
- Pathology and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division and Cancer Center, Howard University College of Medicine, Washington, Dc, USA
| |
Collapse
|
8
|
Mousel MR, White SN, Herndon MK, Herndon DR, Taylor JB, Becker GM, Murdoch BM. Genes involved in immune, gene translation and chromatin organization pathways associated with Mycoplasma ovipneumoniae presence in nasal secretions of domestic sheep. PLoS One 2021; 16:e0247209. [PMID: 34252097 PMCID: PMC8274911 DOI: 10.1371/journal.pone.0247209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma ovipneumoniae contributes to polymicrobial pneumonia in domestic sheep. Elucidation of host genetic influences of M. ovipneumoniae nasal detection has the potential to reduce the incidence of polymicrobial pneumonia in sheep through implementation of selective breeding strategies. Nasal mucosal secretions were collected from 647 sheep from a large US sheep flock. Ewes of three breeds (Polypay n = 222, Rambouillet n = 321, and Suffolk n = 104) ranging in age from one to seven years, were sampled at three different times in the production cycle (February, April, and September/October) over four years (2015 to 2018). The presence and DNA copy number of M. ovipneumoniae was determined using a newly developed species-specific qPCR. Breed (P<0.001), age (P<0.024), sampling time (P<0.001), and year (P<0.001) of collection affected log10 transformed M. ovipneumoniae DNA copy number, where Rambouillet had the lowest (P<0.0001) compared with both Polypay and Suffolk demonstrating a possible genetic component to detection. Samples from yearlings, April, and 2018 had the highest (P<0.046) detected DNA copy number mean. Sheep genomic DNA was genotyped with the Illumina OvineHD BeadChip. Principal component analysis identified most of the variation in the dataset was associated with breed. Therefore, genome wide association analysis was conducted with a mixed model (EMMAX), with principal components 1 to 6 as fixed and a kinship matrix as random effects. Genome-wide significant (P<9x10-8) SNPs were identified on chromosomes 6 and 7 in the all-breed analysis. Individual breed analysis had genome-wide significant (P<9x10-8) SNPs on chromosomes 3, 4, 7, 9, 10, 15, 17, and 22. Annotated genes near these SNPs are part of immune (ANAPC7, CUL5, TMEM229B, PTPN13), gene translation (PIWIL4), and chromatin organization (KDM2B) pathways. Immune genes are expected to have increased expression when leukocytes encounter M. ovipneumoniae which would lead to chromatin reorganization. Work is underway to narrow the range of these associated regions to identify the underlying causal mutations.
Collapse
Affiliation(s)
- Michelle R. Mousel
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
- Paul G. Allen School of Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Stephen N. White
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Maria K. Herndon
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
| | - David R. Herndon
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
| | - J. Bret Taylor
- U.S. Department of Agriculture, Range Sheep Production Efficiency Research, Agricultural Research Service, Dubois, ID, United States of America
| | - Gabrielle M. Becker
- Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States of America
| | - Brenda M. Murdoch
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|
9
|
Sadoughi F, Mirhashemi SM, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 2021; 21:328. [PMID: 34193172 PMCID: PMC8243752 DOI: 10.1186/s12935-021-02034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small non‐coding RNAs (sncRNAs) are a subgroup of non‐coding RNAs, with less than 200 nucleotides length and no potential for coding proteins. PiRNAs, a member of sncRNAs, were first discovered more than a decade ago and have attracted researcher’s attention because of their gene regulatory function both in the nucleus and in the cytoplasm. Recent investigations have found that the abnormal expression of these sncRNAs is involved in many human diseases, including cancers. Colorectal cancer (CRC), as a common gastrointestinal malignancy, is one of the important causes of cancer‐related deaths through the entire world and appears to be a consequence of mutation in the genome and epigenetic alterations. The aim of this review is to realize whether there is a relationship between CRC and piRNAs or not.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
10
|
|
11
|
Biopathological Significance of PIWI-piRNA Pathway Deregulation in Invasive Breast Carcinomas. Cancers (Basel) 2020; 12:cancers12102833. [PMID: 33008024 PMCID: PMC7600338 DOI: 10.3390/cancers12102833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The PIWI-piRNA ribonucleoproteic complexes are pivotal regulators of genome integrity, differentiation and homeostasis and their dysregulation has recently been implicated in carcinogenesis. The aim of this study was to analyze the four PIWILs gene expression in invasive breast carcinomas (IBC) at RNA level using quantitative RT-PCR and protein level using immunohistochemistry. In normal breast tissue, PIWILs 2 and 4 were solely expressed, whereas an abnormal emergence of PIWIL1 and 3 was observed in respectively 30% and 6% of IBCs. Conversely, PIWIL2 was underexpressed in 48.3% and PIWIL4 downregulated in 43.3% of IBCs. Similar patterns of PIWIL deregulation were observed in a multitumoral panel, suggesting a generic mechanism in most cancers. PIWIL2 underexpression was significantly associated with DNA methylation and strong cytotoxic immune response. Characterization of the newly recognized PIWIL-piRNA pathway in IBCs opens interesting therapeutic perspectives using piRNAs, hypomethylating drugs, checkpoints immunotherapies and anti-PIWIL 1–3 antibodies. Abstract The PIWI proteins emerging in the development of human cancers, edify PIWI-piRNA ribonucleoproteic complexes acting as pivotal regulators of genome integrity, differentiation and homeostasis. The aim of this study is to analyze the four PIWILs gene expression in invasive breast carcinomas (IBCs): at RNA level using quantitative RT-PCR (n = 526) and protein level using immunohistochemistry (n = 150). In normal breast tissue, PIWILs 2 and 4 were solely expressed, whereas an abnormal emergence of PIWIL1 and 3 was observed in respectively 30% and 6% of IBCs. Conversely, PIWIL2 was underexpressed in 48.3% and PIWIL4 downregulated in 43.3% of IBCs. Significant positive associations were observed between PIWIL4 underexpression, HR+ status and HR+ ERBB2+ molecular subtype and PIWIL2 underexpression, PR- status, ERBB2- status and molecular subtype. Similar patterns of PIWIL deregulation were observed in a multitumoral panel, suggesting a generic mechanism in most cancers. PIWIL2-4 underexpression was mainly regulated at epigenetic or post-transcriptional levels. PIWIL2 underexpression was significantly associated with DNA methylation and strong cytotoxic immune response. PIWIL2-4 were mainly associated with genes implicated in cell proliferation. As a result of this study, characterization of the PIWIL-piRNA pathway in IBCs opens interesting therapeutic perspectives using piRNAs, hypomethylating drugs, checkpoints immunotherapies and anti-PIWIL 1–3 antibodies.
Collapse
|
12
|
Wu X, Pan Y, Fang Y, Zhang J, Xie M, Yang F, Yu T, Ma P, Li W, Shu Y. The Biogenesis and Functions of piRNAs in Human Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:108-120. [PMID: 32516734 PMCID: PMC7283962 DOI: 10.1016/j.omtn.2020.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel type of small noncoding RNAs, which are 26-30 nt in length and bind to Piwi proteins. These short RNAs were originally discovered in germline cells and are considered as key regulators for germline maintenance. A growing body of evidence has now extended our views into piRNA biological significance showing that they can also regulate gene expression in somatic cells through transposon silencing, epigenetic programming, DNA rearrangements, mRNA turnover, and translational control. Mounting studies have revealed that the dysregulation of piRNAs may cause epigenetic changes and contribute to diverse diseases. This review illustrates piRNA biogenesis, mechanisms behind piRNA-mediated gene regulation, and changes of piRNAs in different diseases, especially in cancers.
Collapse
Affiliation(s)
- Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China; Department of Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China; Department of Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China.
| |
Collapse
|
13
|
Subhramanyam CS, Cao Q, Wang C, Heng ZSL, Zhou Z, Hu Q. Role of PIWI-like 4 in modulating neuronal differentiation from human embryonal carcinoma cells. RNA Biol 2020; 17:1613-1624. [PMID: 32372724 DOI: 10.1080/15476286.2020.1757896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PIWI homologs constitute a subclass of the Argonaute family. Traditionally, they have been shown to associate with a specific class of small RNAs, piRNAs, to suppress transposable elements and protect genomic integrity in germ cells. Recent studies imply that PIWI proteins may also exert important biological functions in somatic contexts, including the brain. However, their exact role in neural development remains unknown. Hence we investigated whether PIWI proteins are involved in neuronal differentiation. By using an established cell model for studying neurogenesis, NTera2/D1 (NT2) cells, we found that a particular PIWI homolog, PIWIL4 was increasingly upregulated throughout the course of all-trans retinoic acid (RA)-mediated neuronal differentiation. During this process, PIWIL4 knockdown led to partial recovery of embryonic stem cell markers, while suppressing RA-induced expression of neuronal markers. Consistently, PIWIL4 overexpression further elevated their expression levels. Furthermore, co-immunoprecipitation revealed an RA-induced interaction between PIWIL4 and the H3K27me3 demethylase UTX. Chromatin immunoprecipitation showed that this interaction could be essential for the removal of H3K27me3 from the promoters of RA-inducible genes. By a similar mechanism, PIWIL4 knockdown also suppressed the expression of PTN and NLGN3, two important neuronal factors secreted to regulate glioma activity. We further noted that the conditioned medium collected from PIWIL4-silenced NT2 cells significantly reduced the proliferation of glioma cells. Thus, our data suggest a novel somatic role of PIWIL4 in modulating the expression of neuronal genes that can be further characterized to promote neuronal differentiation and to modulate the activity of glioma cells.
Collapse
Affiliation(s)
| | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
14
|
PIWIL4 Maintains HIV-1 Latency by Enforcing Epigenetically Suppressive Modifications on the 5' Long Terminal Repeat. J Virol 2020; 94:JVI.01923-19. [PMID: 32161174 DOI: 10.1128/jvi.01923-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Although substantial progress has been made in depicting the molecular pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection, the comprehensive mechanism of HIV-1 latency and the most promising therapeutic strategies to effectively reactivate the HIV-1 latent reservoir to achieve a functional cure for AIDS remain to be systematically illuminated. Here, we demonstrated that piwi (P element-induced Wimpy)-like RNA-mediated gene silencing 4 (PIWIL4) played an important role in suppressing HIV-1 transcription and contributed to the latency state in HIV-1-infected cells through its recruitment of various suppressive factors, including heterochromatin protein 1α/β/γ, SETDB1, and HDAC4. The knockdown of PIWIL4 enhanced HIV-1 transcription and reversed HIV-1 latency in both HIV-1 latently infected Jurkat T cells and primary CD4+ T lymphocytes and resting CD4+ T lymphocytes from HIV-1-infected individuals on suppressive combined antiretroviral therapy (cART). Furthermore, in the absence of PIWIL4, HIV-1 latently infected Jurkat T cells were more sensitive to reactivation with vorinostat (suberoylanilide hydroxamic acid, or SAHA), JQ1, or prostratin. These findings indicated that PIWIL4 promotes HIV-1 latency by imposing repressive marks at the HIV-1 5' long terminal repeat. Thus, the manipulation of PIWIL4 could be a novel strategy for developing promising latency-reversing agents (LRAs).IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. During this process, the suppression of HIV-1 transcription plays an essential role in promoting HIV-1 latency. In this study, we found that PIWIL4 repressed HIV-1 promoter activity and maintained HIV-1 latency. In particular, we report that PIWIL4 can regulate gene expression through its association with the suppressive activity of HDAC4. Therefore, we have identified a new function for PIWIL4: it is not only a suppressor of endogenous retrotransposons but also plays an important role in inhibiting transcription and leading to latent infection of HIV-1, a well-known exogenous retrovirus. Our results also indicate a novel therapeutic target to reactivate the HIV-1 latent reservoir.
Collapse
|
15
|
Li W, Martinez-Useros J, Garcia-Carbonero N, Fernandez-Aceñero MJ, Orta A, Ortega-Medina L, Garcia-Botella S, Perez-Aguirre E, Diez-Valladares L, Celdran A, García-Foncillas J. The Clinical Significance of PIWIL3 and PIWIL4 Expression in Pancreatic Cancer. J Clin Med 2020; 9:1252. [PMID: 32357464 PMCID: PMC7287605 DOI: 10.3390/jcm9051252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
P-element-induced wimpy testis (PIWI) proteins have been described in several cancers. PIWIL1 and PIWIL2 have been recently evaluated in pancreatic cancer, and elevated expression of PIWIL2 conferred longer survival to patients. However, PIWIL3's and PIWIL4's role in carcinogenesis is rather controversial, and their clinical implication in pancreatic cancer has not yet been investigated. In the present study, we evaluated PIWIL1, PIWIL2, PIWIL3 and PIWIL4 expression in pancreatic cancer-derived cell lines and in one non-tumor cell line as healthy control. Here, we show a differential expression in tumor and non-tumor cell lines of PIWIL3 and PIWIL4. Subsequently, functional experiments with PIWIL3 and/or PIWIL4 knockdown revealed a decrease in the motility ratio of tumor and non-tumor cell lines through downregulation of mesenchymal factors in pro of epithelial factors. We also observed that PIWIL3 and/or PIWIL4 silencing impaired undifferentiated phenotype and enhanced drug toxicity in both tumor- and non-tumor-derived cell lines. Finally, PIWIL3 and PIWIL4 evaluation in human pancreatic cancer samples showed that patients with low levels of PIWIL4 protein expression presented poor prognosis. Therefore, PIWIL3 and PIWIL4 proteins may play crucial roles to keep pancreatic cell homeostasis not only in tumors but also in healthy tissues.
Collapse
Affiliation(s)
- Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | | | - Alberto Orta
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Luis Ortega-Medina
- Pathology Department, Clinico San Carlos University Hospital, C/Profesor Martin Lagos, 28040 Madrid, Spain;
| | - Sandra Garcia-Botella
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Elia Perez-Aguirre
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Luis Diez-Valladares
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Angel Celdran
- Hepatobiliary and Pancreatic Surgery Unit, General and Digestive Tract Surgery Department, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Jesús García-Foncillas
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| |
Collapse
|
16
|
Giebler M, Greither T, Müller L, Mösinger C, Behre HM. Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics. Asian J Androl 2019; 20:260-264. [PMID: 29286006 PMCID: PMC5952480 DOI: 10.4103/aja.aja_58_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.
Collapse
Affiliation(s)
- Maria Giebler
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Lisa Müller
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Carina Mösinger
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| |
Collapse
|
17
|
Perera BPU, Tsai ZTY, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics 2019; 14:504-521. [PMID: 30955436 DOI: 10.1080/15592294.2019.1600389] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that associate with PIWI proteins for transposon silencing via DNA methylation and are highly expressed and extensively studied in the germline. Mature germline piRNAs typically consist of 24-32 nucleotides, with a strong preference for a 5' uridine signature, an adenosine signature at position 10, and a 2'-O-methylation signature at the 3' end. piRNA presence in somatic tissues, however, is not well characterized and requires further systematic evaluation. In the current study, we identified piRNAs and associated machinery from mouse somatic tissues representing the three germ layers. piRNA specificity was improved by combining small RNA size selection, sodium periodate treatment enrichment for piRNA over other small RNA, and small RNA next-generation sequencing. We identify PIWIL1, PIWIL2, and PIWIL4 expression in brain, liver, kidney, and heart. Of note, somatic piRNAs are shorter in length and tissue-specific, with increased occurrence of unique piRNAs in hippocampus and liver, compared to the germline. Hippocampus contains 5,494 piRNA-like peaks, the highest expression among all tested somatic tissues, followed by cortex (1,963), kidney (580), and liver (406). The study identifies 26 piRNA sequence species and 40 piRNA locations exclusive to all examined somatic tissues. Although piRNA expression has long been considered exclusive to the germline, our results support that piRNAs are expressed in several somatic tissues that may influence piRNA functions in the soma. Once confirmed, the PIWI/piRNA system may serve as a potential tool for future research in epigenome editing to improve human health by manipulating DNA methylation.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Zing Tsung-Yeh Tsai
- b Department of Computational Medicine and Bioinformatics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Mathia L Colwell
- c Department of Animal Science , University of Minnesota , St. Paul , MN , USA
| | - Tamara R Jones
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Jaclyn M Goodrich
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Kai Wang
- b Department of Computational Medicine and Bioinformatics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Maureen A Sartor
- b Department of Computational Medicine and Bioinformatics , University of Michigan Medical School , Ann Arbor , MI , USA.,d Department of Biostatistics, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| | - Christopher Faulk
- c Department of Animal Science , University of Minnesota , St. Paul , MN , USA
| | - Dana C Dolinoy
- a Department of Environmental Health Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA.,e Department of Nutritional Sciences, School of Public Health , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
18
|
Arnau-Soler A, Macdonald-Dunlop E, Adams MJ, Clarke TK, MacIntyre DJ, Milburn K, Navrady L, Hayward C, McIntosh AM, Thomson PA. Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland. Transl Psychiatry 2019; 9:14. [PMID: 30718454 PMCID: PMC6361928 DOI: 10.1038/s41398-018-0360-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with poorer physical and mental health. To improve our understanding of this link, we performed genome-wide association studies (GWAS) of depressive symptoms and genome-wide by environment interaction studies (GWEIS) of depressive symptoms and stressful life events (SLE) in two UK population-based cohorts (Generation Scotland and UK Biobank). No SNP was individually significant in either GWAS, but gene-based tests identified six genes associated with depressive symptoms in UK Biobank (DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU; p < 2.77 × 10-6). Two SNPs with genome-wide significant GxE effects were identified by GWEIS in Generation Scotland: rs12789145 (53-kb downstream PIWIL4; p = 4.95 × 10-9; total SLE) and rs17070072 (intronic to ZCCHC2; p = 1.46 × 10-8; dependent SLE). A third locus upstream CYLC2 (rs12000047 and rs12005200, p < 2.00 × 10-8; dependent SLE) when the joint effect of the SNP main and GxE effects was considered. GWEIS gene-based tests identified: MTNR1B with GxE effect with dependent SLE in Generation Scotland; and PHF2 with the joint effect in UK Biobank (p < 2.77 × 10-6). Polygenic risk scores (PRSs) analyses incorporating GxE effects improved the prediction of depressive symptom scores, when using weights derived from either the UK Biobank GWAS of depressive symptoms (p = 0.01) or the PGC GWAS of major depressive disorder (p = 5.91 × 10-3). Using an independent sample, PRS derived using GWEIS GxE effects provided evidence of shared aetiologies between depressive symptoms and schizotypal personality, heart disease and COPD. Further such studies are required and may result in improved treatments for depression and other stress-related conditions.
Collapse
Affiliation(s)
- Aleix Arnau-Soler
- Medical Genetics Section, University of Edinburgh, Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.
| | - Erin Macdonald-Dunlop
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, Deanery of Clinical Sciences, Univ×ersity of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh, EH10 5HF, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, Deanery of Clinical Sciences, Univ×ersity of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh, EH10 5HF, UK
| | - Donald J MacIntyre
- Division of Psychiatry, Deanery of Clinical Sciences, Univ×ersity of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh, EH10 5HF, UK
| | - Keith Milburn
- Health Informatics Centre, University of Dundee, Dundee, UK
| | - Lauren Navrady
- Division of Psychiatry, Deanery of Clinical Sciences, Univ×ersity of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh, EH10 5HF, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Deanery of Clinical Sciences, Univ×ersity of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh, EH10 5HF, UK
| | - Pippa A Thomson
- Medical Genetics Section, University of Edinburgh, Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.
| |
Collapse
|
19
|
Gao CL, Sun R, Li DH, Gong F. PIWI-like protein 1 upregulation promotes gastric cancer invasion and metastasis. Onco Targets Ther 2018; 11:8783-8789. [PMID: 30584336 PMCID: PMC6287512 DOI: 10.2147/ott.s186827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background PIWI-like protein 1 (PIWIL1) is an important member of the Argonaute protein family and is closely related to the malignant behaviors of tumor cells. This study aimed to investigate the relationship between PIWIL1 and gastric cancer (GC). Methods We investigated PIWIL1 expression status in GC tissues as well as its association with clinicopathological characteristics and prognosis of GC patients. PIWIL1 siRNA was transfected into a GC cell line to elucidate its impact on malignant biological behavior. Results The results showed that PIWIL1 was upregulated in GC tissues and correlated with tumor differentiation, lymph node status, and TNM stage. The high PIWIL1 expression was an independent predictor for the prognosis of patients with GC. Silencing of PIWIL1 expression in GC cell lines suppressed tumor cell proliferation, migration, and invasion. Conclusion High PIWIL1 expression suggests a poor prognosis for GC patients and PIWIL1 can serve as an important molecular marker for predicting the prognosis of GC patients.
Collapse
Affiliation(s)
| | | | - Dong-Hai Li
- Department of Pathology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, 730050, China
| | | |
Collapse
|
20
|
Heng ZSL, Lee JY, Subhramanyam CS, Wang C, Thanga LZ, Hu Q. The role of 17β‑estradiol‑induced upregulation of Piwi‑like 4 in modulating gene expression and motility in breast cancer cells. Oncol Rep 2018; 40:2525-2535. [PMID: 30226541 PMCID: PMC6151878 DOI: 10.3892/or.2018.6676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
A majority of breast cancer cases are positive for the estrogen receptor (ER), which means that they can respond to the estrogen hormone to achieve growth. Hence, the ER signaling pathway has been extensively targeted in pharmaceutical research and development in order to suppress tumor growth. However, prevalent hormone therapy and targeted therapy often become ineffective as cancer cells ultimately develop resistance, suggesting that there could be unidentified signaling molecules and events that regulate breast cancer growth. Notably, recent studies have uncovered that Piwi-like (Piwil) proteins, which were initially found in germline cells, are expressed in a wide spectrum of human cancers, including breast cancers. Although Piwil proteins have been well established to silence retrotransposons and to promote heterochromatin formation in germline cells, their somatic functions in cancer cells remain largely unknown. In the present study, we profiled the expression of four Piwi homologs in an ER-positive breast cancer cell line, MCF-7, and found that only Piwil4 was upregulated by 17β-estradiol treatment. Notably, Piwil4 upregulation was not observed in an ER-positive but non-tumorigenic breast cancer cell line, MCF-12A. In addition, the induced expression of Piwil4 was dependent on estrogen/ERα signaling. To explore the biological significance of Piwil4 in breast cancer growth, we knocked down Piwil4 with multiple siRNAs and observed the suppressed expression of some canonical targets of ER. The knockdown of Piwil4 expression also decreased the migration and invasion capabilities of MCF-7 cells. Furthermore, the loss-of-function of Piwil4 reduced the motility of MCF-7 cells in wound-healing assays, which could be associated to decreased expression of vimentin and N-cadherin. Collectively, these findings revealed that Piwil4 is a novel regulator of ER signaling that could be targeted to inhibit breast cancer growth and migration.
Collapse
Affiliation(s)
- Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Republic of Singapore
| | - Jing Yi Lee
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Republic of Singapore
| | | | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Republic of Singapore
| | - Lal Zo Thanga
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Republic of Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Republic of Singapore
| |
Collapse
|
21
|
Russell SJ, Stalker L, LaMarre J. PIWIs, piRNAs and Retrotransposons: Complex battles during reprogramming in gametes and early embryos. Reprod Domest Anim 2018; 52 Suppl 4:28-38. [PMID: 29052331 DOI: 10.1111/rda.13053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gamete and embryo development are indispensable processes for successful reproduction. Cells involved in these processes acquire pluripotency, the ability to differentiate into multiple different cell types, through a series of events known as reprogramming that lead to profound changes in histone and DNA methylation. While essential for pluripotency, this epigenetic remodelling removes constraints that normally limit the expression of genomic sequences known as transposable elements (TEs). Unconstrained TE expression can lead to many deleterious consequences including infertility, so organisms have evolved complex and potent mechanistic arsenals to target and suppress TE expression during reprogramming. This review will focus on the control of transposable elements in gametes and embryos, and one important TE suppressing system known as the PIWI pathway. This broadly conserved, small RNA-targeted silencing mechanism appears critical for fertility in many species and may participate in multiple aspects of gene regulation in reproduction and other contexts.
Collapse
Affiliation(s)
- S J Russell
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - L Stalker
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - J LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Schulze M, Sommer A, Plötz S, Farrell M, Winner B, Grosch J, Winkler J, Riemenschneider MJ. Sporadic Parkinson's disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs. Acta Neuropathol Commun 2018; 6:58. [PMID: 29986767 PMCID: PMC6038190 DOI: 10.1186/s40478-018-0561-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
Differentiated neurons established via iPSCs from patients that suffer from familial Parkinson's disease (PD) have allowed insights into the mechanisms of neurodegeneration. In the larger cohort of patients with sporadic PD, iPSC based information on disease specific cellular phenotypes is rare. We asked whether differences may be present on genomic and epigenomic levels and performed a comprehensive transcriptomic and epigenomic analysis of fibroblasts, iPSCs and differentiated neuronal cells of sporadic PD-patients and controls. We found that on mRNA level, although fibroblasts and iPSCs are largely indistinguishable, differentiated neuronal cells of sporadic PD patients show significant alterations enriched in pathways known to be involved in disease aetiology, like the CREB-pathway and the pathway regulating PGC1α. Moreover, miRNAs and piRNAs/piRNA-like molecules are largely differentially regulated in cells and post-mortem tissue samples between control- and PD-patients. The most striking differences can be found in piRNAs/piRNA-like molecules, with SINE- and LINE-derived piRNAs highly downregulated in a disease specific manner. We conclude that neuronal cells derived from sporadic PD-patients help to elucidate novel disease mechanisms and provide relevant insight into the epigenetic landscape of sporadic Parkinson's disease as particularly regulated by small RNAs.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Present address: Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Annika Sommer
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sonja Plötz
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Grosch
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
23
|
PIWI family emerging as a decisive factor of cell fate: An overview. Eur J Cell Biol 2017; 96:746-757. [DOI: 10.1016/j.ejcb.2017.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
|
24
|
Sivagurunathan S, Arunachalam JP, Chidambaram S. PIWI-like protein, HIWI2 is aberrantly expressed in retinoblastoma cells and affects cell-cycle potentially through OTX2. Cell Mol Biol Lett 2017; 22:17. [PMID: 28861107 PMCID: PMC5576095 DOI: 10.1186/s11658-017-0048-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
Retinoblastoma (RB), a childhood cancer, is caused by biallelic mutation of the RB1 gene, but its development is not clearly understood. Furthermore, the presence of a cancer stem cell subpopulation in RB might impact its treatment. PIWI protein, known for its role in stem cell self-renewal, is aberrantly expressed in cancers. We examined the role of the PIWI-like protein HIWI2 in RB and its effect on the stem cell markers in cells of the RB line, Y79. The expression of HIWI2 is significantly increased in Y79 compared with its level in HeLa and ARPE19 cells. The stem cell markers Oct-3/4, Nanog and Sox-2 were not altered upon HIWI2 knockdown in Y79 cells. Interestingly, OTX2 was significantly downregulated in the absence of HIWI2. Otx2 transcripts also decreased in HIWI2-silenced Y79 and ARPE19 cells. Moreover, silencing HIWI2 in Y79 accumulated the cells at G2–M phase and reduced the levels of proliferating cell nuclear antigen (PCNA) and the tumor suppressor, p16. Our results demonstrate that HIWI2 is aberrantly expressed in Y79 cells and silencing of HIWI2 downregulates OTX2, suggesting that HIWI2 might play a role in the progression of RB.
Collapse
Affiliation(s)
- Suganya Sivagurunathan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India.,School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Jayamuruga Pandian Arunachalam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India.,Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth University, Mahatma Gandhi Medical College and Research Institute Campus, Pondicherry, India
| | - Subbulakshmi Chidambaram
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
25
|
Tharmalingam S, Sreetharan S, Kulesza AV, Boreham DR, Tai TC. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat Res 2017; 188:525-538. [PMID: 28753061 DOI: 10.1667/rr14587.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.
Collapse
Affiliation(s)
| | | | - Adomas V Kulesza
- b Department of Biology, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R Boreham
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6.,c Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - T C Tai
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6
| |
Collapse
|
26
|
Sivagurunathan S, Palanisamy K, Arunachalam JP, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem 2016; 427:145-156. [DOI: 10.1007/s11010-016-2906-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/03/2016] [Indexed: 12/22/2022]
|
27
|
Pleštilová L, Neidhart M, Russo G, Frank-Bertoncelj M, Ospelt C, Ciurea A, Kolling C, Gay RE, Michel BA, Vencovský J, Gay S, Jüngel A. Expression and Regulation of PIWIL-Proteins and PIWI-Interacting RNAs in Rheumatoid Arthritis. PLoS One 2016; 11:e0166920. [PMID: 27893851 PMCID: PMC5125648 DOI: 10.1371/journal.pone.0166920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Objective The PIWIL (P-element induced wimpy testis like protein) subfamily of argonaute proteins is essential for Piwi-interacting RNA (piRNA) biogenesis and their function to silence transposons during germ-line development. Here we explored their presence and regulation in rheumatoid arthritis (RA). Methods The expression of PIWIL genes in RA and osteoarthritis (OA) synovial tissues and synovial fibroblasts (SF) was analysed by Real-time PCR, immunofluorescence and Western blot. The expression of piRNAs was quantified by next generation small RNA sequencing (NGS). The regulation of PIWI/piRNAs, proliferation and methylation of LINE-1 after silencing of PIWIL genes were studied. Results PIWIL2 and 4 mRNA were similarly expressed in synovial tissues and SF from RA and OA patients. However, on the protein level only PIWIL4 was strongly expressed in SF. Using NGS up to 300 piRNAs were identified in all SF without significant differences in expression levels between RA and OASF. Of interest, the analysis of the co-expression of the detected piRNAs revealed a less tightly regulated pattern of piRNA-823, -4153 and -16659 expression in RASF. In RASF and OASF, stimulation with TNFα+IL1β/TLR-ligands further significantly increased the expression levels of PIWIL2 and 4 mRNA and piRNA-16659 was significantly (4-fold) induced upon Poly(I:C) stimulation. Silencing of PIWIL2/4 neither affect LINE-1 methylation/expression nor proliferation of RASF. Conclusion We detected a new class of small regulatory RNAs (piRNAs) and their specific binding partners (PIWIL2/4) in synovial fibroblasts. The differential regulation of co-expression of piRNAs in RASF and the induction of piRNA/Piwi-proteins by innate immune stimulators suggest a role in inflammatory processes.
Collapse
Affiliation(s)
- Lenka Pleštilová
- Center of Experimental Rheumatology, University Hospital Zürich, Zürich, Switzerland
| | - Michel Neidhart
- Center of Experimental Rheumatology, University Hospital Zürich, Zürich, Switzerland
| | | | | | - Caroline Ospelt
- Center of Experimental Rheumatology, University Hospital Zürich, Zürich, Switzerland
| | - Adrian Ciurea
- Department of Rheumatology, University Hospital Zürich, Zürich, Switzerland
| | | | - Renate E. Gay
- Center of Experimental Rheumatology, University Hospital Zürich, Zürich, Switzerland
| | - Beat A. Michel
- Department of Rheumatology, University Hospital Zürich, Zürich, Switzerland
| | - Jiří Vencovský
- Institute of Rheumatology and Clinic of Rheumatology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zürich, Zürich, Switzerland
| | - Astrid Jüngel
- Center of Experimental Rheumatology, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Navarro A, Tejero R, Viñolas N, Cordeiro A, Marrades RM, Fuster D, Caritg O, Moises J, Muñoz C, Molins L, Ramirez J, Monzo M. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer. Oncotarget 2016; 6:31544-56. [PMID: 25742785 PMCID: PMC4741623 DOI: 10.18632/oncotarget.3003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022] Open
Abstract
The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.
Collapse
Affiliation(s)
- Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Rut Tejero
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Nuria Viñolas
- Department of Medical Oncology, Institut Clinic Malalties Hemato-Oncològiques (ICMHO), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Anna Cordeiro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Ramon M Marrades
- Department of Pneumology, Institut Clínic del Tórax (ICT), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Dolors Fuster
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Oriol Caritg
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jorge Moises
- Department of Pneumology, Institut Clínic del Tórax (ICT), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Carmen Muñoz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Laureano Molins
- Department of Thoracic Surgery, Institut Clínic del Tórax (ICT), Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Josep Ramirez
- Department of Pathology, Centro de Diagnóstico Biomédico (CDB), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Mariano Monzo
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
29
|
Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C, Liu Y. CRNDE Promotes Malignant Progression of Glioma by Attenuating miR-384/PIWIL4/STAT3 Axis. Mol Ther 2016; 24:1199-1215. [PMID: 27058823 DOI: 10.1038/mt.2016.71] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/01/2016] [Indexed: 12/16/2022] Open
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is the most upregulated long noncoding RNA (lncRNA) in glioma. Herein, the function and potential molecular mechanisms of CRNDE and miR-384 were illustrated in glioma cells. CRNDE overexpression facilitated cell proliferation, migration, and invasion, while inhibited glioma cells apoptosis. Quantitative real-time polymerase chain reaction (PCR) demonstrated that miR-384 was downregulated in human glioma tissues and glioma cell lines. Moreover, restoration of miR-384 exerted tumor-suppressive functions. In addition, the expression of miR-384 was negatively correlated with CRNDE expression. A binding region between CRNDE and miR-384 was confirmed using luciferase assays. Moreover, CRNDE promoted cell malignant behavior by decreasing miR-384 expression. At the molecular level, treatment by CRNDE knockdown or miR-384 overexpression resulted in a decrease of piwi-like RNA-mediated gene silencing 4 (PIWIL4) protein. Besides, PIWIL4 was identified as a target of miR-384 and plays an oncogenic role in glioma. Similarly, downstream proteins of PIWIL4 such as STAT3, cyclin D1, VEGFA, SLUG, MMP-9, caspase 3, Bcl-2, and bcl-xL were modulated when treated with miR-384 and PIWIL4. Remarkably, CRNDE knockdown combined with miR-384 overexpression led to tumor regression in vivo. Overall, these results depicted a novel pathway mediated by CRNDE in glioma, which may be a potential application for glioma therapy.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Chengbin Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| |
Collapse
|
30
|
Russell SJ, Stalker L, Gilchrist G, Backx A, Molledo G, Foster RA, LaMarre J. Identification of PIWIL1 Isoforms and Their Expression in Bovine Testes, Oocytes, and Early Embryos. Biol Reprod 2016; 94:75. [PMID: 26911426 DOI: 10.1095/biolreprod.115.136721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
PIWI proteins are members of the larger Argonaute family and bind to specific 24-32 nucleotide RNAs called PIWI-interacting RNAs (piRNAs). PIWI-interacting RNAs direct PIWI-mediated suppression of retrotransposon expression in the male germline in humans and mice, but their roles in bovine reproduction and embryogenesis are unknown. Although the majority of research in mammals has focused on the functions of PIWI proteins during spermatogenesis, this family of proteins and their associated piRNAs have recently been identified in early embryos. The goals of this study were to characterize the expression of PIWIL1 in bovine testis, oocytes, and early embryos. A full-lengthPIWIL1transcript and protein was found in the testis, specifically in the germs cells of mature seminiferous tubules. RNA-immunoprecipitation demonstrated the presence of putative piRNAs with a mean length of 30 nucleotides bound to PIWIL1 in testes. 3'-Rapid amplification of cDNA ends analysis ofPIWIL1transcripts in testes and oocytes revealed two shorter isoforms in addition to the full-length transcript that was only present in testes. TruncatedPIWIL1isoforms in oocytes and testes were confirmed through amplification of their unique intronic fragments. Expression profiling ofPIWIL1through early embryogenesis demonstrated peak mRNA expression at the 2-cell stage with decreasing levels through to the blastocyst. PIWIL1-YFP fusion plasmids were produced for each isoform and expressed in HEK 293 cells, demonstrating nuclear exclusion and size-specific banding of the different isoforms. These data represent the first comprehensive characterization of PIWIL1 in bovine, revealing functional similarities with PIWIL1 in other species and suggest tissue-specific expression of several isoforms.
Collapse
Affiliation(s)
- Stewart J Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leanne Stalker
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Graham Gilchrist
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alanna Backx
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Gonzalo Molledo
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Zhong F, Zhou N, Wu K, Guo Y, Tan W, Zhang H, Zhang X, Geng G, Pan T, Luo H, Zhang Y, Xu Z, Liu J, Liu B, Gao W, Liu C, Ren L, Li J, Zhou J, Zhang H. A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes. Nucleic Acids Res 2015; 43:10474-91. [PMID: 26405199 PMCID: PMC4666397 DOI: 10.1093/nar/gkv954] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023] Open
Abstract
PIWI interacting RNAs (piRNAs) are highly expressed in germline cells and are involved in maintaining genome integrity by silencing transposons. These are also involved in DNA/histone methylation and gene expression regulation in somatic cells of invertebrates. The functions of piRNAs in somatic cells of vertebrates, however, remain elusive. We found that snoRNA-derived and C (C′)/D′ (D)-box conserved piRNAs are abundant in human CD4 primary T-lymphocytes. piRNA (piR30840) significantly downregulated interleukin-4 (IL-4) via sequence complementarity binding to pre-mRNA intron, which subsequently inhibited the development of Th2 T-lymphocytes. Piwil4 and Ago4 are associated with this piRNA, and this complex further interacts with Trf4-Air2-Mtr4 Polyadenylation (TRAMP) complex, which leads to the decay of targeted pre-mRNA through nuclear exosomes. Taken together, we demonstrate a novel piRNA mechanism in regulating gene expression in highly differentiated somatic cells and a possible novel target for allergy therapeutics.
Collapse
Affiliation(s)
- Fudi Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Nan Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Respiratory Division & Medicine Intensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiping Tan
- Department of Pediatrics, the Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhibin Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenchao Gao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Liangliang Ren
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control of Ministry of Education of China, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
32
|
Taubert H, Wach S, Jung R, Pugia M, Keck B, Bertz S, Nolte E, Stoehr R, Lehmann J, Ohlmann CH, Stöckle M, Wullich B, Hartmann A. Piwil 2 expression is correlated with disease-specific and progression-free survival of chemotherapy-treated bladder cancer patients. Mol Med 2015; 21:371-80. [PMID: 25998509 DOI: 10.2119/molmed.2014.00250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/13/2015] [Indexed: 12/21/2022] Open
Abstract
Piwi-like 2 (Piwil 2) belongs to the family of Argonaute genes/proteins. The expression of Piwil 2 is associated with stem cells. A role in tumorigenesis and/or tumor progression is proposed for different cancers but not yet for bladder cancer (BCa). We investigated the Piwil 2 expression by immunohistochemistry in a cohort of 202 BCa patients treated by cystectomy and adjuvant chemotherapy. The association between Piwil 2 expression and disease-specific (DSS) or progression-free survival (PFS) was calculated using Kaplan Meier analyses and univariate/multivariate Cox's regression hazard models.In a multivariate Cox's regression, Piwil 2 expression, either in the cytoplasm or the nucleus, was significantly associated with DSS and PFS. A weak cytoplasmic staining pattern was associated with poor DSS and tumor progression (RR=2.7; P=0.004 and RR=2.4; P=0.027). Likewise,, absent nuclear Piwil 2 immunoreactivity was associated with poor DSS and tumor progression (RR=2.3; P=0.023 and RR=2.2; P=0.022). BCa patients whose tumors exhibited a combination of weak cytoplasmic and absent nuclear immunoreactivity had a 6-fold increased risk of tumor-related death (P=0.005) compared to patients with strong expression. Considering only patients with high grade G3 tumors, a 7.8-fold risk of tumor-associated death and a 3.6-fold risk of tumor progression were detected independently of the histologic tumor subtype or the chemotherapy regimen. In summary, a combination of weak cytoplasmic and absent nuclear expression of Piwil 2 is significantly associated with an increased risk of DSS and tumor progression. This implicates that Piwil 2 could be a valuable prognostic marker for high-risk BCa patients.
Collapse
Affiliation(s)
- Helge Taubert
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rudolf Jung
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Pugia
- Siemens Healthcare Diagnostics, Elkhart, Indiana, USA
| | - Bastian Keck
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Bertz
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Nolte
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Stoehr
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Lehmann
- Urologische Gemeinschaftspraxis, Prüner Gang and Department of Urology, Städtisches Krankenhaus, Kiel, Germany
| | | | - Michael Stöckle
- Department of Urology, Saarland University, Homburg, Germany
| | - Bernd Wullich
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
33
|
Tan Y, Liu L, Liao M, Zhang C, Hu S, Zou M, Gu M, Li X. Emerging roles for PIWI proteins in cancer. Acta Biochim Biophys Sin (Shanghai) 2015; 47:315-24. [PMID: 25854579 DOI: 10.1093/abbs/gmv018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
It is generally accepted that PIWI proteins are predominately expressed in the germline but absent in somatic tissues. Their best-characterized role is to suppress transposon expression, which ensures genomic stability in the germline. However, increasing evidence has suggested that PIWI proteins are linked to the hallmarks of cancer defined by Weinberg and Hanahan, such as cell proliferation, anti-apoptosis, genomic instability, invasion and metastasis. This provides new possibilities for anticancer therapies through the targeting of PIWI proteins, which may have fewer side effects due to their potential classification as a CTA (cancer/testis antigen). Furthermore, PIWI has been proposed to act as a diagnostic and prognostic marker for many types of cancer, and even to differentiate early- and late-stage cancers. We herein summarize the latest progress in this exciting field, hoping to encourage new investigations of PIWIs in cancer biology that will help to develop new therapeutics for clinical application.
Collapse
Affiliation(s)
- Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Lianyong Liu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Mingan Liao
- College of Horticulture, Sichuan Agricultural University, Ya'an 625014, China
| | - Chaobao Zhang
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Mei Zou
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Mingjun Gu
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| | - Xiangqi Li
- Department of Endocrine, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, China
| |
Collapse
|
34
|
He X, Chen X, Zhang X, Duan X, Pan T, Hu Q, Zhang Y, Zhong F, Liu J, Zhang H, Luo J, Wu K, Peng G, Luo H, Zhang L, Li X, Zhang H. An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes. Nucleic Acids Res 2015; 43:3712-25. [PMID: 25779046 PMCID: PMC4402533 DOI: 10.1093/nar/gkv214] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 03/03/2015] [Indexed: 12/19/2022] Open
Abstract
PIWI-interacting RNA (piRNA) silences the transposons in germlines or induces epigenetic modifications in the invertebrates. However, its function in the mammalian somatic cells remains unknown. Here we demonstrate that a piRNA derived from Growth Arrest Specific 5, a tumor-suppressive long non-coding RNA, potently upregulates the transcription of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a proapoptotic protein, by inducing H3K4 methylation/H3K27 demethylation. Interestingly, the PIWIL1/4 proteins, which bind with this piRNA, directly interact with WDR5, resulting in a site-specific recruitment of the hCOMPASS-like complexes containing at least MLL3 and UTX (KDM6A). We have indicated a novel pathway for piRNAs to specially activate gene expression. Given that MLL3 or UTX are frequently mutated in various tumors, the piRNA/MLL3/UTX complex mediates the induction of TRAIL, and consequently leads to the inhibition of tumor growth.
Collapse
Affiliation(s)
- Xin He
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xinxin Chen
- Department of Vascular and Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Breast Surgery Department of The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Xue Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiaobing Duan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fudi Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Juan Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Gao Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lehong Zhang
- Breast Surgery Department of The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Xiaoxi Li
- Department of Vascular and Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
35
|
Huang RC, Garratt ES, Pan H, Wu Y, Davis EA, Barton SJ, Burdge GC, Godfrey KM, Holbrook JD, Lillycrop KA. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood. Epigenetics 2015; 10:995-1005. [PMID: 26646899 PMCID: PMC4844195 DOI: 10.1080/15592294.2015.1080411] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 07/27/2015] [Accepted: 08/01/2015] [Indexed: 12/24/2022] Open
Abstract
Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.
Collapse
Affiliation(s)
- R C Huang
- Telethon Institute for Child Health Research; University of Western Australia; Perth, Australia
| | - E S Garratt
- Academic Unit of Human Development and Health; Faculty of Medicine; University of Southampton; Southampton, UK
| | - H Pan
- Singapore Institute for Clinical Sciences (SICS); A*STAR; Brenner Center for Molecular Medicine; Singapore
- School of Computer Engineering; Nanyang Technological University (NTU); Singapore
| | - Y Wu
- Singapore Institute for Clinical Sciences (SICS); A*STAR; Brenner Center for Molecular Medicine; Singapore
| | - E A Davis
- Telethon Institute for Child Health Research; University of Western Australia; Perth, Australia
| | - S J Barton
- MRC Lifecourse Epidemiology Unit; University of Southampton; Southampton, UK
| | - G C Burdge
- Academic Unit of Human Development and Health; Faculty of Medicine; University of Southampton; Southampton, UK
| | - K M Godfrey
- MRC Lifecourse Epidemiology Unit; University of Southampton; Southampton, UK
- NIHR Southampton Biomedical Research Center; University of Southampton and University Hospital Southampton NHS Foundation Trust; Southampton, UK
| | - J D Holbrook
- Singapore Institute for Clinical Sciences (SICS); A*STAR; Brenner Center for Molecular Medicine; Singapore
- Yong Loo Lin School of Medicine; National University of Singapore (NUS); Singapore
| | - K A Lillycrop
- Academic Unit of Human Development and Health; Faculty of Medicine; University of Southampton; Southampton, UK
- Faculty of Natural and Environmental Sciences; University of Southampton; Southampton, UK
| |
Collapse
|
36
|
Sohn YA, Lee SI, Choi HJ, Kim HJ, Kim KH, Park TS, Han JY. The CCAAT element in the CIWI promoter regulates transcriptional initiation in chicken primordial germ cells. Mol Reprod Dev 2014; 81:871-82. [PMID: 25196532 DOI: 10.1002/mrd.22356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
The P-element-induced wimpy testis (PIWI) protein, which associates with small non-coding RNAs, is responsible for maintaining the integrity of germ cells and stem cells. Thus, transcriptional regulation of PIWI is critical for its effective functional modulation. In this study, we identified the promoter region of the PIWI homolog in chicken (CIWI), and investigated the transcriptional regulatory elements that control expression of CIWI in chicken primordial germ cells (PGCs). We constructed a vector that included the enhanced green fluorescent protein (eGFP) gene controlled by the 4-kb CIWI promoter. The vector was expressed in chicken PGCs, but not in chicken embryonic fibroblasts. Based on promoter deletion and fragmentation assays, we found that a 252-bp fragment of the CIWI promoter (-577 to -326 bp) was crucial for CIWI expression in PGCs. A CCAAT transcriptional regulatory element (-498 to -494 bp) was detected in the proximal region from the transcription initiation site of CIWI, and mutational analysis confirmed that this element regulates transcriptional initiation in chicken PGCs. Interestingly, the regions flanking the CCAAT element, which are positioned differently in HIWI (human), Miwi (mouse), and CIWI orthologs, were highly conserved. In addition, we predicted that specificity protein 1 (SP1) motifs modulate the transcriptional initiation of CIWI by binding to the 5'-flanking regions of the CCAAT box. Overall, 252 bp of the CIWI promoter possessing the transcriptional regulatory element CCAAT is crucial for regulating CIWI gene expression in chicken PGCs. This promoter may be applicable for the regulation of CIWI expression during germ-cell development.
Collapse
Affiliation(s)
- Yoon Ah Sohn
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Small noncoding RNAs play several roles in regulating gene expression. In the nucleus, small RNA-Argonaute complexes recruit epigenetic modifying activities to genomic sites. This pathway has been described in mammals primarily for the germline; however, its role in somatic cells is less characterized. Here, we describe in human somatic cells a potential link between the expression of small RNAs from the macrosatellite DXZ4 and Argonaute-dependent DNA methylation of this locus. DXZ4 was found to express a wide range of small RNAs potentially representing several classes of small RNAs. A subpopulation of these RNAs is bound by Argonaute. Moreover, we show AGO association with DXZ4 and that the Argonaute proteins AGO-1 and PIWIL4 may play a role in DNA methylation of DXZ4. We hypothesize that the RNAs are involved in Argonaute-dependent methylation of DXZ4 DNA.
Collapse
|
38
|
Al-Janabi O, Wach S, Nolte E, Weigelt K, Rau TT, Stöhr C, Legal W, Schick S, Greither T, Hartmann A, Wullich B, Taubert H. Piwi-like 1 and 4 gene transcript levels are associated with clinicopathological parameters in renal cell carcinomas. Biochim Biophys Acta Mol Basis Dis 2014; 1842:686-90. [PMID: 24509249 DOI: 10.1016/j.bbadis.2014.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/24/2014] [Accepted: 01/30/2014] [Indexed: 12/14/2022]
Abstract
Piwi-like gene family members (Piwil 1-4) are considered stem cell-associated genes/proteins. These are expressed predominantly in germline cells, but are re-expressed in different tumors. Piwil 1-4 gene expression has not previously been studied and correlated with clinicopathological parameters in renal cell carcinomas (RCC). The Piwil 1-4 transcript levels were analyzed by quantitative real-time PCR in 73 clear cell RCC (ccRCC) tissues and corresponding normal tissues. The transcript levels of Piwil 1, 2 and 4 were strongly and significantly correlated with each other, in both the tumor tissues and the normal tissues (P<0.001; Spearman's rank test). Piwil 4 gene expression was significantly higher in the ccRCC tissues than that in the corresponding normal renal tissues (P<0.001; Wilcoxon signed-rank test). When the ccRCC patient cohort was divided according to the median Piwil 1-4 expression into low- and high-expression groups and according to age into younger (≤64years) and older patient groups (>64years), the younger patients displayed significantly higher levels of Piwil 1 mRNA in comparison to the older patients (P=0.010; Fisher's exact test). Interestingly, Piwil 1 expression was left-right polarized in the normal tissues but not in the tumor tissues (P=0.004; Fisher's exact test). Altogether, associations were determined between the Piwi-like family member expression levels and clinicopathological parameters of ccRCC, suggesting a potential role for these genes/proteins in ccRCC diagnostics and tumorigenesis as well as in renal tissue embryology.
Collapse
Affiliation(s)
- Omar Al-Janabi
- Department of Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Sven Wach
- Department of Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Elke Nolte
- Department of Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Katrin Weigelt
- Department of Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Tilman T Rau
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Christine Stöhr
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Wolfgang Legal
- Department of Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Stefan Schick
- Tumour Centre at the Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Bernd Wullich
- Department of Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Helge Taubert
- Department of Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
39
|
Nolde MJ, Cheng EC, Guo S, Lin H. Piwi genes are dispensable for normal hematopoiesis in mice. PLoS One 2013; 8:e71950. [PMID: 24058407 PMCID: PMC3751959 DOI: 10.1371/journal.pone.0071950] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/10/2013] [Indexed: 01/23/2023] Open
Abstract
Hematopoietic stem cells (HSC) must engage in a life-long balance between self-renewal and differentiation to sustain hematopoiesis. The highly conserved PIWI protein family regulates proliferative states of stem cells and their progeny in diverse organisms. A Human piwi gene (for clarity, the non-italicized “piwi” refers to the gene subfamily), HIWI (PIWIL1), is expressed in CD34+ stem/progenitor cells and transient expression of HIWI in a human leukemia cell line drastically reduces cell proliferation, implying the potential function of these proteins in hematopoiesis. Here, we report that one of the three piwi genes in mice, Miwi2 (Piwil4), is expressed in primitive hematopoetic cell types within the bone marrow. Mice with a global deletion of all three piwi genes, Miwi, Mili, and Miwi2, are able to maintain long-term hematopoiesis with no observable effect on the homeostatic HSC compartment in adult mice. The PIWI-deficient hematopoetic cells are capable of normal lineage reconstitution after competitive transplantation. We further show that the three piwi genes are dispensable during hematopoietic recovery after myeloablative stress by 5-FU. Collectively, our data suggest that the function of the piwi gene subfamily is not required for normal adult hematopoiesis.
Collapse
Affiliation(s)
- Mona J. Nolde
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ee-chun Cheng
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Shangqin Guo
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
40
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
41
|
Merrifield M, Kovalchuk O. Epigenetics in radiation biology: a new research frontier. Front Genet 2013; 4:40. [PMID: 23577019 PMCID: PMC3616258 DOI: 10.3389/fgene.2013.00040] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 03/06/2013] [Indexed: 11/13/2022] Open
Abstract
The number of people that receive exposure to ionizing radiation (IR) via occupational, diagnostic, or treatment-related modalities is progressively rising. It is now accepted that the negative consequences of radiation exposure are not isolated to exposed cells or individuals. Exposure to IR can induce genome instability in the germline, and is further associated with transgenerational genomic instability in the offspring of exposed males. The exact molecular mechanisms of transgenerational genome instability have yet to be elucidated, although there is support for it being an epigenetically induced phenomenon. This review is centered on the long-term biological effects associated with IR exposure, mainly focusing on the epigenetic mechanisms (DNA methylation and small RNAs) involved in the molecular etiology of IR-induced genome instability, bystander and transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms, and demonstrate how a novel, male germline-specific, small RNA pathway is posited to play a major role in the epigenetic inheritance of genome instability.
Collapse
Affiliation(s)
- Matt Merrifield
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | | |
Collapse
|
42
|
Suzuki T, Nohara K. Long-term arsenic exposure induces histone H3 Lys9 dimethylation without altering DNA methylation in the promoter region of p16INK4aand down-regulates its expression in the liver of mice. J Appl Toxicol 2012; 33:951-8. [DOI: 10.1002/jat.2765] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/18/2012] [Accepted: 03/18/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Takehiro Suzuki
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba; 305-8506; Japan
| | - Keiko Nohara
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba; 305-8506; Japan
| |
Collapse
|
43
|
Su C, Ren ZJ, Wang F, Liu M, Li X, Tang H. PIWIL4 regulates cervical cancer cell line growth and is involved in down-regulating the expression of p14ARF and p53. FEBS Lett 2012; 586:1356-62. [DOI: 10.1016/j.febslet.2012.03.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 11/26/2022]
|
44
|
Siddiqi S, Terry M, Matushansky I. Hiwi mediated tumorigenesis is associated with DNA hypermethylation. PLoS One 2012; 7:e33711. [PMID: 22438986 PMCID: PMC3306289 DOI: 10.1371/journal.pone.0033711] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/15/2012] [Indexed: 02/07/2023] Open
Abstract
Expression of Piwi proteins is confined to early development and stem cells during which they suppress transposon migration via DNA methylation to ensure genomic stability. Piwi's genomic protective function conflicts with reports that its human ortholog, Hiwi, is expressed in numerous cancers and prognosticates shorter survival. However, the role of Hiwi in tumorigenesis has not been examined. Here we demonstrate that (1) over-expressing Hiwi in sarcoma precursors inhibits their differentiation in vitro and generates sarcomas in vivo; (2) transgenic mice expressing Hiwi (mesodermally restricted) develop sarcomas; and (3) inducible down-regulation of Hiwi in human sarcomas inhibits growth and re-establishes differentiation. Our data indicates that Hiwi is directly tumorigenic and Hiwi-expressing cancers may be addicted to Hiwi expression. We further show that Hiwi associated DNA methylation and cyclin-dependent kinase inhibitor (CDKI) silencing is reversible along with Hiwi-induced tumorigenesis, via DNA-methyltransferase inhibitors. Our studies reveal for the first time not only a novel oncogenic role for Hiwi as a driver of tumorigenesis, but also suggest that the use of epigenetic agents may be clinically beneficial for treatment of tumors that express Hiwi. Additionally, our data showing that Hiwi-associated DNA hyper-methylation with subsequent genetic and epigenetic changes favoring a tumorigenic state reconciles the conundrum of how Hiwi may act appropriately to promote genomic integrity during early development (via transposon silencing) and inappropriately in adult tissues with subsequent tumorigenesis.
Collapse
Affiliation(s)
- Sara Siddiqi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Melissa Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Igor Matushansky
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16. Int J Cancer 2011; 130:1715-25. [PMID: 22025288 DOI: 10.1002/ijc.27316] [Citation(s) in RCA: 507] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022]
Abstract
Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16.
Collapse
Affiliation(s)
- Hani Rayess
- Department of Surgery, VA Greater Los Angeles Healthcare system, West Los Angeles, CA, USA
| | | | | |
Collapse
|
46
|
Yan Z, Hu HY, Jiang X, Maierhofer V, Neb E, He L, Hu Y, Hu H, Li N, Chen W, Khaitovich P. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 2011; 39:6596-607. [PMID: 21546553 PMCID: PMC3159465 DOI: 10.1093/nar/gkr298] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Piwi-interacting RNA (piRNA) are small RNA abundant in the germline across animal species. In fruit flies and mice, piRNA have been implicated in maintenance of genomic integrity by transposable elements silencing. Outside of the germline, piRNA have only been found in fruit fly ovarian follicle cells. Previous studies have further reported presence of multiple piRNA-like small RNA (pilRNA) in fly heads and a small number of pilRNA have been reported in mouse tissues and in human NK cells. Here, we analyze high-throughput small RNA sequencing data in more than 130 fruit fly, mouse and rhesus macaque samples. The results show widespread presence of pilRNA, displaying all known characteristics of piRNA in multiple somatic tissues of these three species. In mouse pancreas and macaque epididymis, pilRNA abundance was compatible with piRNA abundance in the germline. Using in situ hybridizations, we further demonstrate pilRNA co-localization with mRNA expression of Piwi-family genes in all macaque tissues. Further, using western blot, we have shown the expression of Miwi protein in mouse pancreas. These findings indicate that piRNA-like molecules might play important roles outside of the germline.
Collapse
Affiliation(s)
- Zheng Yan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhao J, Sun H, Deng W, Li D, Liu Y, Lu Y, Liu Y, Tao D, Zhang S, Ma Y. Piwi-like 2 mediates fibroblast growth factor signaling during gastrulation of zebrafish embryo. TOHOKU J EXP MED 2011; 222:63-8. [PMID: 20814180 DOI: 10.1620/tjem.222.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Piwi (P-element-induced wimpy testis) proteins have been shown to play important roles in maintenance of germ line stem cells, germ cell proliferation and differentiation, and control of Piwi-interacting RNAs (PiRNAs). PiRNAs comprise a broad class of small noncoding RNAs that function as an endogenous defense system against transposable elements. Fibroblast growth factor (Fgf) signals, mediated partly by no tail gene (ntl), are responsible for patterning embryo and mesoderm formation. To understand the function of Piwi proteins, we used zebrafish as a model system. In zebrafish, piwi-like 2 gene (piwil2) is also required for germ cell differentiation and meiosis. Here we report that piwil2 knockdown is able to inhibit the expression of fibroblast growth factor 8a (fgf8a). In contrast, injection with piwil2 mRNA enhances fgf8a expression. Knockdown of piwil2 reduces the inductive effect of fgf8a on dorsalized phenotype, in which embryos extend to an oval shape at the end of epiboly stage. Coinjection with fgf8a and piwil2 mRNAs led to more seriously dorsalized phenotype than coinjection with fgf8a mRNA and piwil2-cMO. In addition, knockdown of piwil2 inhibits the inductive effect of fgf8a on ntl, whereas overexpression of piwil2 enhances the inductive effect of fgf8a on ntl. We also demonstrate that piwil2 positively regulates ntl expression at bud stage, while piwil2 negatively regulates ntl expression at 24 hours post-fertilization. Thus, the functional consequences of piwil2 expression vary during early development of zebrafish embryo. Taken together, we suggest that zebrafish piwil2 is a mediator of Fgf signals in gastrula period.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Medical Genetics & Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cichocki F, Miller JS, Anderson SK. Killer immunoglobulin-like receptor transcriptional regulation: a fascinating dance of multiple promoters. J Innate Immun 2011; 3:242-8. [PMID: 21411970 DOI: 10.1159/000323929] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/24/2010] [Indexed: 11/19/2022] Open
Abstract
Killer immunoglobulin-like receptors (KIRs) recognize class I major histocompatibility complex molecules and participate in the calibration of activation thresholds during human natural killer (NK) cell development. The stochastic expression pattern of the KIR repertoire follows the product rule, meaning that the probability of the coexpression of two or more different KIRs equals the product of the individual expression frequencies for those KIRs. The expression frequencies of individual KIRs are independent of major histocompatibility complex class I and are instead established and maintained by a dynamic, yet ill-defined, transcriptional program. Here, we review recent advances in our understanding of the architecture of the regulatory regions within KIR genes and discuss a potential role for non-coding RNA in KIR transcriptional regulation during NK cell development. Understanding the molecular mechanisms that underlie KIR expression may help guide us in the design of novel, rational strategies for the use of NK cells in transplantation and immunotherapy.
Collapse
Affiliation(s)
- Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
49
|
Ye Y, Yin DT, Chen L, Zhou Q, Shen R, He G, Yan Q, Tong Z, Issekutz AC, Shapiro CL, Barsky SH, Lin H, Li JJ, Gao JX. Identification of Piwil2-like (PL2L) proteins that promote tumorigenesis. PLoS One 2010; 5:e13406. [PMID: 20975993 PMCID: PMC2958115 DOI: 10.1371/journal.pone.0013406] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022] Open
Abstract
PIWIL2, a member of PIWI/AGO gene family, is expressed in the germline stem cells (GSCs) of testis for gametogenesis but not in adult somatic and stem cells. It has been implicated to play an important role in tumor development. We have previously reported that precancerous stem cells (pCSCs) constitutively express Piwil2 transcripts to promote their proliferation. Here we show that these transcripts de facto represent Piwil2-like (PL2L) proteins. We have identified several PL2L proteins including PL2L80, PL2L60, PL2L50 and PL2L40, using combined methods of Gene-Exon-Mapping Reverse Transcription Polymerase Chain Reaction (GEM RT-PCR), bioinformatics and a group of novel monoclonal antibodies. Among them, PL2L60 rather than Piwil2 and other PL2L proteins is predominantly expressed in various types of human and mouse tumor cells. It promotes tumor cell survival and proliferation in vitro through up-regulation of Stat3 and Bcl2 gene expressions, the cell cycle entry from G(0/1) into S-phase, and the nuclear expression of NF-κB, which contribute to the tumorigenicity of tumor cells in vivo. Consistently, PL2L proteins rather than Piwil2 are predominantly expressed in the cytoplasm or cytoplasm and nucleus of euchromatin-enriched tumor cells in human primary and metastatic cancers, such as breast and cervical cancers. Moreover, nuclear PL2L proteins are always co-expressed with nuclear NF-κB. These results reveal that PL2L60 can coordinate with NF-κB to promote tumorigenesis and might mediate a common pathway for tumor development without tissue restriction. The identification of PL2L proteins provides a novel insight into the mechanisms of cancer development as well as a novel bridge linking cancer diagnostics and anticancer drug development.
Collapse
Affiliation(s)
- Yin Ye
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - De-Tao Yin
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of General Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Chen
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Rulong Shen
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Gang He
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Qingtao Yan
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Zhenyu Tong
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Andrew C. Issekutz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Charles L. Shapiro
- Department of Internal Medicine, Ohio State University Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Sanford H. Barsky
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Haifan Lin
- Department of Cell Biology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jian-Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, California, United States of America
| | - Jian-Xin Gao
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
50
|
Coley W, Van Duyne R, Carpio L, Guendel I, Kehn-Hall K, Chevalier S, Narayanan A, Luu T, Lee N, Klase Z, Kashanchi F. Absence of DICER in monocytes and its regulation by HIV-1. J Biol Chem 2010; 285:31930-43. [PMID: 20584909 DOI: 10.1074/jbc.m110.101709] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNA molecules that function to control gene expression and restrict viral replication in host cells. The production of miRNAs is believed to be dependent upon the DICER enzyme. Available evidence suggests that in T lymphocytes, HIV-1 can both suppress and co-opt the host's miRNA pathway for its own benefit. In this study, we examined the state of miRNA production in monocytes and macrophages as well as the consequences of viral infection upon the production of miRNA. Monocytes in general express low amounts of miRNA-related proteins, and DICER in particular could not be detected until after monocytes were differentiated into macrophages. In the case where HIV-1 was present prior to differentiation, the expression of DICER was suppressed. MicroRNA chip results for RNA isolated from transfected and treated cells indicated that a drop in miRNA production coincided with DICER protein suppression in macrophages. We found that the expression of DICER in monocytes is restricted by miR-106a, but HIV-1 suppressed DICER expression via the viral gene Vpr. Additionally, analysis of miRNA expression in monocytes and macrophages revealed evidence that some miRNAs can be processed by both DICER and PIWIL4. Results presented here have implications for both the pathology of viral infections in macrophages and the biogenesis of miRNAs. First, HIV-1 suppresses the expression and function of DICER in macrophages via a previously unknown mechanism. Second, the presence of miRNAs in monocytes lacking DICER indicates that some miRNAs can be generated by proteins other than DICER.
Collapse
Affiliation(s)
- William Coley
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 20110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|