1
|
Denis A, Sztejkowski C, Arnaud L, Becker G, Felten R. The 2023 pipeline of disease-modifying antirheumatic drugs (DMARDs) in clinical development for spondyloarthritis (including psoriatic arthritis): a systematic review of trials. RMD Open 2023; 9:e003279. [PMID: 37507210 PMCID: PMC10387652 DOI: 10.1136/rmdopen-2023-003279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES The objective of this systematic review was to provide an overview of current developments and potentially available therapeutic options for spondyloarthritis (SpA) in the coming years. METHODS We conducted a systematic review of 17 national and international clinical trial databases for all disease-modifying antirheumatic drugs (DMARDs) for SpA that are already marketed, in clinical development or withdrawn. The search was performed on February 2023 with the keywords "spondyloarthritis", "ankylosing spondylitis" and "psoriatic arthritis". For each molecule, we only considered the study at the most advanced stage of clinical development. RESULTS Concerning axial SpA (axSpA), a total of 44 DMARDs were identified: 6 conventional synthetic DMARDs (csDMARDs), 27 biological DMARDs (bDMARDs) and 11 targeted synthetic DMARDs (tsDMARDs). Among the 18 targeted treatments (b+tsDMARDs) in current development, corresponding trials reached phase I (n=1), II (n=10) and III (n=7). Ten molecules are IL-17 inhibitors, two Janus kinase (JAK) inhibitors and two granulocyte-macrophage colony-stimulating factor inhibitors; four have another mode of action. Concerning psoriatic arthritis (PsA), 44 DMARDs were identified: 5 csDMARDs, 27 bDMARDs and 12 tsDMARDs. Among the 15 molecules in current development, corresponding trials reached phase II (n=8) and III (n=7). Six molecules are JAK inhibitors, six IL-17 inhibitors and one an IL-23 inhibitor; two have another mode of action. CONCLUSION This systematic review identified 18 and 15 molecules in clinical development for axSpA and PsA, respectively, which suggests a strengthening of the therapeutic arsenal in the coming years. However, with so many DMARDs but low target diversity, we will need to develop strategies or biomarkers to help clinicians make informed treatment decisions.
Collapse
Affiliation(s)
- Agathe Denis
- Service de Rhumatologie de Hautepierre, RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cédric Sztejkowski
- Service de Rhumatologie de Hautepierre, RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Arnaud
- Service de Rhumatologie de Hautepierre, RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Guillaume Becker
- Pôle Pharmacie-Pharmacologie, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Renaud Felten
- Service de Rhumatologie de Hautepierre, RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Centre d'Investigation Clinique, Inserm 1434, INSERM, Strasbourg, France
| |
Collapse
|
2
|
Niu Q, Gao J, Wang L, Liu J, Zhang L. Regulation of differentiation and generation of osteoclasts in rheumatoid arthritis. Front Immunol 2022; 13:1034050. [PMID: 36466887 PMCID: PMC9716075 DOI: 10.3389/fimmu.2022.1034050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/25/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA), which affects nearly 1% of the world's population, is a debilitating autoimmune disease. Bone erosion caused by periarticular osteopenia and synovial pannus formation is the most destructive pathological changes of RA, also leads to joint deformity and loss of function,and ultimately affects the quality of life of patients. Osteoclasts (OCs) are the only known bone resorption cells and their abnormal differentiation and production play an important role in the occurrence and development of RA bone destruction; this remains the main culprit behind RA. METHOD Based on the latest published literature and research progress at home and abroad, this paper reviews the abnormal regulation mechanism of OC generation and differentiation in RA and the possible targeted therapy. RESULT OC-mediated bone destruction is achieved through the regulation of a variety of cytokines and cell-to-cell interactions, including gene transcription, epigenetics and environmental factors. At present, most methods for the treatment of RA are based on the regulation of inflammation, the inhibition of bone injury and joint deformities remains unexplored. DISCUSSION This article will review the mechanism of abnormal differentiation of OC in RA, and summarise the current treatment oftargeting cytokines in the process of OC generation and differentiation to reduce bone destruction in patients with RA, which isexpected to become a valuable treatment choice to inhibit bone destruction in RA.
Collapse
Affiliation(s)
- Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Yang Q, Fu B, Luo D, Wang H, Cao H, Chen X, Tian L, Yu X. The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Front Endocrinol (Lausanne) 2022; 13:856954. [PMID: 35586625 PMCID: PMC9109619 DOI: 10.3389/fendo.2022.856954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP4) is a ubiquitously occurring protease involved in various physiological and pathological processes ranging from glucose homeostasis, immunoregulation, inflammation to tumorigenesis. Recently, the benefits of DPP4 inhibitors as novel hypoglycemic agents on bone metabolism have attracted extensive attraction in many studies, indicating that DPP4 inhibitors may regulate bone homeostasis. The effects of DPP4 on bone metabolism are still unclear. This paper thoroughly reviews the potential mechanisms of DPP4 for interaction with adipokines, bone cells, bone immune cells, and cytokines in skeleton system. This literature review shows that the increased DPP4 activity may indirectly promote bone resorption and inhibit bone formation, increasing the risk of osteoporosis. Thus, bone metabolic balance can be improved by decreasing DPP4 activities. The substantial evidence collected and analyzed in this review supports this implication.
Collapse
Affiliation(s)
- Qiu Yang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Bing Fu
- Department of Medical Imaging, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Dan Luo
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Haibo Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Hongyi Cao
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Xiang Chen
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu,
| |
Collapse
|
4
|
Agemura T, Hasegawa T, Yari S, Kikuta J, Ishii M. Arthritis-associated osteoclastogenic macrophages (AtoMs) participate in pathological bone erosion in rheumatoid arthritis. Immunol Med 2021; 45:22-26. [PMID: 34187325 DOI: 10.1080/25785826.2021.1944547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Rheumatoid arthritis is a chronic form of arthritis that causes bone destruction in joints such as the knees and fingers. Over the past two decades, the clinical outcomes of rheumatoid arthritis have improved substantially with the development of biological agents and Janus kinase inhibitors. Osteoclasts are myeloid lineage cells with a unique bone-destroying ability that can lead to joint destruction. On the other hand, osteoclasts play an important role in skeletal homeostasis by supporting bone remodeling together with osteoblasts in the bone marrow under steady-state conditions. However, the same osteoclasts are considered to participate in physiological bone remodeling and joint destruction. We found that pathological osteoclasts have different differentiation pathways and regulatory transcription factors compared to physiological osteoclasts. We also identified arthritis-associated osteoclastogenic macrophages (AtoMs), which are common progenitors of pathological osteoclasts in mice and humans that develop specifically in inflamed synovial tissue. This review presents details of the newly identified AtoMs and the original intravital imaging systems that can visualize synovial tissue and pathological osteoclasts at the pannus-bone interface.
Collapse
Affiliation(s)
- Tomoya Agemura
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Shinya Yari
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| |
Collapse
|
5
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
6
|
Role of nutritional vitamin D in osteoporosis treatment. Clin Chim Acta 2018; 484:179-191. [PMID: 29782843 DOI: 10.1016/j.cca.2018.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Osteoporosis is a systemic skeletal disorder characterized by a decrease in bone mass and microarchitectural deterioration of bone tissue. The World Health Organization has defined osteoporosis as a decrease in bone mass (50%) and bony quality (50%). Vitamin D, a steroid hormone, is crucial for skeletal health and in mineral metabolism. Its direct action on osteoblasts and osteoclasts and interaction with nonskeletal tissues help in maintaining a balance between bone turnover and bone growth. Vitamin D affects the activity of osteoblasts, osteoclasts, and osteocytes, suggesting that it affects bone formation, bone resorption, and bone quality. At physiological concentrations, active vitamin D maintains a normal rate of bone resorption and formation through the RANKL/OPG signal. However, active vitamin D at pharmacological concentration inhibits bone resorption at a higher rate than that of bone formation, which influences the bone quality and quantity. Nutritional vitamin D rather than active vitamin D activates osteoblasts and maintains serum 25(OH)D3 concentration. Despite many unanswered questions, much data support nutritional vitamin D use in osteoporosis patients. This article emphasizes the role of nutritional vitamin D replacement in different turnover status (high or low bone turnover disorders) of osteoporosis together with either anti-resorptive (Bisphosphonate, Denosumab et.) or anabolic (Teriparatide) agents when osteoporosis persists.
Collapse
|
7
|
Li L, Zou C, Zhou Z, Yu X. Effects of herbal medicine Sijunzi decoction on rabbits after relieving intestinal obstruction. ACTA ACUST UNITED AC 2017; 50:e6331. [PMID: 28953987 PMCID: PMC5609600 DOI: 10.1590/1414-431x20176331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Intestinal obstruction leads to blockage of the movement of intestinal contents. After relieving the obstruction, patients might still suffer with compromised immune function and nutritional deficiency. This study aimed to evaluate the effects of Sijunzi decoction on restoring the immune function and nutritional status after relieving the obstruction. Experimental rabbits (2.5±0.2 kg) were randomly divided into normal control group, 2-day intestinal obstruction group, 2-day natural recovery group, 4-day natural recovery group, 2-day treated group, and 4-day treated group. Sijunzi decoction was given twice a day to the treated groups. The concentration of markers was analyzed to evaluate the immune function and nutritional status. The concentration of interleukin-2, immunoglobulins and complement components of the treated groups were significantly higher than the natural recovery group (P<0.05). The levels of CD4+ and CD4+/CD8+ increased then decreased in the treated groups. The levels of tumor necrosis factor-α and CD8+ were significantly lower than the natural recovery group. The level of total protein in the treated groups also increased then decreased after relieving the obstruction. The levels of albumin, prealbumin and insulin-like growth factor-1 were significantly higher in the treated groups than in the natural recovery group (P<0.05). Transferrin level in the treated groups was significantly higher than the obstruction group (P<0.05). Sijunzi decoction can lessen the inflammatory response and improve the nutrition absorption after relieving the obstruction.
Collapse
Affiliation(s)
- L Li
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - C Zou
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Z Zhou
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - X Yu
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| |
Collapse
|
8
|
Shiomi A, Usui T, Mimori T. GM-CSF as a therapeutic target in autoimmune diseases. Inflamm Regen 2016; 36:8. [PMID: 29259681 PMCID: PMC5725926 DOI: 10.1186/s41232-016-0014-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been known as a hematopoietic growth factor and immune modulator. Recent studies revealed that GM-CSF also had pro-inflammatory functions and contributed to the pathogenicity of Th17 cells in the development of Th17-mediated autoimmune diseases. GM-CSF inhibition in some animal models of autoimmune diseases showed significant beneficial effects. Therefore, several agents targeting GM-CSF are being developed and are expected to be a useful strategy for the treatment of autoimmune diseases. Particularly, in clinical trials for rheumatoid arthritis (RA) patients, GM-CSF inhibition showed rapid and significant efficacy with no serious side effects. This article summarizes recent findings of GM-CSF and information of clinical trials targeting GM-CSF in autoimmune diseases.
Collapse
Affiliation(s)
- Aoi Shiomi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Takashi Usui
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
9
|
Hamilton JA. GM-CSF as a target in inflammatory/autoimmune disease: current evidence and future therapeutic potential. Expert Rev Clin Immunol 2015; 11:457-65. [PMID: 25748625 DOI: 10.1586/1744666x.2015.1024110] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) can be viewed as a pro-inflammatory cytokine rather than as a key regulator of steady state and systemic myelopoiesis. Key aspects of GM-CSF biology need to be clarified such as pro-survival vs activation/differentiation function, its cellular sources, its responsive cell populations, its downstream mediators/pathways, and when GM-CSF is relevant. Striking effects of GM-CSF depletion/deletion in some pre-clinical autoimmune/inflammation models have been reported. Systemic effects of administered GM-CSF are not necessarily informative about its local blockade in disease. Recent clinical RA trials, particularly Phase II trials with mavrilimumab (anti-GM-CSFRα Ab), show rapid and impressive efficacy with no significant adverse effects. Larger and longer trials targeting GM-CSF are needed and with careful monitoring of unwanted side effects. This review summarizes the most recent information on these topics.
Collapse
Affiliation(s)
- John A Hamilton
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
10
|
Adamopoulos IE, Mellins ED. Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol 2014; 11:189-94. [PMID: 25422000 DOI: 10.1038/nrrheum.2014.198] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Osteoclasts are cells of haematopoietic origin that are uniquely specialized to degrade bone. Under physiological conditions, the osteoclastogenesis pathway depends on macrophage colony-stimulating factor 1 (CSF-1, also known as M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). However, an emerging hypothesis is that alternative pathways of osteoclast generation might be active during inflammatory arthritis. In this Perspectives article, we summarize the physiological pathway of osteoclastogenesis and then focus on experimental findings that support the hypothesis that infiltrating inflammatory cells and the cytokine milieu provide multiple routes to bone destruction. The precise identity of osteoclast precursor(s) is not yet known. We propose that myeloid cell differentiation during inflammation could be an important contributor to the differentiation of osteoclast populations and their associated pathologies. Understanding the dynamics of osteoclast differentiation in inflammatory arthritis is crucial for the development of therapeutic strategies for inflammatory joint disease in children and adults.
Collapse
Affiliation(s)
- Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Shriners Hospitals for Children Northern California, 2425 Stockton Boulevard, Room 653A, Sacramento, CA 95817, USA
| | - Elizabeth D Mellins
- Division of Pediatric Rheumatology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Umeda JE, Demuth DR, Ando ES, Faveri M, Mayer MPA. Signaling transduction analysis in gingival epithelial cells after infection with Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2011; 27:23-33. [PMID: 22230463 DOI: 10.1111/j.2041-1014.2011.00629.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Periodontal diseases result from the interaction of bacterial pathogens with the host's gingival tissue. Gingival epithelial cells are constantly challenged by microbial cells and respond by altering their transcription profiles, inducing the production of inflammatory mediators. Different transcription profiles are induced by oral bacteria and little is known about how the gingival epithelium responds after interaction with the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. In the present study, we examined the transcription of genes involved in signaling transduction pathways in gingival epithelial cells exposed to viable A. actinomycetemcomitans. Immortalized gingival epithelial cells (OBA-9) were infected with A. actinomycetemcomitans JP2 for 24 h and the transcription profile of genes encoding human signal transduction pathways was determined. Functional analysis of inflammatory mediators positively transcribed was performed by ELISA in culture supernatant and in gingival tissues. Fifteen of 84 genes on the array were over-expressed (P < 0.01) after 24 h of infection with viable A. actinomycetemcomitans. Over-expressed genes included those implicated in tissue remodeling and bone resorption, such as CSF2, genes encoding components of the LDL pathway, nuclear factor-κB-dependent genes and other cytokines. The ELISA data confirmed that granulocyte-macrophage colony-stimulating factor/colony-stimulating factor 2, tumor necrosis factor-α and intercellular adhesion molecule-1 were highly expressed by infected gingival cells when compared with control non-infected cells, and presented higher concentrations in tissues from patients with aggressive and chronic periodontitis than in tissues from healthy controls. The induction in epithelial cells of factors such as the pro-inflammatory cytokine CSF2, which is involved in osteoclastogenesis, may help to explain the outcomes of A. actinomycetemcomitans infection.
Collapse
Affiliation(s)
- J E Umeda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
12
|
Lau AW, Pringle LM, Quick L, Riquelme DN, Ye Y, Oliveira AM, Chou MM. TRE17/ubiquitin-specific protease 6 (USP6) oncogene translocated in aneurysmal bone cyst blocks osteoblastic maturation via an autocrine mechanism involving bone morphogenetic protein dysregulation. J Biol Chem 2010; 285:37111-20. [PMID: 20864534 DOI: 10.1074/jbc.m110.175133] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aneurysmal bone cyst (ABC) is a pediatric osseous tumor characterized by extensive destruction of the surrounding bone. The molecular mechanisms underlying its pathogenesis are completely unknown. Recent work showed that translocation of the TRE17/USP6 locus occurs in over 60% of ABC cases resulting in TRE17 overexpression. Immature osteoblasts are presumed to be the cell type harboring translocation of TRE17 in at least a subset of ABCs. However, the effects of TRE17 overexpression on transformation and osteoblast function are unknown. TRE17 encodes a ubiquitin-specific protease (USP) and a TBC (TRE2-Bub2-Cdc16) domain that promotes activation of the Arf6 GTPase. Here we report that TRE17 potently inhibits the maturation of MC3T3 pre-osteoblasts in a USP-dependent and Arf6-independent manner. Notably, we find that TRE17 function is mediated through an autocrine mechanism. Transcriptome analysis of TRE17-expressing cells reveals dysregulation of several pathways with established roles in osteoblast maturation. In particular, signaling through the bone morphogenetic protein (BMP) pathway, a key regulator of osteogenesis, is profoundly altered. TRE17 simultaneously inhibits the expression of BMP-4 while augmenting the BMP antagonist, Gremlin-1. Osteoblastic maturation is restored in TRE17-expressing cells by the addition of exogenous BMP-4, thus establishing a functional role for BMP-4 during TRE17-induced transformation. Because bone homeostasis involves a precise balance between the activities of osteoblasts and osteoclasts, our studies raise the possibility that attenuated osteoblast maturation caused by TRE17 overexpression may contribute to the bone loss/destruction observed in ABC.
Collapse
Affiliation(s)
- Alan W Lau
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Hueber AJ, Asquith DL, McInnes IB, Miller AM. Embracing novel cytokines in RA – complexity grows as does opportunity! Best Pract Res Clin Rheumatol 2010; 24:479-87. [DOI: 10.1016/j.berh.2010.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Dai J, Lu Y, Yu C, Keller JM, Mizokami A, Zhang J, Keller ET. Reversal of chemotherapy-induced leukopenia using granulocyte macrophage colony-stimulating factor promotes bone metastasis that can be blocked with osteoclast inhibitors. Cancer Res 2010; 70:5014-23. [PMID: 20501834 DOI: 10.1158/0008-5472.can-10-0100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hematopoietic growth factors are used to reverse chemotherapy-induced leukopenia. However, some factors such as granulocyte macrophage colony-stimulating factor (GM-CSF) induce osteoclast-mediated bone resorption that can promote cancer growth in the bone. Accordingly, we evaluated the ability of GM-CSF to promote bone metastases of breast cancer or prostate cancer in a mouse model of chemotherapy-induced leukopenia. In this model, GM-CSF reversed cyclophosphamide-induced leukopenia but also promoted breast cancer and prostate cancer growth in the bone but not in soft tissue sites. Bone growth was associated with the induction of osteoclastogenesis, yet in the absence of tumor GM-CSF, it did not affect osteoclastogenesis. Two osteoclast inhibitors, the bisphosphonate zoledronic acid and the RANKL inhibitor osteoprotegerin, each blocked GM-CSF-induced tumor growth in the bone but did not reverse the ability of GM-CSF to reverse chemotherapy-induced leukopenia. Our findings indicate that it is possible to dissociate the bone-resorptive effects of GM-CSF, to reduce metastatic risk, from the benefits of this growth factor in reversing leukopenia caused by treatment with chemotherapy.
Collapse
Affiliation(s)
- Jinlu Dai
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109-8940, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Yasui K, Yashiro M, Nagaoka Y, Manki A, Wada T, Tsuge M, Kondo Y, Morishima T. Thalidomide prevents formation of multinucleated giant cells (Langhans-type cells) from cultured monocytes: possible pharmaceutical applications for granulomatous disorders. Int J Immunopathol Pharmacol 2009; 22:707-14. [PMID: 19822087 DOI: 10.1177/039463200902200316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thalidomide is an effective drug for chronic inflammatory diseases, but the mechanism underlying its immunomodulatory action remains uncertain. Thalidomide has been reported to clinically improve chronic inflammatory granulomatous disorders. In such disorders, the granulomas consist of epithelioid cells, scattered lymphocytes and multinucleated giant cells (MNGC; Langhans-type cells). The present experimental approach permitted the reproduction of MNGC formation from peripheral blood monocytes and examination of thalidomides effect on it. MNGC can be effectively generated from monocytes cultured in the presence of interleukin-4 (IL-4) and macrophage colony-stimulating factor(M-CSF) for 14 days. Thalidomide can inhibit the formation of MNGC in a dose-dependent manner. MNGC formation was partly inhibited by the presence of neutralizing TNF-alpha antibody in the responses induced by IL-4 and M-CSF. Autocrinal TNF-alpha production and modulation of cadhelin expression to regulate cell adhesion might be involved in this inhibitory action of thalidomide. Our results support thalidomides clinical efficacy in the treatment of chronic granulomatous disorders (granulomatosis).
Collapse
Affiliation(s)
- K Yasui
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|