1
|
Jagram N, Dasgupta I. Principles and practice of virus induced gene silencing for functional genomics in plants. Virus Genes 2023; 59:173-187. [PMID: 36266497 DOI: 10.1007/s11262-022-01941-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Virus induced gene silencing (VIGS) has, of late, emerged as an important tool for transient silencing of genes in plants. This is now being increasingly used to determine functions of novel genes in a wide variety of plants, many of which are important crops yielding food and fiber or are sources of products having pharmaceutical uses. The technology for VIGS comprises the development of vectors derived from viruses, choosing the optimal orientation and size of the gene to be targeted and adopting the most suitable method of inoculation. This review gives a brief overview of the main aspects of VIGS technology as is being practiced. It also discusses the challenges the technology faces and the possible way ahead to improve its robustness, so that the technology finds wider applications.
Collapse
Affiliation(s)
- Neelam Jagram
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
2
|
Huh SU. Functional analysis of hot pepper ethylene responsive factor 1A in plant defense. PLANT SIGNALING & BEHAVIOR 2022; 17:2027137. [PMID: 35192782 PMCID: PMC9176226 DOI: 10.1080/15592324.2022.2027137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some ERF genes from Capsicum annuum have been characterized. In the study, the CaERF1A gene is characterized in response to biotic stress. CaERF1A transcripts were induced by various plant defense-related hormone treatments. Knockdown of CaERF1A in hot pepper plants are negatively affected Tobacco mosaic virus-P0-mediated hypersensitive response cell death, resulting in reduced gene expression of pathogenesis-related genes and ethylene and jasmonic acid synthesis-related gene. Overexpressing CaERF1A transgenic plants show enhanced resistance to fungal pathogen via regulating ethylene and jasmonic acid synthesis-related gene expression. Thus, CaERF1A is a positive regulator of plant defense by modulating ethylene and jasmonic acid synthesis-related gene expressions.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biology, Kunsan National University, Gunsan, Republic of Korea
- CONTACT Sung Un Huh Department of Biology, Kunsan National University, Gunsan54150, Republic of Korea
| |
Collapse
|
3
|
Balogh E, Juhász C, Dankó T, Fodor J, Tóbiás I, Gullner G. The expression of several pepper fatty acid desaturase genes is robustly activated in an incompatible pepper-tobamovirus interaction, but only weakly in a compatible interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:347-358. [PMID: 32004918 DOI: 10.1016/j.plaphy.2020.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The replication of positive strand RNA viruses in plant cells is markedly influenced by the desaturation status of fatty acid chains in lipids of intracellular plant membranes. At present, little is known about the role of lipid desaturation in the replication of tobamoviruses. Therefore, we investigated the expression of fatty acid desaturase (FAD) genes and the fatty acid composition of pepper leaves inoculated with two different tobamoviruses. Obuda pepper virus (ObPV) inoculation induced a hypersensitive reaction (incompatible interaction) while Pepper mild mottle virus (PMMoV) inoculation caused a systemic infection (compatible interaction). Changes in the expression of 16 FADs were monitored in pepper leaves following ObPV and PMMoV inoculations. ObPV inoculation rapidly and markedly upregulated seven Δ12-FADs that encode enzymes putatively located in the endoplasmic reticulum membrane. In contrast, PMMoV inoculation resulted in a weaker but rapid upregulation of two Δ12-FADs and a Δ15-FAD. The expression of genes encoding plastidial FADs was not influenced neither by ObPV nor by PMMoV. In accordance with gene expression results, a significant accumulation of linoleic acid was observed by gas chromatography-mass spectrometry in ObPV-, but not in PMMoV-inoculated leaves. ObPV inoculation led to a marked accumulation of H2O2 in the inoculated leaves. Therefore, the effect of H2O2 treatments on the expression of six tobamovirus-inducible FADs was also studied. The expression of these FADs was upregulated to different degrees by H2O2 that correlated with ObPV-inducibility of these FADs. These results underline the importance of further studies on the role of pepper FADs in pepper-tobamovirus interactions.
Collapse
Affiliation(s)
- Eszter Balogh
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Tamás Dankó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary.
| |
Collapse
|
4
|
Sun M, Voorrips RE, van Kaauwen M, Visser RGF, Vosman B. The ability to manipulate ROS metabolism in pepper may affect aphid virulence. HORTICULTURE RESEARCH 2020; 7:6. [PMID: 31908809 PMCID: PMC6938493 DOI: 10.1038/s41438-019-0231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 05/14/2023]
Abstract
Myzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the first study to explore the pepper-aphid interaction at the whole genome gene expression level, revealed genes whose expression is differentially regulated in pepper accession PB2013071 upon infestation with these M. persicae populations. The NL population induced ROS production genes, while the SW population induced ROS scavenging genes and repressed ROS production genes. We also found that the SW population can induce the removal of ROS which accumulated in response to preinfestion with the NL population, and that preinfestation with the SW population significantly improved the performance of the NL population. This paper supports the hypothesis that M. persicae can overcome the resistance in accession PB2013071 probably because of its ability to manipulate plant defense response especially the ROS metabolism and such ability may benefit avirulent conspecific aphids.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Roeland E. Voorrips
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, Netherlands
| |
Collapse
|
5
|
Woo JY, Jeong KJ, Kim YJ, Paek KH. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5725-5741. [PMID: 27647723 PMCID: PMC5066492 DOI: 10.1093/jxb/erw336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0 Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming.
Collapse
Affiliation(s)
- Joo Yong Woo
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Ju Jeong
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Hee Paek
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Huh SU, Lee GJ, Jung JH, Kim Y, Kim YJ, Paek KH. Capsicum annuum transcription factor WRKYa positively regulates defense response upon TMV infection and is a substrate of CaMK1 and CaMK2. Sci Rep 2015; 5:7981. [PMID: 25613640 PMCID: PMC5379037 DOI: 10.1038/srep07981] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/23/2014] [Indexed: 11/09/2022] Open
Abstract
Plants are constantly exposed to pathogens and environmental stresses. To minimize damage caused by these potentially harmful factors, plants respond by massive transcriptional reprogramming of various stress-related genes via major transcription factor families. One of the transcription factor families, WRKY, plays an important role in diverse stress response of plants and is often useful to generate genetically engineered crop plants. In this study, we carried out functional characterization of CaWRKYa encoding group I WRKY member, which is induced during hypersensitive response (HR) in hot pepper (Capsicum annuum) upon Tobacco mosaic virus (TMV) infection. CaWRKYa was involved in L-mediated resistance via transcriptional reprogramming of pathogenesis-related (PR) gene expression and affected HR upon TMV-P0 infection. CaWRKYa acts as a positive regulator of this defense system and could bind to the W-box of diverse PR genes promoters. Furthermore, we found Capsicum annuum mitogen-activated protein kinase 1 (CaMK1) and 2 (CaMK2) interacted with CaWRKYa and phosphorylated the SP clusters but not the MAPK docking (D)-domain of CaWRKYa. Thus, these results demonstrated that CaWRKYa was regulated by CaMK1 and CaMK2 at the posttranslational level in hot pepper.
Collapse
Affiliation(s)
- Sung Un Huh
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Gil-Je Lee
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Ji Hoon Jung
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Yunsik Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Young Jin Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Kyung-Hee Paek
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| |
Collapse
|
7
|
Choi HW, Hwang BK. Molecular and cellular control of cell death and defense signaling in pepper. PLANTA 2015; 241:1-27. [PMID: 25252816 DOI: 10.1007/s00425-014-2171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
8
|
Huh SU, Choi LM, Lee GJ, Kim YJ, Paek KH. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:50-8. [PMID: 23116671 DOI: 10.1016/j.plantsci.2012.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 05/22/2023]
Abstract
WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression.
Collapse
Affiliation(s)
- Sung Un Huh
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
9
|
Coimbra RS, Vanderwall DE, Oliveira GC. Disclosing ambiguous gene aliases by automatic literature profiling. BMC Genomics 2010; 11 Suppl 5:S3. [PMID: 21210969 PMCID: PMC3045796 DOI: 10.1186/1471-2164-11-s5-s3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Retrieving pertinent information from biological scientific literature requires cutting-edge text mining methods which may be able to recognize the meaning of the very ambiguous names of biological entities. Aliases of a gene share a common vocabulary in their respective collections of PubMed abstracts. This may be true even when these aliases are not associated with the same subset of documents. This gene-specific vocabulary defines a unique fingerprint that can be used to disclose ambiguous aliases. The present work describes an original method for automatically assessing the ambiguity levels of gene aliases in large gene terminologies based exclusively in the content of their associated literature. The method can deal with the two major problems restricting the usage of current text mining tools: 1) different names associated with the same gene; and 2) one name associated with multiple genes, or even with non-gene entities. Important, this method does not require training examples. Results Aliases were considered “ambiguous” when their Jaccard distance to the respective official gene symbol was equal or greater than the smallest distance between the official gene symbol and one of the three internal controls (randomly picked unrelated official gene symbols). Otherwise, they were assigned the status of “synonyms”. We evaluated the coherence of the results by comparing the frequencies of the official gene symbols in the text corpora retrieved with their respective “synonyms” or “ambiguous” aliases. Official gene symbols were mentioned in the abstract collections of 42 % (70/165) of their respective synonyms. No official gene symbol occurred in the abstract collections of any of their respective ambiguous aliases. In overall, querying PubMed with official gene symbols and “synonym” aliases allowed a 3.6-fold increase in the number of unique documents retrieved. Conclusions These results confirm that this method is able to distinguish between synonyms and ambiguous gene aliases based exclusively on their vocabulary fingerprint. The approach we describe could be used to enhance the retrieval of relevant literature related to a gene.
Collapse
Affiliation(s)
- Roney S Coimbra
- Center for Excellence in Bioinformatics, Research Center René Rachou, FIOCRUZ-MG, Rua Araguari, 741, Barro Preto, Belo Horizonte, MG, Brazil.
| | | | | |
Collapse
|
10
|
Abstract
Virus-induced gene silencing (VIGS) exploits endogenous plant antiviral defense mechanisms to posttranscriptionally silence the expression of targeted plant genes. VIGS is quick and relatively easy to perform and therefore serves as a powerful tool for high-throughput functional genomics in plants. Combined with the use of subtractive cDNA libraries for generating a collection of VIGS-ready cDNA inserts, VIGS can be utilized to screen a large number of genes to determine phenotypes resulting from the knockdown/knockout of gene function. Taking into account the optimal insert design for VIGS, we describe a methodology for producing VIGS-ready cDNA libraries enriched for inserts relevant to the biological process of interest.
Collapse
Affiliation(s)
- Andrea T Todd
- NRC Plant Biotechnology Institute, Saskatoon, SK, Canada
| | | | | |
Collapse
|
11
|
Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation. FEBS Lett 2009; 583:2315-20. [PMID: 19540833 DOI: 10.1016/j.febslet.2009.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/16/2009] [Accepted: 06/16/2009] [Indexed: 12/26/2022]
Abstract
Capsicum annuum L. Bugang exhibits a hypersensitive response against Tobacco mosaic virus (TMV) P(0) infection. The C. annuumUDP-glucosyltransferase 1 (CaUGT1) gene was upregulated during resistance response to TMV and by salicylic acid, ethephon, methyl viologen, and sodium nitroprusside treatment. When the gene was downregulated by virus-induced gene silencing, a delayed HR was observed. In addition, free and total SA concentrations in the CaUGT1-downregulated hot pepper were decreased by 52% and 48% compared to that of the control plants, respectively. This suggested that the CaUGT1 gene was involved in resistance response against TMV infection by controlling the accumulation of SA.
Collapse
|
12
|
Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH. GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 2008; 374:693-8. [PMID: 18680725 DOI: 10.1016/j.bbrc.2008.07.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/20/2008] [Indexed: 11/28/2022]
Abstract
A full length cDNA clone encoding Capsicum annuum GDSL-lipase 1 (CaGL1) was isolated by microarray analysis. The expression of CaGL1 was triggered by methyl jasmonic acid (MeJA), an important signal in abiotic/biotic stress response. However, the expression of this gene was not increased by the application of salicylic acid (SA) or ethylene treatment. And, local/systemic wounding stimuli resulted in rapid accumulation of CaGL1 mRNA. However, CaGL1 was not specifically induced during the hypersensitive response upon Tobacco mosaic virus (TMV) inoculation. By using a virus-induced gene silencing (VIGS)-based reverse genetic approach, it was observed that the suppression of CaGL1 attenuates the expression of Capsicum annuumpathogenesis-related protein 4 (CaPR-4) during wound stress. However, the CaPR-4 transcript level induced by TMV was not regulated by CaGL1 expression. These results indicate that CaGL1 may be involved in signaling pathway of MeJA and/or the wound responses through CaPR-4 expression modulation.
Collapse
Affiliation(s)
- Ki-Jeong Kim
- School of Life Sciences and Biotechnology/Plant Signaling Network Research Center, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|