1
|
Tungsirisurp S, Frascione N. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay. BIOSENSORS 2024; 14:509. [PMID: 39451722 DOI: 10.3390/bios14100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Fluorescence-based aptasensors have been regarded as innovative analytical tools for the detection and quantification of analytes in many fields, including medicine and therapeutics. Using DNA aptamers as the biosensor recognition component, conventional molecular beacon aptasensor designs utilise target-induced structural switches of the DNA aptamers to generate a measurable fluorescent signal. However, not all DNA aptamers undergo sufficient target-specific conformational changes for significant fluorescence measurements. Here, the use of complementary 'antisense' strands is proposed to enable fluorescence measurement through strand displacement upon target binding. Using a published target-specific DNA aptamer against the receptor binding domain of SARS-CoV-2, we designed a streptavidin-aptamer bead complex as a fluorescence displacement assay for target detection. The developed assay demonstrates a linear range from 50 to 800 nanomolar (nM) with a limit of detection calculated at 67.5 nM and a limit of quantification calculated at 204.5 nM. This provides a 'fit-for-purpose' model assay for the detection and quantification of any target of interest by adapting and functionalising a suitable target-specific DNA aptamer and its complementary antisense strand.
Collapse
Affiliation(s)
- Sireethorn Tungsirisurp
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
2
|
Edwards A, Iannucci AN, VanDenBerg J, Kesti A, Rice T, Sethi S, Dhakal S, Yangyuoru PM. G-Quadruplex Structure in the ATP-Binding DNA Aptamer Strongly Modulates Ligand Binding Activity. ACS OMEGA 2024; 9:14343-14350. [PMID: 38560010 PMCID: PMC10976393 DOI: 10.1021/acsomega.3c10386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Secondary structures formed by single-stranded DNA aptamers can allow for the binding of small-molecule ligands. Some of these secondary structures are highly stable in solution and are great candidates for use in the development of molecular tools for biomarker detection, environmental monitoring, and others. In this paper, we explored adenosine triphosphate (ATP)-binding aptamers for the simultaneous detection of two small-molecule ligands: adenosine triphosphate (ATP) and thioflavin T (ThT). The aptamer can form a G-quadruplex (G4) structure with two G-quartets, and our results show that each of these quartets is equally involved in binding. Using fluorescently labeled and label-free methods, we further explored the role of the G4 motif in modulating the ligand binding property of the aptamer by making two extended variants that can form three or four G-quartet G4 structures. Through equilibrium binding and electrospray ionization mass spectrometry (ESI-MS) analysis, we observed a stronger affinity of aptamers to ATP by the variant G4 constructs relative to the native aptamer (Kd range of 0.040-0.042 μM for variants as compared to 0.15 μM for the native ATP aptamer). Additionally, we observed a dual binding of ThT and ATP to the G4 constructs in the label-free and ESI-MS analyses. These findings together suggest that the G4 motif in the ATP aptamer is a critical structural element that is required for optimum ATP binding and can be modulated for the binding of multiple ligands. These findings are instrumental for designing smart molecular tools for a wide range of applications, including biomarker monitoring and ligand binding studies.
Collapse
Affiliation(s)
- Aleah
N. Edwards
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Alexandria N. Iannucci
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Jacob VanDenBerg
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Annastiina Kesti
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Tommie Rice
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| | - Srishty Sethi
- Virginia
Commonwealth University, 1001 W Main St., Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Virginia
Commonwealth University, 1001 W Main St., Richmond, Virginia 23284, United States
| | - Philip M. Yangyuoru
- Northern
Michigan University, 1401 Presque Isle Ave, Marquette, Michigan 49855, United States
| |
Collapse
|
3
|
Wang L, Yao L, Ma Q, Mao Y, Qu H, Zheng L. Investigation on small molecule-aptamer dissociation equilibria based on antisense displacement probe. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Aliouat H, Peng Y, Waseem Z, Wang S, Zhou W. Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials 2022; 285:121532. [DOI: 10.1016/j.biomaterials.2022.121532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
5
|
Liu X, Hou Y, Chen S, Liu J. Controlling dopamine binding by the new aptamer for a FRET-based biosensor. Biosens Bioelectron 2020; 173:112798. [PMID: 33197768 DOI: 10.1016/j.bios.2020.112798] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Dopamine is one of the most important neurotransmitters. A high-quality DNA aptamer for dopamine was reported in 2018. However, fundamental understanding of its binding and folding is lacking, which is critical for related biosensor design. Herein, we performed careful assays using a label-free technique called isothermal titration calorimetry (ITC) to study its secondary structure. We divided this aptamer into four regions and individually examined each of them. We confirmed two stems, but the third stem is believed to be part of a loop. The aptamer was then truncated. The original aptamer had a Kd of 2.2 ± 0.3 μM at 25 °C. Shortening the structure by one or two base pairs increased the Kd to 6.9 and 44.4 μM, respectively. Dopamine binding was promoted by both increasing the Mg2+ concentration and decreasing the temperature. At 5 °C, a Kd of 0.4 μM was achieved. Based on this understanding, we designed two fluorescence resonance energy transfer (FRET) quenching biosensors that differ only by a base pair. The shorter sensor had 3-fold higher sensitivity and a detection limit of 0.9 μM. In 1% fetal bovine serum, the sensor retained a similar limit of detection of 1.14 μM. A two-fluorophore ratiometric FRET sensor was also demonstrated with a low detection limit of 0.12 μM. This work indicated the feasibility of designing folding-based sensors for dopamine, and this design can be extended to other sensing modalities such as electrochemistry and colorimetry.
Collapse
Affiliation(s)
- Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China; Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Sirui Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Juewen Liu
- Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
6
|
Construction of an Enzymatically-Conjugated DNA Aptamer–Protein Hybrid Molecule for Use as a BRET-Based Biosensor. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA-protein conjugates are useful molecules for construction of biosensors. Herein, we report the development of an enzymatically-conjugated DNA aptamer–protein hybrid molecule for use as a bioluminescence resonance energy transfer (BRET)-based biosensor. DNA aptamers were enzymatically conjugated to a fusion protein via the catalytic domain of porcine circovirus type 2 replication initiation protein (PCV2 Rep) comprising residues 14–109 (tpRep), which was truncated from the full catalytic domain of PCV2 Rep comprising residues 1–116 by removing the flexible regions at the N- and C-terminals. For development of a BRET-based biosensor, we constructed a fusion protein in which tpRep was positioned between NanoLuc luciferase and a fluorescent protein and conjugated to single-stranded DNA aptamers that specifically bind to either thrombin or lysozyme. We demonstrated that the BRET ratios depended on the concentration of the target molecules.
Collapse
|
7
|
Kammer M, Kussrow AK, Olmsted IR, Jackson GW, Bornhop DJ. Free Solution Assay Signal Modulation in Variable-Stem-Length Hairpin Aptamers. ACS OMEGA 2020; 5:11308-11313. [PMID: 32478218 PMCID: PMC7254501 DOI: 10.1021/acsomega.9b04341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Interferometric measurements of free solution assays (FSAs) quantify changes in molecular conformation and hydration upon binding. Here, we demonstrate that aptamer probes designed to undergo varying levels of conformational change upon binding produce corresponding variations in FSA signals. A series of hairpin aptamers were synthesized for the small molecule (tenofovir) with identical loop regions that contain the binding pocket, with between 2 and 10 self-associating base pairings in the stem region. Aptamers selected for tenofovir showed a decrease in the FSA signal and binding affinity (increase in K D) with increasing stem length. Thermodynamic calculations of the Gibbs free energy (ΔG) reported a decrease in ΔG with respect to a corresponding increase in the aptamer stem length. Collectively, these observations provide an expanded understanding of FSA and demonstrate the potential for the rational design of label-free aptamer beacons using FSA as readout.
Collapse
Affiliation(s)
- Michael
N. Kammer
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Amanda K. Kussrow
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ian R. Olmsted
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - George W. Jackson
- Base
Pair Biotechnologies, Inc., Pearland, Texas 77584, United States
| | - Darryl J. Bornhop
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
University Institute of Chemical Biology, Nashville, Tennessee 37232-6304, United States
| |
Collapse
|
8
|
He Y, Chang Y, Chen D, Liu J. Probing Local Folding Allows Robust Metal Sensing Based on a Na + -Specific DNAzyme. Chembiochem 2019; 20:2241-2247. [PMID: 30989776 DOI: 10.1002/cbic.201900143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 12/26/2022]
Abstract
Fluorescent metal sensors based on DNA often rely on changes in end-to-end distance or local environmental near fluorophore labels. Because metal ions can also nonspecifically interact with DNA through various mechanisms, such as charge screening, base binding, and increase or decrease in duplex stability, robust and specific sensing of metal ions has been quite challenging. In this work, a side-by-side comparison of two signaling strategies on a Na+ -specific DNAzyme that contained a Na+ -binding aptamer was performed. The duplex regions of the DNAzyme was systematically shortened and its effect was studied by using a 2-aminopurine (2AP)-labeled substrate strand. Na+ binding affected the local environmental of the 2AP label and increased its fluorescence. A synergistic process of Na+ binding and forming the duplex on the 5'-end of the enzyme strand was observed, and this end was close to the aptamer loop. Effective Na+ binding was achieved with a five base-pair stem. The effect on the 3'-end is more continuous, and the stem needs to form first before Na+ can bind. With an optimized substrate binding arm, a FRET-based sensor has been designed by labeling the two ends of a cis form of the DNAzyme with two fluorophores. In this case, Na+ failed to show a distinct difference from that of Li+ or K+ ; thus indicating that probing changes to the local environment allows more robust sensing of metal ions.
Collapse
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and, Instruments, Tianjin University, Tianjin, 300072, P.R. China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yangyang Chang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and, Instruments, Tianjin University, Tianjin, 300072, P.R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
9
|
Bae SW, Lee JS, Harms VM, Murphy WL. Dynamic, Bioresponsive Hydrogels via Changes in DNA Aptamer Conformation. Macromol Biosci 2019; 19:e1800353. [PMID: 30565861 PMCID: PMC9533696 DOI: 10.1002/mabi.201800353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/02/2018] [Indexed: 11/09/2022]
Abstract
DNA aptamers are integrated into synthetic hydrogel networks with the aim of creating hydrogels that undergo volume changes when exposed to target molecules. Specifically, single-stranded DNA aptamers in cDNA-bound, extended state are incorporated into hydrogel networks as cross-links, so that the nanoscale conformational change of DNA aptamers upon binding to target molecules will induce macroscopic volume decreases of hydrogels. Hydrogels incorporating adenosine triphosphate (ATP)-binding aptamers undergo controllable volume decreases of up to 40.3 ± 4.6% when exposed to ATP, depending on the concentration of DNA aptamers incorporated in the hydrogel network, temperature, and target molecule concentration. Importantly, this approach can be generalized to aptamer sequences with distinct binding targets, as demonstrated here that hydrogels incorporating an insulin-binding aptamer undergo volume changes in response to soluble insulin. This work provides an example of bioinspired hydrogels that undergo macroscopic volume changes that stem from conformational shifts in resident DNA-based cross-links.
Collapse
Affiliation(s)
- Se Won Bae
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Jae Sung Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Victoria M Harms
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Zhang Z, Oni O, Liu J. New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection. Nucleic Acids Res 2017; 45:7593-7601. [PMID: 28591844 PMCID: PMC5737652 DOI: 10.1093/nar/gkx517] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/01/2017] [Indexed: 11/27/2022] Open
Abstract
The DNA aptamer for adenosine (also for AMP and ATP) is a highly conserved sequence that has recurred in a few selections. It it a widely used model aptamer for biosensor development, and its nuclear magnetic resonance structure shows that each aptamer binds two AMP molecules. In this work, each binding site was individually removed by rational sequence design, while the remaining site still retained a similar binding affinity and specificity as confirmed by isothermal titration calorimetry. The thermodynamic parameters of binding are presented, and its biochemical implications are discussed. The number of binding sites can also be increased, and up to four sites are introduced in a single DNA sequence. Finally, the different sequences are made into fluorescent biosensors based on the structure-switching signaling aptamer design. The one-site aptamer has 3.8-fold higher sensitivity at lower adenosine concentration with a limit of detection of 9.1 μM adenosine, but weaker fluorescence signal at higher adenosine concentrations, consistent with a moderate cooperativity in the original aptamer. This work has offered insights into a classic aptamer for the relationship between the number of binding sites and sensitivity, and a shorter aptamer for improved biosensor design.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Olatunji Oni
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Gopinath SCB, Perumal V, Balakrishnan S, Md Arshad MK, Lakshmipriya T, Haarindraprasad R, Hashim U. Aptamer-based determination of ATP by using a functionalized impedimetric nanosensor and mediation by a triangular junction transducer. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Rational design of a mismatched aptamer-DNA duplex probe to improve the analytical performance of electrochemical aptamer sensors. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Xing XJ, Xiao WL, Liu XG, Zhou Y, Pang DW, Tang HW. A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe. Biosens Bioelectron 2015; 78:431-437. [PMID: 26655184 DOI: 10.1016/j.bios.2015.11.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
Abstract
We developed a fluorescent aptasensor based on the making use of double-stranded DNA (dsDNA)/graphene oxide (GO) as the signal probe and the activities of exonuclease I (Exo I). This method takes advantage of the stronger affinity of the aptamer to its target rather than to its complementary sequence (competitor), and the different interaction intensity of dsDNA, mononucleotides with GO. Specifically, in the absence of target, the competitor hybridizes with the aptamer, preventing the digestion of the competitor by Exo I, and thus the formed dsDNA is adsorbed on GO surface, allowing fluorescence quenching. When the target is introduced, the aptamer preferentially binds with its target. Thereby, the corresponding nuclease reaction takes place, and slight fluorescence change is obtained after the introduction of GO due to the weak affinity of the generated mononucleotides to GO. Adenosine (AD) was chosen as a model system and tested in detail. Under the optimized conditions, smaller dissociation constant (Kd, 311.0 µM) and lower detection limit (LOD, 3.1 µM) were obtained in contrast with traditional dye-labeled aptamer/GO based platform (Kd=688.8 µM, LOD=21.2 µM). Satisfying results were still obtained in the evaluation of the specificity and the detection of AD in human serum, making it a promising tool for the diagnosis of AD-relevant diseases. Moreover, we demonstrated the effect of the competitor on the LOD, and the results reveal that the sensitivity could be enhanced by using the rational competitor. The present design not only constructs a label-free aptamer based platform but also extends the application of dsDNA/GO complex in biochemical and biomedical studies.
Collapse
Affiliation(s)
- Xiao-Jing Xing
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wan-Lu Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China
| | - Xue-Guo Liu
- Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Ying Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. Biosens Bioelectron 2015; 77:174-81. [PMID: 26406458 DOI: 10.1016/j.bios.2015.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors.
Collapse
|
15
|
Dou X, Chu X, Kong W, Luo J, Yang M. A gold-based nanobeacon probe for fluorescence sensing of organophosphorus pesticides. Anal Chim Acta 2015; 891:291-7. [PMID: 26388389 DOI: 10.1016/j.aca.2015.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022]
Abstract
A nanomaterials-based novel molecular beacon has attracted growing attentions in fluorescent assays as many nanomaterials possess excellent quenching efficiency. In this work, a gold-based nanobeacon probe was established to detect organophosphorus pesticides for the first time. The constructed gold-based nanobeacon acted as a signal indicator and could display the decreasing of the intensity in the presence of targets, which competitively bound to single strand DNA. To achieve a high sensitive probe, some parameters including solution pH, temperature and reaction time were investigated and optimized. The gold-based nanobeacon probe assay was proved to be rapid and sensitive to achieve a detection limit of 0.035 μM for isocarbophos, 0.134 μM for profenofos, 0.384 μM for phorate and 2.35 μM for omethoate, respectively. The prepared nanobeacon effectively reduced the background and improved the detection sensitivity and selectivity. The probe is stable, easy to operate and does not need sophisticated instruments. These features makes the probe feasible for screening trace organophosphorus pesticides in real samples.
Collapse
Affiliation(s)
- Xiaowen Dou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xianfeng Chu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Wanning 571533, China.
| |
Collapse
|
16
|
Zhou W, Huang PJJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2015; 139:2627-40. [PMID: 24733714 DOI: 10.1039/c4an00132j] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are single-stranded nucleic acids that selectively bind to target molecules. Most aptamers are obtained through a combinatorial biology technique called SELEX. Since aptamers can be isolated to bind to almost any molecule of choice, can be readily modified at arbitrary positions and they possess predictable secondary structures, this platform technology shows great promise in biosensor development. Over the past two decades, more than one thousand papers have been published on aptamer-based biosensors. Given this progress, the application of aptamer technology in biomedical diagnosis is still in a quite preliminary stage. Most previous work involves only a few model aptamers to demonstrate the sensing concept with limited biomedical impact. This Critical Review aims to summarize progress that might enable practical applications of aptamers for biological samples. First, general sensing strategies based on the unique properties of aptamers are summarized. Each strategy can be coupled to various signaling methods. Among these, a few detection methods including fluorescence lifetime, flow cytometry, upconverting nanoparticles, nanoflare technology, magnetic resonance imaging, electronic aptamer-based sensors, and lateral flow devices have been discussed in more detail since they are more likely to work in a complex sample matrix. The current limitations of this field include the lack of high quality aptamers for clinically important targets. In addition, the aptamer technology has to be extensively tested in a clinical sample matrix to establish reliability and accuracy. Future directions are also speculated to overcome these challenges.
Collapse
Affiliation(s)
- Wenhu Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Central South University, Tongzipo Road #172, Changsha 410013, Hunan, PR China.
| | | | | | | |
Collapse
|
17
|
An improved design of the kissing complex-based aptasensor for the detection of adenosine. Anal Bioanal Chem 2015; 407:6515-24. [DOI: 10.1007/s00216-015-8818-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023]
|
18
|
Feng L, Lyu Z, Offenhäusser A, Mayer D. Multi-level logic gate operation based on amplified aptasensor performance. Angew Chem Int Ed Engl 2015; 54:7693-7. [PMID: 25959438 DOI: 10.1002/anie.201502315] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 11/09/2022]
Abstract
Conventional electronic circuits can perform multi-level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon-based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer-based multi-level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer-target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer-linked redox probes and solution-phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi-level logic operation, which has the potential to simplify an otherwise complex diagnosis to a "yes" or "no" decision.
Collapse
Affiliation(s)
- Lingyan Feng
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Zhaozi Lyu
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Andreas Offenhäusser
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany)
| | - Dirk Mayer
- Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany).
| |
Collapse
|
19
|
Logisches Mehrschrittgatter auf Basis eines Aptamersensors mit verstärktem Sensorsignal. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Sadana A, Sadana N. Detection of Biomarkers for Different Diseases on Biosensor Surfaces Part II. BIOMARKERS AND BIOSENSORS 2015. [PMCID: PMC7151883 DOI: 10.1016/b978-0-444-53794-2.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter the authors analyze the binding and dissociation kinetics (if applicable) of (1) interferon-gamma as a function of aptamer variants and inclusion of spacer, (2) GST-N protein in PBS and GST-N protein in 10-fold diluted serum to a localized surface plasmon resonance coupled fluorescence biosensor, (3) cytochrome c mutant to a superoxide biosensor, (4) Carbonic Anhydrase-II to an 4-(2-aminoethyl)-benzene sulfonamide ligand on an surface plasmon resonance biosensor surface, (5) glycerol secretion from differentiated (murine 3T3-L1) adipocytes to a microfluidic platform for fluorescence-based assay, and (6) different concentrations of C-reactive protein in solution to a sandwich-type assay using reflectometric interference spectroscopy (label-free detection method).
Collapse
|
21
|
Durand G, Lisi S, Ravelet C, Dausse E, Peyrin E, Toulmé JJ. Riboswitches Based on Kissing Complexes for the Detection of Small Ligands. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Durand G, Lisi S, Ravelet C, Dausse E, Peyrin E, Toulmé JJ. Riboswitches based on kissing complexes for the detection of small ligands. Angew Chem Int Ed Engl 2014; 53:6942-5. [PMID: 24916019 DOI: 10.1002/anie.201400402] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 01/08/2023]
Abstract
Biosensors derived from aptamers were designed for which folding into a hairpin shape is triggered by binding of the cognate ligand. These aptamers (termed aptaswitches) thus switch between folded and unfolded states in the presence and absence of the ligand, respectively. The apical loop of the folded aptaswitch is recognized by a second hairpin called the aptakiss through loop-loop or kissing interactions, whereas the aptakiss does not bind the unfolded aptaswitch. Therefore, the formation of a kissing complex signals the presence of the ligand. Aptaswitches were designed that enable the detection of GTP and adenosine in a specific and quantitative manner by surface plasmon resonance when using a grafted aptakiss or in solution by anisotropy measurement with a fluorescently labeled aptakiss. This approach is generic and can potentially be extended to the detection of any molecule for which hairpin aptamers have been identified, as long as the apical loop is not involved in ligand binding.
Collapse
Affiliation(s)
- Guillaume Durand
- Univ. Bordeaux, IECB, Laboratoire ARNA, 2 rue Robert Escarpit, 33607 Pessac (France); Inserm U869, Laboratoire ARNA, 146 rue Léo Saignat, 33076 Bordeaux (France)
| | | | | | | | | | | |
Collapse
|
23
|
Pradhan T, Jung HS, Jang JH, Kim TW, Kang C, Kim JS. Chemical sensing of neurotransmitters. Chem Soc Rev 2014; 43:4684-713. [DOI: 10.1039/c3cs60477b] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review focuses on the chemosensors for neurotransmitters published for the last 12 years, covering biogenic amines (dopamine, epinephrine, norepinephrine, serotonin, histamine and acetylcholine), amino acids (glutamate, aspartate, GABA, glycine and tyrosine), and adenosine.
Collapse
Affiliation(s)
- Tuhin Pradhan
- Department of Chemistry
- Korea University
- Seoul 130-701, Korea
- Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology
- and Department of Chemistry
| | - Hyo Sung Jung
- Department of Chemistry
- Korea University
- Seoul 130-701, Korea
| | - Joo Hee Jang
- Department of Chemistry
- Korea University
- Seoul 130-701, Korea
| | - Tae Woo Kim
- The East-West Medical Science
- Kyung Hee University
- Yongin 446-701, Korea
| | - Chulhun Kang
- The East-West Medical Science
- Kyung Hee University
- Yongin 446-701, Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea University
- Seoul 130-701, Korea
| |
Collapse
|
24
|
Bing T, Mei H, Zhang N, Qi C, Liu X, Shangguan D. Exact tailoring of an ATP controlled streptavidin binding aptamer. RSC Adv 2014. [DOI: 10.1039/c4ra00714j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
25
|
Xia T, Yuan J, Fang X. Conformational dynamics of an ATP-binding DNA aptamer: a single-molecule study. J Phys Chem B 2013; 117:14994-5003. [PMID: 24245799 DOI: 10.1021/jp4099667] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acid aptamers are single-stranded RNA or DNA molecules that bind to their targets with high specificity and affinity. Although their biomedical applications have been booming, it is still debatable whether an aptamer recognizes its target through "induced fit" or "conformational selection", a central question in molecular recognition. To address this question, an ATP-binding DNA aptamer was selected as a model system and the conformational properties of this aptamer with and without the presence of ATP were investigated by single-pair Förster resonance energy transfer (spFRET) spectroscopy. The single-molecule results indicate that the aptamer can fold into a double-stranded-like structure, similar to the ligand-bound conformation, even without the presence of ATP. The folded structure is thermally stable at high salt concentrations and becomes rather dynamic at low salt concentrations. Although in the latter condition, the aptamer prefers unfolded structures, it can occasionally migrate to the folded conformation for a short time before being unfolded again. The binding of ATP to the aptamer stabilizes the folded structure, which populates the ligand-bound state of the aptamer, thus shifting the conformational equilibrium. Collectively, our data support that the ATP-binding DNA aptamer recognizes ATP ligand through "conformational selection".
Collapse
Affiliation(s)
- Tie Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | |
Collapse
|
26
|
Jin F, Lian Y, Li J, Zheng J, Hu Y, Liu J, Huang J, Yang R. Molecule-binding dependent assembly of split aptamer and γ-cyclodextrin: a sensitive excimer signaling approach for aptamer biosensors. Anal Chim Acta 2013; 799:44-50. [PMID: 24091373 DOI: 10.1016/j.aca.2013.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 11/27/2022]
Abstract
A highly sensitive and selective fluorescence aptamer biosensors for the determination of adenosine triphosphate (ATP) was developed. Binding of a target with splitting aptamers labeled with pyrene molecules form stable pyrene dimer in the γ-cyclodextrin (γ-CD) cavity, yielding a strong excimer emission. We have found that inclusion of pyrene dimer in γ-cyclodextrin cavity not only exhibits additive increases in quantum yield and emission lifetime of the excimer, but also facilitates target-induced fusion of the splitting aptamers to form the aptamer/target complex. As proof-of-principle, the approach was applied to fluorescence detection of adenosine triphosphate. With an anti-ATP aptamer, the approach exhibits excimer fluorescence response toward ATP with a maximum signal-to-background ratio of 32.1 and remarkably low detection limit of 80 nM ATP in buffer solution. Moreover, due to the additive fluorescence lifetime of excimer induced by γ-cyclodextrin, time-resolved measurements could be conveniently used to detect as low as 0.5 μM ATP in blood serum quantitatively.
Collapse
Affiliation(s)
- Fen Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Environmental Science and Engineering College, Hubei Polytechnic University, Huangshi 435003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jin G, Lu L, Gao X, Li MJ, Qiu B, Lin Z, Yang H, Chen G. Magnetic graphene oxide-based electrochemiluminescent aptasensor for thrombin. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.10.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Bu NN, Gao A, He XW, Yin XB. Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification. Biosens Bioelectron 2012; 43:200-4. [PMID: 23313611 DOI: 10.1016/j.bios.2012.11.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/12/2012] [Accepted: 11/26/2012] [Indexed: 02/01/2023]
Abstract
Restricted target accessibility and surface-induced perturbation of the aptamer structure are the main limitations in single-stranded DNA aptamer-based electrochemical sensors. Chemical labeling of the aptamer with a probe at the end of aptamer is inefficient and time-consuming. In this work, tetrahedron-structured DNA (ts-DNA) and a functionalized oligonucleotide (FO) were used to develop an electrochemiluminescence (ECL) aptasensor with adenosine triphosphate (ATP) as a model target. The ts-DNA was formed with three thiolated oligonucleotides and one oligonucleotide containing anti-ATP aptamer. The FO contained a complementary strand to the anti-ATP aptamer and an intermolecular duplex for Ru(phen)3(2+) intercalation. After the ts-DNA was immobilized on the electrode surface through gold-thiol interactions, hybridization between the anti-ATP aptamer and its complementary strand introduced the intercalated Ru(phen)3(2+) to the electrode. ECL emission from Ru(phen)3(2+) was observed with tripropylamine as a co-reactant. Once ATP reacted with its aptamer, the aptamer-complimentary strand duplex dissociated and the intermolecular duplex containing Ru(phen)3(2+) was released. The difference in emission before and after reaction with ATP was used to quantify ATP with a detection limit of 0.2nM. The ts-DNA increased the sensitivity compared to conventional methods, and the intercalation strategy avoided a complex chemical labeling procedure.
Collapse
Affiliation(s)
- Nan-Nan Bu
- State Key Laboratory of Medicinal Chemical Biology and Key Laboratory of Functional Polymer Material (MOE), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | | | | | | |
Collapse
|
29
|
Zheng J, Jiao A, Yang R, Li H, Li J, Shi M, Ma C, Jiang Y, Deng L, Tan W. Fabricating a reversible and regenerable Raman-active substrate with a biomolecule-controlled DNA nanomachine. J Am Chem Soc 2012; 134:19957-60. [PMID: 23190376 PMCID: PMC3568521 DOI: 10.1021/ja308875r] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A DNA configuration switch is designed to fabricate a reversible and regenerable Raman-active substrate. The substrate is composed of a Au film and a hairpin-shaped DNA strand (hot-spot-generation probes, HSGPs) labeled with dye-functionalized silver nanoparticles (AgNPs). Another ssDNA that recognizes a specific trigger is used as an antenna. The HSGPs are immobilized on the Au film to draw the dye-functionalized AgNPs close to the Au surface and create an intense electromagnetic field. Hybridization of HSGP with the two arm segments of the antenna forms a triplex-stem structure to separate the dye-functionalized AgNPs from the Au surface, quenching the Raman signal. Interaction with its trigger releases the antenna from the triplex-stem structure, and the hairpin structure of the HSGP is restored, creating an effective "off-on" Raman signal switch. Nucleic acid sequences associated with the HIV-1 U5 long terminal repeat sequences and ATP are used as the triggers. The substrate shows excellent reversibility, reproducibility, and controllability of surface-enhanced Raman scattering (SERS) effects, which are significant requirements for practical SERS sensor applications.
Collapse
Affiliation(s)
- Jing Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Anli Jiao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Ronghua Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Huimin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Jishan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Muling Shi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Cheng Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Ying Jiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Li Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
- Center for Research at the Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, 32611-7200, USA
| |
Collapse
|
30
|
Ren J, Wang J, Wang J, Wang E. Colorimetric enantiorecognition of oligopeptide and logic gate construction based on DNA aptamer-ligand-gold nanoparticle interactions. Chemistry 2012; 19:479-83. [PMID: 23233391 DOI: 10.1002/chem.201202430] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/15/2012] [Indexed: 12/18/2022]
Affiliation(s)
- Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | | | | | | |
Collapse
|
31
|
Zhu Z, Ravelet C, Perrier S, Guieu V, Fiore E, Peyrin E. Single-stranded DNA binding protein-assisted fluorescence polarization aptamer assay for detection of small molecules. Anal Chem 2012; 84:7203-11. [PMID: 22793528 DOI: 10.1021/ac301552e] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we describe a new fluorescence polarization aptamer assay (FPAA) strategy which is based on the use of the single-stranded DNA binding (SSB) protein from Escherichia coli as a strong FP signal enhancer tool. This approach relied on the unique ability of the SSB protein to bind the nucleic acid aptamer in its free state but not in its target-bound folded one. Such a feature was exploited by using the antiadenosine (Ade)-DNA aptamer (Apt-A) as a model functional nucleic acid. Two fluorophores (fluorescein and Texas Red) were introduced into different sites of Apt-A to design a dozen fluorescent tracers. In the absence of the Ade target, the binding of the labeled aptamers to SSB governed a very high fluorescence anisotropy increase (in the 0.130-0.200 range) as the consequence of (i) the large global diffusion difference between the free and SSB-bound tracers and (ii) the restricted movement of the dye in the SSB-bound state. When the analyte was introduced into the reaction system, the formation of the folded tertiary structure of the Ade-Apt-A complex triggered the release of the labeled nucleic acids from the protein, leading to a strong decrease in the fluorescence anisotropy. The key factors involved in the fluorescence anisotropy change were considered through the development of a competitive displacement model, and the optimal tracer candidate was selected for the Ade assay under buffer and realistic (diluted human serum) conditions. The SSB-assisted principle was found to operate also with another aptamer system, i.e., the antiargininamide DNA aptamer, and a different biosensing configuration, i.e., the sandwich-like design, suggesting the broad usefulness of the present approach. This sensing platform allowed generation of a fluorescence anisotropy signal for aptamer probes which did not operate under the direct format and greatly improved the assay response relative to that of the most previously reported small target FPAA.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Département de Pharmacochimie Moléculaire UMR 5063, Institut de Chimie Moléculaire de Grenoble FR 2607, CNRS-Université Grenoble I (Joseph Fourier), 38041 Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
32
|
Helwa Y, Dave N, Froidevaux R, Samadi A, Liu J. Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2228-2233. [PMID: 22468717 DOI: 10.1021/am300241j] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
With a low optical background, high loading capacity, and good biocompatibility, hydrogels are ideal materials for immobilization of biopolymers to develop optical biosensors. We recently immobilized mercury and lead binding DNAs within a monolithic gel and demonstrated ultrasensitive visual detection of these heavy metals. The high sensitivity was attributed to the enrichment of the analytes into the gels. The signaling kinetics was slow, however, taking about 1 h to obtain a stable optical signal because of a long diffusion distance. In this work, we aim to understand the analyte enrichment process and improve the signaling kinetics by preparing hydrogel microparticles. DNA-functionalized gel beads were synthesized using an emulsion polymerization technique and most of the beads were between 10 and 50 μm. Acrydite-modified DNA was incorporated by copolymerization. Visual detection of 10 nM Hg(2+) was still achieved and a stable signal was obtained in just 2 min. The gel beads could be spotted to form a microarray and dried for storage. A new visual sensor for adenosine was designed and immobilized within the gel beads. The adenosine aptamer binds its target about 1000-fold less tightly compared to the mercury binding DNA, allowing a comparison to be made on analyte enrichment by aptamer-functionalized hydrogels.
Collapse
Affiliation(s)
- Youssef Helwa
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
Goda T, Miyahara Y. A hairpin DNA aptamer coupled with groove binders as a smart switch for a field-effect transistor biosensor. Biosens Bioelectron 2011; 32:244-9. [PMID: 22221798 DOI: 10.1016/j.bios.2011.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/28/2011] [Accepted: 12/14/2011] [Indexed: 11/29/2022]
Abstract
We report here that a hairpin-structured DNA that possesses an anti-ATP aptamer sequence successfully detected target ATP or adenosine in a temperature-dependent manner by nanoscale intramolecular displacement on the surface of a gold electrode as an extended gate of a field-effect transistor (FET). The structural switching of the hairpin aptamer from closed loop to open-loop conformations was accompanied by the release of the preloaded DNA binder (DAPI) from the stem part of the hairpin aptamer into the solution phase. The loss of intrinsic positive charges of DAPI (2+) from the diffusion layer at the gate/solution nano-interface as a result of target capturing was responsible for generating a specific signal by the field-effect. We emphasize a new aspect of the structured DNA aptamer in combination with FET: the DAPI-loaded hairpin aptamer successfully detected even uncharged adenosine, which remains a major challenge for FET-based biosensors. Given the simplicity in design of the primary and secondary structures of oligonucleotide aptamers, it is easy to apply this technology to a wide variety of bio-analytes, irrespective of their electric charges. In view of these advantages, our findings may offer a new trend in the design of stimuli-responsive "smart" biomolecular switches for semiconductor-based biosensors.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | | |
Collapse
|
34
|
Kiy MM, Jacobi ZE, Liu J. Metal-induced specific and nonspecific oligonucleotide folding studied by FRET and related biophysical and bioanalytical implications. Chemistry 2011; 18:1202-8. [PMID: 22180064 DOI: 10.1002/chem.201102515] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Indexed: 01/12/2023]
Abstract
Metal induced nucleic acid folding has been extensively studied with ribozymes, DNAzymes, tRNA and riboswitches. These RNA/DNA molecules usually have a high content of double-stranded regions to support a rigid scaffold. On the other hand, such rigid structural features are not available for many in vitro selected or rationally designed DNA aptamers; they adopt flexible random coil structures in the absence of target molecules. Upon target binding, these aptamers adaptively fold into a compact structure with a reduced end-to-end distance, making fluorescence resonance energy transfer (FRET) a popular signaling mechanism. However, nonspecific folding induced by mono- or divalent metal ions can also reduce the end-to-end distance and thus lead to false positive results. In this study we used a FRET pair labeled Hg(II) binding DNA and monitored metal-induced folding in the presence of various cations. While nonspecific electrostatically mediated folding can be very significant, at each tested salt condition, Hg(II) induced folding was still observed with a similar sensitivity. We also studied the biophysical meaning of the acceptor/donor fluorescence ratio that allowed us to explain the experimental observations. Potential solutions for this ionic strength problem have been discussed. For example, probes designed to signal the formation of double-stranded DNA showed a lower dependency on ionic strength.
Collapse
Affiliation(s)
- Mehmet Murat Kiy
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | | | | |
Collapse
|
35
|
Liu Y, Yan J, Howland MC, Kwa T, Revzin A. Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes. Anal Chem 2011; 83:8286-92. [PMID: 21942846 PMCID: PMC3235337 DOI: 10.1021/ac202117g] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report the development of a microdevice for detecting local interferon gamma (IFN-γ) release from primary human leukocytes in real time. Our microdevice makes use of miniature aptamer-modified electrodes integrated with microfluidics to monitor cellular production of IFN-γ. The aptamer species consists of a DNA hairpin molecule with thiol groups on the 3'-end for self-assembly onto Au electrodes. A redox reporter is covalently attached at the 5'-end for electrochemical sensing. This aptasensor has excellent sensitivity for IFN-γ (<60 pM detection limit) and responds to the target analyte in real time without additional washing or labeling steps. Aptamer-functionalized electrode arrays are fabricated on glass slides containing poly(ethylene glycol) (PEG) hydrogel patterns designed to expose glass regions adjacent to electrodes while protecting the remainder of the surface from nonspecific adsorption. The micropatterned substrates are integrated with PDMS microfluidic channels and incubated with T-cell-specific antibodies (Ab) (anti-CD4). Upon injection of blood, leukocytes are bound to Ab-modified glass regions in proximity to aptasensors. Cytokine release from captured cells is triggered by mitogenic activation and detected at the aptamer-modified electrodes using square wave voltammetry (SWV). The IFN-γ signal is monitored in real time with signal appearing as early as 15 min poststimulation from as few as 90 T cells. The observed IFN-γ release profiles are used to calculate an initial IFN-γ production rate of 0.0079 pg cell(-1) h(-1) upon activation. The work described here represents an important step toward development of aptasensors for immune cell analysis and blood-based diagnostics.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, United States
| | - Jun Yan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Michael C. Howland
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, United States
| | - Timothy Kwa
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, United States
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, United States
| |
Collapse
|
36
|
Guieu V, Ravelet C, Perrier S, Zhu Z, Cayez S, Peyrin E. Aptamer enzymatic cleavage protection assay for the gold nanoparticle-based colorimetric sensing of small molecules. Anal Chim Acta 2011; 706:349-53. [PMID: 22023872 DOI: 10.1016/j.aca.2011.08.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/27/2011] [Accepted: 08/31/2011] [Indexed: 11/30/2022]
Abstract
A label-free, homogeneous aptamer-based sensor strategy was designed for the facile colorimetric detection of small target molecules. The format relied on the target-induced protection of DNA aptamer from the enzymatic digestion and its transduction into a detectable signal through the length-dependent adsorption of single-stranded DNA onto unmodified gold nanoparticles (AuNPs). The proof-of-principle of the approach was established by employing the anti-tyrosinamide aptamer as a model functional nucleic acid. In the absence of target, the aptamer was cleaved by the phosphodiesterase I enzymatic probe, leading to the release of mononucleotides and short DNA fragments. These governed effective electrostatic stabilization of AuNPs so that the nanoparticles remained dispersed and red-colored upon salt addition. Upon tyrosinamide binding, the enzymatic cleavage was impeded, resulting in the protection of the aptamer structure. As this long DNA molecule was unable to electrostatically stabilize AuNPs, the resulting colloidal solution turned blue after salt addition due to the formation of nanoparticle aggregates. The quantitative determination of the target can be achieved by monitoring the ratio of absorbance at 650 and 520 nm of the gold colloidal solution. A limit of detection of ~5 μM and a linear range up to 100 μM were obtained. The sensing platform was further applied, through the same experimental protocol, to the adenosine detection by using its DNA aptamer as recognition tool. This strategy could extend the potentialities, in terms of both simplicity and general applicability, of the aptamer-based sensing approaches.
Collapse
Affiliation(s)
- Valérie Guieu
- Département de Pharmacochimie Moléculaire UMR 5063 CNRS, ICMG FR 2607, Université Grenoble 1, Campus Universitaire, Saint-Martin d'Hères, France
| | | | | | | | | | | |
Collapse
|
37
|
Goda T, Miyahara Y. Thermo-responsive molecular switches for ATP using hairpin DNA aptamers. Biosens Bioelectron 2011; 26:3949-52. [PMID: 21419618 DOI: 10.1016/j.bios.2011.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/10/2011] [Accepted: 02/24/2011] [Indexed: 01/16/2023]
Abstract
Increasingly detailed structural designs are highlighting the utility of oligonucleotide aptamers for diagnostic systems. The primary and secondary structures of DNA aptamers are responsible for structural displacement upon target binding. We revealed that a hairpin aptamer enabled to capture target ATP only when the aptamer transformed into the open-loop conformation by temperature-induced self-dissociation. The recognition event with conformational transition of the hairpin aptamer on gold was identified by electrochemical impedance spectroscopy. The results presented label-free detections above 37°C with high sensitivity and specificity. The hairpin aptamer as a thermo-responsive ligand has much generality for its use as "smart" nano-switches.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | | |
Collapse
|
38
|
Juskowiak B. Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 2011; 399:3157-76. [PMID: 21046088 PMCID: PMC3044240 DOI: 10.1007/s00216-010-4304-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/21/2022]
Abstract
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.
Collapse
Affiliation(s)
- Bernard Juskowiak
- Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland.
| |
Collapse
|
39
|
Zhu Z, Ravelet C, Perrier S, Guieu V, Roy B, Perigaud C, Peyrin E. Multiplexed detection of small analytes by structure-switching aptamer-based capillary electrophoresis. Anal Chem 2010; 82:4613-20. [PMID: 20446673 DOI: 10.1021/ac100755q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Affinity probe capillary electrophoresis (APCE) assays, combining the separation power of CE with the specificity of interactions occurring between a target and a molecular recognition element (MRE), have become important analytical tools in many application fields. In this report, a rationalized strategy, derived from the structure-switching aptamer concept, is described for the design of a novel APCE mode dedicated to small molecule detection. Two assay configurations were reported. The first one, developed for the single-analyte determination, was based on the use of a cholesteryl-tagged aptamer (Chol-Apt) as the MRE and its fluorescein-labeled complementary strand (CS*) as the tracer (laser-induced fluorescence detection). Under micellar electrokinetic chromatography (MEKC) conditions, free CS* and the hybrid formed with Chol-Apt (duplex*) were efficiently separated (and then quantified) through the specific shift of the electrophoretic mobility of the cholesteryl-tagged species in the presence of a neutral micellar phase. When the target was introduced into the preincubated sample, the hybridized form was destabilized, resulting in a decrease in the duplex* peak area and a concomitant increase in the free CS* peak area. The second format, especially designed for multianalyte sensing, employed dually cholesteryl- and fluorescein-labeled complementary strands (Chol-CS*) of different lengths and unmodified aptamers (Apt). The size-dependent electrophoretic separation of different Chol-CS* forms from each other and from their corresponding duplexes* was also accomplished under MEKC conditions. The simultaneous detection of multiple analytes in a single capillary was performed by monitoring accurately each target-induced duplex-to-complex change. This method could expand significantly the potential of small solute APCE analysis in terms of simplicity, adaptability, generalizability, and high-throughput analysis capability.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Departement de Pharmacochimie Moléculaire, UMR 5063 CNRS, ICMG FR 2607, Université Grenoble I, Campus universitaire, Saint-Martin d'Hères, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Tuleuova N, Jones CN, Yan J, Ramanculov E, Yokobayashi Y, Revzin A. Development of an aptamer beacon for detection of interferon-gamma. Anal Chem 2010; 82:1851-7. [PMID: 20121141 DOI: 10.1021/ac9025237] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Traditional antibody-based affinity sensing strategies employ multiple reagents and washing steps and are unsuitable for real-time detection of analyte binding. Aptamers, on the other hand, may be designed to monitor binding events directly, in real-time, without the need for secondary labels. The goal of the present study was to design an aptamer beacon for fluorescence resonance energy transfer (FRET)-based detection of interferon-gamma (IFN-gamma)--an important inflammatory cytokine. Variants of DNA aptamer modified with biotin moieties and spacers were immobilized on avidin-coated surfaces and characterized by surface plasmon resonance (SPR). The SPR studies showed that immobilization of aptamer via the 3' end resulted in the best binding IFN-gamma (K(d) = 3.44 nM). This optimal aptamer variant was then used to construct a beacon by hybridizing fluorophore-labeled aptamer with an antisense oligonucleotide strand carrying a quencher. SPR studies revealed that IFN-gamma binding with an aptamer beacon occurred within 15 min of analyte introduction--suggesting dynamic replacement of the quencher-complementary strand by IFN-gamma molecules. To further highlight biosensing applications, aptamer beacon molecules were immobilized inside microfluidic channels and challenged with varying concentration of analyte. Fluorescence microscopy revealed low fluorescence in the absence of analyte and high fluorescence after introduction of IFN-gamma. Importantly, unlike traditional antibody-based immunoassays, the signal was observed directly upon binding of analyte without the need for multiple washing steps. The surface immobilized aptamer beacon had a linear range from 5 to 100 nM and a lower limit of detection of 5 nM IFN-gamma. In conclusion, we designed a FRET-based aptamer beacon for monitoring of an inflammatory cytokine-IFN-gamma. In the future, this biosensing strategy will be employed to monitor dynamics of cytokine production by the immune cells.
Collapse
Affiliation(s)
- Nazgul Tuleuova
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
41
|
Design strategies of fluorescent biosensors based on biological macromolecular receptors. SENSORS 2010; 10:1355-76. [PMID: 22205872 PMCID: PMC3244018 DOI: 10.3390/s100201355] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 11/17/2022]
Abstract
Fluorescent biosensors to detect the bona fide events of biologically important molecules in living cells are increasingly demanded in the field of molecular cell biology. Recent advances in the development of fluorescent biosensors have made an outstanding contribution to elucidating not only the roles of individual biomolecules, but also the dynamic intracellular relationships between these molecules. However, rational design strategies of fluorescent biosensors are not as mature as they look. An insatiable request for the establishment of a more universal and versatile strategy continues to provide an attractive alternative, so-called modular strategy, which permits facile preparation of biosensors with tailored characteristics by a simple combination of a receptor and a signal transducer. This review describes an overview of the progress in design strategies of fluorescent biosensors, such as auto-fluorescent protein-based biosensors, protein-based biosensors covalently modified with synthetic fluorophores, and signaling aptamers, and highlights the insight into how a given receptor is converted to a fluorescent biosensor. Furthermore, we will demonstrate a significance of the modular strategy for the sensor design.
Collapse
|
42
|
White RJ, Rowe AA, Plaxco KW. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors. Analyst 2010; 135:589-94. [PMID: 20174715 DOI: 10.1039/b921253a] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrochemical aptamer-based (E-AB) sensors have emerged as a promising and versatile new biosensor platform. Combining the generality and specificity of aptamer-ligand interactions with the selectivity and convenience of electrochemical readouts, this approach affords the detection of a wide variety of targets directly in complex, contaminant-ridden samples, such as whole blood, foodstuffs and crude soil extracts, without the need for exogenous reagents or washing steps. Signaling in this class of sensors is predicated on target-induced changes in the conformation of an electrode-bound probe aptamer that, in turn, changes the efficiency with which a covalently attached redox tag exchanges electrons with the interrogating electrode. Aptamer selection strategies, however, typically do not select for the conformation-switching architectures, and as such several approaches have been reported to date by which aptamers can be re-engineered such that they undergo the binding-induced switching required to support efficient E-AB signaling. Here, we systematically compare the merits of these re-engineering approaches using representative aptamers specific to the small molecule adenosine triphosphate and the protein human immunoglobulin E. We find that, while many aptamer architectures support E-AB signaling, the observed signal gain (relative change in signal upon target binding) varies by more than two orders of magnitude across the various constructs we have investigated (e.g., ranging from -10% to 200% for our ATP sensors). Optimization of the switching architecture is thus an important element in achieving maximum E-AB signal gain and we find that this optimal geometry is specific to the aptamer sequence upon which the sensor is built.
Collapse
Affiliation(s)
- Ryan J White
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
43
|
Accetta A, Corradini R, Marchelli R. Enantioselective Sensing by Luminescence. LUMINESCENCE APPLIED IN SENSOR SCIENCE 2010; 300:175-216. [DOI: 10.1007/128_2010_95] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Null EL, Lu Y. Rapid determination of enantiomeric ratio using fluorescent DNA or RNA aptamers. Analyst 2009; 135:419-22. [PMID: 20098779 DOI: 10.1039/b921267a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The natural chirality of DNA and RNA aptamers has been used to develop fluorescent agents to determine the enantiomeric ratio of adenosine and arginine, respectively. The quantification is based on structure-switching DNA or RNA aptamers labeled with fluorophore and quencher, allowing chiral detection down to 0.1 : 99.9 (L : D) for arginine after calibration. Such a method provides a general platform for simple, low-cost and high throughput detection and quantification of chirality of a broad range of molecules.
Collapse
Affiliation(s)
- Eric L Null
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | | |
Collapse
|
45
|
Perrier S, Ravelet C, Guieu V, Fize J, Roy B, Perigaud C, Peyrin E. Rationally designed aptamer-based fluorescence polarization sensor dedicated to the small target analysis. Biosens Bioelectron 2009; 25:1652-7. [PMID: 20034782 DOI: 10.1016/j.bios.2009.12.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022]
Abstract
A direct fluorescence polarization (FP) assay strategy, dedicated to the small molecule sensing and based on the unique induced-fit binding mechanism of end-labelled nucleic acid aptamers, has been recently developed by our group. Small target binding has been successfully converted into a significant increase of the fluorescence anisotropy signal presumably produced by the reduction of the local motional freedom of the dye. In order to generalize the approach, a rational FP sensor methodology was established herein, by engineering instability in the secondary structure of an aptameric recognition element. The anti-adenosine DNA aptamer, labelled by a single fluorescein dye at its 3' extremity, was employed as a model functional nucleic acid probe. The terminal stem of the stem-loop structure was shortened to induce a destabilized/denatured conformation which promoted the local segmental mobility of the dye and then a significant depolarization process. Upon target binding, the structural change of the aptamer induced the formation of a stable stem-loop structure, leading to the reduction of the dye mobility and the increase in the fluorescence anisotropy signal. This reasoned approach was applied to the sensing of adenosine and adenosine monophosphate and their chiral analysis.
Collapse
Affiliation(s)
- Sandrine Perrier
- Département de Pharmacochimie Moléculaire UMR 5063 CNRS, ICMG FR 2607, Université Grenoble I, Campus universitaire, 70, rue de la Chimie, 38240 Saint-Martin d'Hères, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang JQ, Wang YS, He Y, Jiang T, Yang HM, Tan X, Kang RH, Yuan YK, Shi LF. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal Biochem 2009; 397:212-7. [PMID: 19849997 DOI: 10.1016/j.ab.2009.10.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/08/2009] [Accepted: 10/15/2009] [Indexed: 02/04/2023]
Abstract
A novel sensitive method has been developed for the detection of adenosine (AD) in human urine by using enhanced resonance light scattering (RLS). This method is based on the specific recognition and signal amplification of adenosine aptamer (Apt) coupled with gold nanoparticles (GNPs) via G-quartet-induced nanoparticle assembly, which was fabricated by triggering a structure switching of the 3' terminus G-rich sequence and aptamer duplex. RLS signal linearly correlated with the concentration of adenosine over the range of 6-115nM. The limit of detection (LOD) for adenosine is 1.8nM with relative standard deviations (RSD) of 2.90-4.80% (n=6). The present method has been successfully applied to determination of adenosine in real human urine, and the obtained results were in good agreement with those obtained by the HPLC method. Our investigation shows that the combination of the excellent selectivity of aptamer with the high sensitivity of the RLS technique could provide a promising potential for aptamer-based small molecule detection, and be beneficial in extending the application of RLS.
Collapse
Affiliation(s)
- Jin-Quan Zhang
- College of Public Health, University of South China, Hengyang 421001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation. Talanta 2009; 79:557-61. [PMID: 19576412 DOI: 10.1016/j.talanta.2009.05.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/19/2009] [Accepted: 05/21/2009] [Indexed: 11/22/2022]
Abstract
In this protocol, a fluorescent aptasensor based on magnetic separation for simultaneous detection thrombin and lysozyme was proposed. Firstly, one of the anti-thrombin aptamer and the anti-lysozyme aptamer were individually immobilized onto magnetic nanoparticles, acting as the protein captor. The other anti-thrombin aptamer was labeled with rhodamine B and the anti-lysozyme aptamer was labeled with fluorescein, employing as the protein report. By applying the sandwich detection strategy, the fluorescence response at 515 nm and 578 nm were respectively corresponding to lysozyme and thrombin with high selectivity and sensitivities. The fluorescence intensity was individually linear with the concentration of thrombin and lysozyme in the range of 0.13-4 nM and 0.56-12.3 nM, and the detection limits were 0.06 nM of thrombin and 0.2 nM of lysozyme, respectively. The preliminary study on simultaneous detection of thrombin and lysozyme in real plasma samples was also performed. It shows that the proposed approach has the good character for simultaneous multiple protein detection.
Collapse
|
48
|
Affiliation(s)
- Juewen Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
49
|
Wang Y, Liu B. ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene. Analyst 2008; 133:1593-8. [PMID: 18936838 DOI: 10.1039/b806908e] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and sensitive method for ATP detection using a label-free DNA aptamer as the recognition element and ethidium bromide (EB) as the signal reporter is reported. The ATP-binding aptamer undergoes a conformational switch from the aptamer duplex to the aptamer/target complex upon target binding, which induces the fluorescence change of intercalated EB emission. Good selectivity between ATP and CTP, GTP or UTP has been demonstrated, which is due to the specific recognition between the ATP aptamer and ATP. Using EB alone as a signal reporter, the ATP detection limit was estimated to be approximately 0.2 mM. When a light harvesting cationic tetrahedralfluorene was used as an energy donor to sensitize the intercalated EB emission, a 10-fold increase in detection limit and a 2-fold increase in detection selectivity was demonstrated. The sensitivity and selectivity of the tetrahedralfluorene sensitized assay is comparable to or better than most fluorescent ATP assays with multiple labels.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
50
|
Niazi JH, Lee SJ, Gu MB. Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorg Med Chem 2008; 16:7245-53. [PMID: 18617415 DOI: 10.1016/j.bmc.2008.06.033] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 01/15/2023]
Abstract
Tetracyclines (TCs) are a group of antibiotics comprising of a common tetracycline (TET) nucleus with variable X(1) and X(2) positions on 5 and 6 carbon atoms, such as oxytetracycline (OTC) and doxycycline (DOX). In this study, the tetracycline group specific (TGS) ssDNA aptamers were identified by modified SELEX method by employing tosylactivated magnetic beads (TMB) coated with OTC, TET, and DOX, respectively, as targets and counter targets. Twenty TGS-aptamers were selected, of which seven aptamers, designated as T7, T15, T19, T20, T22, T23, and T24, showed high affinity to the basic TET backbone (K(d)=63-483 nM). The specificity of these TGS-aptamers to structural analogues followed the order in which the TCs was employed during SELEX process (OTC>TET>DOX) except aptamer T22, which was highly specific to TET than OTC or DOX. Aptamers that were specific to one target molecule but fail to bind the other structurally related TCs were eliminated during counter selection steps. Three aptamers, T7, T19, and T23 contained palindromic consensus sequence motif GGTGTGG. The remaining TGS-aptamers showed many consensus sequences that are truncated forms of this palindrome forming mirror image or inverted sequences. For example, GTGG or its inverted form, GGTG motif was found in all TGS-aptamers. A consensus sequence motif TGTGCT or its truncated terminal T-residue was found in most TGS-aptamers, which is predicted to be essential for high affinity and group specificity. These TGS-aptamers have potential applications such as target drug delivery, and detection of TCs in pharmaceutical preparations and contaminated food products.
Collapse
Affiliation(s)
- Javed H Niazi
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|