1
|
Wang X, Zhang W, Zhou S. Multifaceted physiological and therapeutical impact of curcumin on hormone-related endocrine dysfunctions: A comprehensive review. Phytother Res 2024; 38:3307-3336. [PMID: 38622915 DOI: 10.1002/ptr.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.
Collapse
Affiliation(s)
- Xiuying Wang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
2
|
Miyano K, Nonaka M, Sakamoto M, Murofushi M, Yoshida Y, Komura K, Ohbuchi K, Higami Y, Fujii H, Uezono Y. The Inhibition of TREK-1 K + Channels via Multiple Compounds Contained in the Six Kamikihito Components, Potentially Stimulating Oxytocin Neuron Pathways. Int J Mol Sci 2024; 25:4907. [PMID: 38732124 PMCID: PMC11084865 DOI: 10.3390/ijms25094907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Oxytocin, a significant pleiotropic neuropeptide, regulates psychological stress adaptation and social communication, as well as peripheral actions, such as uterine contraction and milk ejection. Recently, a Japanese Kampo medicine called Kamikihito (KKT) has been reported to stimulate oxytocin neurons to induce oxytocin secretion. Two-pore-domain potassium channels (K2P) regulate the resting potential of excitable cells, and their inhibition results in accelerated depolarization that elicits neuronal and endocrine cell activation. We assessed the effects of KKT and 14 of its components on a specific K2P, the potassium channel subfamily K member 2 (TREK-1), which is predominantly expressed in oxytocin neurons in the central nervous system (CNS). KKT inhibited the activity of TREK-1 induced via the channel activator ML335. Six of the 14 components of KKT inhibited TREK-1 activity. Additionally, we identified that 22 of the 41 compounds in the six components exhibited TREK-1 inhibitory effects. In summary, several compounds included in KKT partially activated oxytocin neurons by inhibiting TREK-1. The pharmacological effects of KKT, including antistress effects, may be partially mediated through the oxytocin pathway.
Collapse
Affiliation(s)
- Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.M.); (M.N.); (M.S.); (M.M.); (K.K.)
- Department of Dentistry, National Cancer Center Hospital, Tokyo 104-0045, Japan
- Laboratory of Pharmacotherapeutics, Faculty of Pharmacy, Juntendo University, Chiba 279-0013, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.M.); (M.N.); (M.S.); (M.M.); (K.K.)
| | - Masahiro Sakamoto
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.M.); (M.N.); (M.S.); (M.M.); (K.K.)
| | - Mika Murofushi
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.M.); (M.N.); (M.S.); (M.M.); (K.K.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan;
| | - Yuki Yoshida
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (Y.Y.); (Y.H.)
| | - Kyoko Komura
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.M.); (M.N.); (M.S.); (M.M.); (K.K.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan;
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan;
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (Y.Y.); (Y.H.)
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan;
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.M.); (M.N.); (M.S.); (M.M.); (K.K.)
- Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, Chiba 277-8577, Japan
- Department of Comprehensive Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Is Curcumine Useful in the Treatment and Prevention of the Tendinopathy and Myotendinous Junction Injury? A Scoping Review. Nutrients 2023; 15:nu15020384. [PMID: 36678255 PMCID: PMC9860696 DOI: 10.3390/nu15020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Physical activity in general and sports in particular, is a mechanism that produces stress and generates great force in the tendon and in the muscle-tendon unit, which increases the risk of injury (tendinopathies). Eccentric and repetitive contraction of the muscle precipitates persistent microtraumatism in the tendon unit. In the development of tendinopathies, the cellular process includes inflammation, apoptosis, vascular, and neuronal changes. Currently, treatments with oral supplements are frequently used. Curcumin seems to preserve, and even repair, damaged tendons. In this systematic review, we focus more especially on the benefits of curcumin. The biological actions of curcumin are diverse, but act around three systems: (a) inflammatory, (b) nuclear factor B (NF-κB) related apoptosis pathways, and (c) oxidative stress systems. A bibliographic search is conducted under the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a basis for reporting reliable systematic reviews to perform a Scoping review. After analysing the manuscripts, we can conclude that curcumin is a product that demonstrates a significant biological antialgic, anti-inflammatory, and antioxidant power. Therefore, supplementation has a positive effect on the inflammatory and regenerative response in tendinopathies. In addition, curcumin decreases and modulates the cell infiltration, activation, and maturation of leukocytes, as well as the production of pro-inflammatory mediators at the site of inflammation.
Collapse
|
4
|
Zhang X, Deng J, Tang Y, Guan X, Chen X, Fan J. Zingiberaceae plants/curcumin consumption and multiple health outcomes: An umbrella review of systematic reviews and meta-analyses of randomized controlled trials in humans. Phytother Res 2022; 36:3080-3101. [PMID: 35623903 DOI: 10.1002/ptr.7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023]
Abstract
This umbrella review is to recapitulate and grade the available evidence of associations between consumption of Zingiberaceae plants/curcumin (Cur) and multiple health-related outcomes. This study included 161 meta-analyses of randomized controlled trials in 76 articles with 67 unique health outcomes. Data on heterogeneity and publication bias are considered to assess the quality of evidence. Based on the different impact of Zingiberaceae plants/Cur on human health, the advantages outweigh the disadvantages. Zingiberaceae plants/Cur can mainly improve metabolic syndrome, non-alcoholic fatty liver disease, cardiovascular disease, and some chronic inflammatory diseases, likewise, obviously relief the pain of osteoarthritis and related diseases. Ginger supplements have been shown to improve vomiting during pregnancy and to relieve nausea and vomiting caused by chemotherapy and surgery. The surgery is any type of surgery, including laparoscopic surgery, gynecological surgery and mixed surgery. Beneficial associations were found with Cur intervention in gastrointestinal, neurological and oral diseases. Zingiberaceae plants/Cur are generally safe and favorable for multiple health outcomes in humans. High-quality research is further needed to prove the observed associations.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yujun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoxian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Phoolcharoen N, Oranratanaphan S, Ariyasriwatana C, Worasethsin P. Efficacy of curcuminoids for reducing postoperative pain after laparoscopic gynecologic surgery: A pilot randomized trial. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 16:/j/jcim.ahead-of-print/jcim-2018-0224/jcim-2018-0224.xml. [PMID: 31150356 DOI: 10.1515/jcim-2018-0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Background Curcuminoids, which are substances extracted from turmeric, have been proved to have anti-inflammatory and analgesic effects along with a good safety profile. This study aimed to evaluate the clinical efficacy of curcuminoids for reducing postoperative pain in patients who undergo laparoscopic gynecologic surgery. Methods From November 2016 to December 2017, participants were randomly assigned, by blocks of four, to the intervention and control arms of the study. Altogether, 60 patients who were to undergo laparoscopic gynecologic surgery at our institution were enrolled. Intraoperative findings were not significantly different between the two groups. One tablet of curcuminoid extract 250 mg was given to patients in the intervention group four times a day on postoperative days 1-3. Pain was evaluated at 24 and 72 h postoperatively using a 10-point visual analog scale (VAS). Results The median VAS score 24 h after surgery was 3 (1-6) in the intervention group and 4.5 (3-7) in the control group, with the difference reaching statistical significance (p=0.001). The median VAS at 72 h after surgery was 1 (0-2) in the intervention group and 2 (1-5) in the control group (p<0.001). Conclusion Curcuminoids may be an effective supplement to reduce pain severity postoperatively following laparoscopic gynecologic surgery. Trial Registration TCTR20180215001 www.clinicaltrials.in.th.
Collapse
Affiliation(s)
- Natacha Phoolcharoen
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shina Oranratanaphan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chai Ariyasriwatana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pongkasem Worasethsin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Tabeshpour J, Banaeeyeh S, Eisvand F, Sathyapalan T, Hashemzaei M, Sahebkar A. Effects of curcumin on ion channels and pumps: A review. IUBMB Life 2019; 71:812-820. [PMID: 31020791 DOI: 10.1002/iub.2054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Curcumin, an orange-yellow lipophilic polyphenolic molecule, is the active component of Curcuma longa, which is extensively used as a spice in most of the Asian countries. This natural compound is able to interact with a large number of molecular structures like proteins, enzymes, lipids, DNA, RNA, transporter molecules, and ion channels. It has been reported to possess several biological effects such as antioxidant, anti-inflammatory, wound healing, antimicrobial, anticancer, antiangiogenic, antimutagenic, and antiplatelet aggregation properties. These beneficial effects of curcumin are because of its extraordinary chemical interactions such as extensive hydrogen and covalent bonding, metal chelation, and so on. Therefore, the aim of this review was to outline the evidence in which curcumin could affect different types of ion channels and ion channel-related diseases, and also to elucidate basic molecular mechanisms behind it. © 2019 IUBMB Life, 2019.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Tanabe Y, Chino K, Ohnishi T, Ozawa H, Sagayama H, Maeda S, Takahashi H. Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scand J Med Sci Sports 2019; 29:524-534. [DOI: 10.1111/sms.13373] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yoko Tanabe
- Department of Sport Research; Japan Institute of Sports Sciences; Tokyo Japan
| | - Kentaro Chino
- Department of Sport Research; Japan Institute of Sports Sciences; Tokyo Japan
| | | | - Hitomi Ozawa
- Science Group; Theravalues Corporation; Tokyo Japan
| | | | - Seiji Maeda
- Faculty of Health and Sport Sciences; University of Tsukuba; Ibaraki Japan
| | - Hideyuki Takahashi
- Department of Sport Research; Japan Institute of Sports Sciences; Tokyo Japan
| |
Collapse
|
8
|
Joseph A, Thuy TTT, Thanh LT, Okada M. Antidepressive and anxiolytic effects of ostruthin, a TREK-1 channel activator. PLoS One 2018; 13:e0201092. [PMID: 30110354 PMCID: PMC6093650 DOI: 10.1371/journal.pone.0201092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
We screened a library of botanical compounds purified from plants of Vietnam for modulators of the activity of a two-pore domain K+ channel, TREK-1, and we identified a hydroxycoumarin-related compound, ostruthin, as an activator of this channel. Ostruthin increased whole-cell TREK-1 channel currents in 293T cells at a low concentration (EC50 = 5.3 μM), and also activity of the TREK-2 channel (EC50 = 3.7 mM). In contrast, ostruthin inhibited other K+ channels, e.g. human ether-à-go-go-related gene (HERG1), inward-rectifier (Kir2.1), voltage-gated (Kv1.4), and two-pore domain (TASK-1) at higher concentrations, without affecting voltage-gated potassium channel (KCNQ1 and 3). We tested the effect of this compound on mouse anxiety- and depression-like behaviors and found anxiolytic activity in the open-field, elevated plus maze, and light/dark box tests. Of note, ostruthin also showed antidepressive effects in the forced swim and tail suspension tests, although previous studies reported that inhibition of TREK-1 channels resulted in an antidepressive effect. The anxiolytic and antidepressive effect was diminished by co-administration of a TREK-1 blocker, amlodipine, indicating the involvement of TREK-1 channels. Administration of ostruthin suppressed the stress-induced increase in anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in other mood disorder-related nuclei, e.g. the amygdala, paraventricular nuclei, and dorsal raphe nucleus. Ostruthin may exert its anxiolytic and antidepressive effects through a different mechanism from current drugs.
Collapse
Affiliation(s)
- Ancy Joseph
- Department of Physiology, Kansai Medical University, Osaka, Japan
| | - Tran Thi Thu Thuy
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Tat Thanh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Masayoshi Okada
- Department of Physiology, Kansai Medical University, Osaka, Japan
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama, Japan
- * E-mail:
| |
Collapse
|
9
|
El Nebrisi EG, Bagdas D, Toma W, Al Samri H, Brodzik A, Alkhlaif Y, Yang KHS, Howarth FC, Damaj IM, Oz M. Curcumin Acts as a Positive Allosteric Modulator of α7-Nicotinic Acetylcholine Receptors and Reverses Nociception in Mouse Models of Inflammatory Pain. J Pharmacol Exp Ther 2018; 365:190-200. [PMID: 29339457 DOI: 10.1124/jpet.117.245068] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Effects of curcumin, a major ingredient of turmeric, were tested on the function of the α7-subunit of the human nicotinic acetylcholine (α7-nACh) receptor expressed in Xenopus oocytes and on nociception in mouse models of tonic and visceral pain. Curcumin caused a significant potentiation of currents induced by acetylcholine (ACh; 100 μM) with an EC50 value of 0.2 µM. The effect of curcumin was not dependent on the activation of G-proteins and protein kinases and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Importantly, the extent of curcumin potentiation was enhanced significantly by decreasing ACh concentrations. Curcumin did not alter specific binding of [125I]α-bungarotoxin. In addition, curcumin attenuated nociceptive behavior in both tonic and visceral pain models without affecting motor and locomotor activity and without producing tolerance. Pharmacological and genetic approaches revealed that the antinociceptive effect of curcumin was mediated by α7-nACh receptors. Curcumin potentiated the antinociceptive effects of the α7-nACh receptor agonist N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide (PNU282987). Collectively, our results indicate that curcumin is a positive allosteric modulator of α7-nACh receptor and reverses nociception in mouse models of tonic and visceral pain.
Collapse
Affiliation(s)
- Eslam Gaber El Nebrisi
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Deniz Bagdas
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Wisam Toma
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Halima Al Samri
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Anna Brodzik
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Yasmin Alkhlaif
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Keun-Hang Susan Yang
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Frank Christopher Howarth
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Imad M Damaj
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| | - Murat Oz
- Departments of Pharmacology (E.G.E.N., H.A.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., A.B., Y.A., I.M.D.); Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey (D.B.); Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California (K.-H.S.Y.); and Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar (M.O.)
| |
Collapse
|
10
|
Sahebkar A, Saboni N, Pirro M, Banach M. Curcumin: An effective adjunct in patients with statin-associated muscle symptoms? J Cachexia Sarcopenia Muscle 2017; 8:19-24. [PMID: 27897416 PMCID: PMC5326825 DOI: 10.1002/jcsm.12140] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
In spite of the unequivocal efficacy of statins in reducing primary and secondary cardiovascular events, the use of these drugs in a considerable number of patients is limited because of statin intolerance, mainly statin-associated muscle symptoms (SAMS). SAMS encompass a broad spectrum of clinical presentations, including mild muscular aching and other types of myalgias, myopathy with the significant elevation of creatine kinase, and the rare but life-threatening rhabdomyolysis. Among several pathophysiologic mechanisms of SAMS, mitochondrial dysfunction is thought to be one of the main one. Curcumin is the polyphenolic ingredient of Curcuma longa L., which has various pharmacological properties against a vast range of diseases. Curcumin has several mechanisms of actions relevant to the treatment of SAMS. These effects include the capacity to prevent and reduce delayed onset muscle soreness by blocking the nuclear factor inflammatory pathway, attenuation of muscular atrophy, enhancement of muscle fibre regeneration following injury, and analgesic and antioxidant effects. Curcumin can also increase the levels of cyclic adenosine monophosphate, which leads to an increase in the number of mitochondrial DNA duplicates in skeletal muscle cells. Finally, owing to its essential lipid-modifying properties, curcumin might serve as an adjunct to statin therapy in patients with SAMS, allowing for effective lowering of low-density lipoprotein cholesterol and possibly for statin dose reduction. Owing to the paucity of effective treatments, and the safety of curcumin in clinical practice, proof-of-concept trials are recommended to assess the potential benefit of this phytochemical in the treatment of SAMS.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research CenterMashhad University of Medical SciencesMashhad9177948564Iran
- Metabolic Research Centre, Royal Perth Hospital, School of Medicine and PharmacologyUniversity of Western AustraliaPerthAustralia
| | - Nikou Saboni
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhad9177948564Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of MedicineUniversity of PerugiaPerugiaItaly
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzŁódźPoland
| |
Collapse
|
11
|
Sahebkar A, Henrotin Y. Analgesic Efficacy and Safety of Curcuminoids in Clinical Practice: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PAIN MEDICINE 2015; 17:1192-202. [PMID: 26814259 DOI: 10.1093/pm/pnv024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 09/05/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Curcuminoids are natural products with potent anti-inflammatory and antioxidant properties. There have been a number of reports on the analgesic effects of curcuminoids in clinical trials, yet data have not been fully conclusive. OBJECTIVES To provide the highest level of evidence on the efficacy of curcuminoids in patients with painful conditions through meta-analysis of data from randomized controlled trials (RCTs). METHODS A systematic review and meta-analysis was conducted using data reported by RCTs. The primary efficacy measure was pain intensity or algofunctional status. Treatment effect was summarized with standardized mean difference (SMD) calculated from differences in means of pain measures between treatment and control groups using a random-effects model. RESULTS A total of eight RCTs met our inclusion criteria that included 606 randomized patients. Curcuminoids were found to significantly reduce pain (SMD: -0.57, 95% CI: -1.11 to -0.03, P = 0.04). This pain-relieving effect was found to be independent of administered dose and duration of treatment with curcuminoids, and was free from publication bias. Curcuminoids were safe and well tolerated in all evaluated RCTs. CONCLUSION Curcuminoids supplements may be a safe and effective strategy to improve pain severity, by warranting further rigorously conducted studies to define the long-term efficacy and safety.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- *Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liege, University of Liege, Liege, Begium; Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
12
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
13
|
Ali TY, Broughton Pipkin F, Khan RN. The effect of pH and ion channel modulators on human placental arteries. PLoS One 2014; 9:e114405. [PMID: 25490401 PMCID: PMC4260857 DOI: 10.1371/journal.pone.0114405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
Chorionic plate arteries (CPA) are located at the maternofetal interface where they are able to respond to local metabolic changes. Unlike many other types of vasculature, the placenta lacks nervous control and requires autoregulation for controlling blood flow. The placental circulation, which is of low-resistance, may become hypoxic easily leading to fetal acidosis and fetal distress however the role of the ion channels in these circumstances is not well-understood. Active potassium channel conductances that are subject to local physicochemical modulation may serve as pathways through which such signals are transduced. The aim of this study was to investigate the modulation of CPA by pH and the channels implicated in these responses using wire myography. CPA were isolated from healthy placentae and pre-contracted with U46619 before testing the effects of extracellular pH using 1 M lactic acid over the pH range 7.4 - 6.4 in the presence of a variety of ion channel modulators. A change from pH 7.4 to 7.2 produced a 29±3% (n = 9) relaxation of CPA which increased to 61±4% at the lowest pH of 6.4. In vessels isolated from placentae of women with pre-eclampsia (n = 6), pH responses were attenuated. L-methionine increased the relaxation to 67±7% (n = 6; p<0.001) at pH 6.4. Similarly the TASK 1/3 blocker zinc chloride (1 mM) gave a maximum relaxation of 72±5% (n = 8; p<0.01) which compared with the relaxation produced by the TREK-1 opener riluzole (75±5%; n = 6). Several other modulators induced no significant changes in vascular responses. Our study confirmed expression of several ion channel subtypes in CPA with our results indicating that extracellular pH within the physiological range has an important role in controlling vasodilatation in the human term placenta.
Collapse
Affiliation(s)
- Tayyba Y Ali
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, United Kingdom
| | - Fiona Broughton Pipkin
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, United Kingdom
| | - Raheela N Khan
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer. Clin Transl Oncol 2013; 15:910-8. [DOI: 10.1007/s12094-013-1022-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/12/2013] [Indexed: 01/20/2023]
|
15
|
Patel SK, Jackson L, Warren AY, Arya P, Shaw RW, Khan RN. A role for two-pore potassium (K2P) channels in endometrial epithelial function. J Cell Mol Med 2013; 17:134-46. [PMID: 23305490 PMCID: PMC3823143 DOI: 10.1111/j.1582-4934.2012.01656.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/15/2012] [Indexed: 11/20/2022] Open
Abstract
The human endometrial epithelium is pivotal to menstrual cycle progression, implantation and early pregnancy. Endometrial function is directly regulated by local factors that include pH, oxygen tension and ion concentrations to generate an environment conducive to fertilization. A superfamily of potassium channels characterized by two-pore domains (K2P) and encoded by KCNK genes is implicated in the control of the cell resting membrane potential through the generation of leak currents and modulation by various physicochemical stimuli. The aims of the study were to determine the expression and function of K2P channel subtypes in proliferative and secretory phase endometrium obtained from normo-ovulatory women and in an endometrial cancer cell line. Using immunochemical methods, real-time qRT-PCR proliferation assays and electrophysiology. Our results demonstrate mRNA for several K2P channel subtypes in human endometrium with molecular expression of TREK-1 shown to be higher in proliferative than secretory phase endometrium (P < 0.001). The K2P channel blockers methanandamide, lidocaine, zinc and curcumin had antiproliferative effects (P < 0.01) in an endometrial epithelial cancer cell line indicating a role for TASK and TREK-1 channels in proliferation. Tetraethylammonium- and 4-aminopyridine-insensitive outwards currents were inhibited at all voltages by reducing extracellular pH from 7.4 to 6.6. Higher expression of TREK-1 expression in proliferative phase endometrium may, in part, underlie linked to increased cell division. The effects of pH and a lack of effect of non-specific channel blockers of voltage-gated potassium channels imply a role for K2P channels in the regulation of human endometrial function.
Collapse
Affiliation(s)
- Suraj K Patel
- Academic Division of Obstetrics & Gynaecology, University of Nottingham, Derby, UK
| | | | | | | | | | | |
Collapse
|
16
|
Hong DH, Son YK, Choi IW, Park WS. The inhibitory effect of curcumin on voltage-dependent K⁺ channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 2012; 430:307-12. [PMID: 23146635 DOI: 10.1016/j.bbrc.2012.10.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022]
Abstract
We investigated the effects of curcumin, the principal active compound of turmeric, on voltage-dependent K(+) (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Curcumin reduced the Kv current in a dose-dependent manner with an apparent K(d) value of 1.07 ± 0.03 μM. Although curcumin did not alter the kinetics of Kv current activation, it predominantly accelerated the decay rate of channel inactivation. The association and dissociation rate constants of curcumin were 1.35 ± 0.05 μM(-1)s(-1) and 1.47 ± 0.17s(-1), respectively. Curcumin did not alter the steady-state activation or inactivation curves. Application of train pulses (1 or 2 Hz) increased curcumin-induced blockade of the Kv current, and the recovery time constant also increased in the presence of curcumin suggesting, that the inhibitory action of Kv currents by curcumin was use-dependent. From these results, we concluded that curcumin inhibited vascular Kv current in a state-, time-, and use-dependent manner.
Collapse
Affiliation(s)
- Da Hye Hong
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon 200-701, South Korea
| | | | | | | |
Collapse
|
17
|
Lian YT, Yang XF, Wang ZH, Yang Y, Yang Y, Shu YW, Cheng LX, Liu K. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytother Res 2012; 27:1321-7. [PMID: 23132777 DOI: 10.1002/ptr.4863] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 09/05/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
Abstract
Curcumin, the principal active component of turmeric, has long been used to treat various diseases in India and China. Recent studies show that curcumin can serve as a therapeutic agent for autoimmune diseases via a variety of mechanisms. Effector memory T cells (T(EM), CCR7⁻ CD45RO⁺ T lymphocyte) have been demonstrated to play a crucial role in the pathogenesis of T cell-mediated autoimmune diseases, such as multiple sclerosis (MS) or rheumatoid arthritis (RA). Kv1.3 channels are predominantly expressed in T(EM) cells and control T(EM) activities. In the present study, we examined the effect of curcumin on human Kv1.3 (hKv1.3) channels stably expressed in HEK-293 cells and its ability to inhibit proliferation and cytokine secretion of T(EM) cells isolated from patients with MS or RA. Curcumin exhibited a direct blockage of hKv1.3 channels in a time-dependent and concentration-dependent manner. Moreover, the activation curve was shifted to a more positive potential, which was consistent with an open-channel blockade. Paralleling hKv1.3 inhibition, curcumin significantly inhibited proliferation and interferon-γ secretion of T(EM) cells. Our findings demonstrate that curcumin is able to inhibit proliferation and proinflammatory cytokine secretion of T(EM) cells probably through inhibition of hKv1.3 channels, which contributes to the potency of curcumin for the treatment of autoimmune diseases. This is probably one of pharmacological mechanisms of curcumin used to treat autoimmune diseases.
Collapse
Affiliation(s)
- Yi-Tian Lian
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kössler S, Nofziger C, Jakab M, Dossena S, Paulmichl M. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells. Toxicology 2012; 292:123-35. [PMID: 22178266 PMCID: PMC3274693 DOI: 10.1016/j.tox.2011.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 01/11/2023]
Abstract
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current ICl(swell) in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The ICl(swell) channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1-10 μM curcumin modulates ICl(swell) in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5-5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect ICl(swell) neither if applied from the extracellular nor from the intracellular side - therefore, a direct effect of curcumin on ICl(swell) can be ruled out. Furthermore, we show that curcumin exposure induces apoptosis in human kidney cells, and at a concentration of 5.0-10 μM induces the appearance of a sub-population of cells with a dramatically increased volume. In these cells the regulation of the cell volume seems to be impaired, most likely as a consequence of the ICl(swell) blockade. Similarly, 50 μM curcumin induced apoptosis, caused cell cycle arrest in G1-phase and increased the volume of human colorectal adenocarcinoma HT-29 cells. The cell cycle arrest in G1 phase may be the mechanism underlying the volume increase observed in this cell line after exposure to curcumin.
Collapse
Key Words
- mem, minimum essential eagle medium
- fbs, fetal bovine serum
- iclswell, swelling activated chloride current
- edta, ethylene diamine tetraacetic acid
- dmso, dimethyl sulfoxide
- egta, ethylene glycol tetraacetic acid
- hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- nppb, 5-nitro-2-(3-phenylpropylamino)benzoic acid
- fitc, fluorescein isothiocyanate
- 7-aad, 7-amino-actinomycin d
- dapi, 4′,6-diamidino-2-phenylindole
- cftr, cystic fibrosis transmembrane regulator
- curcumin
- apoptosis
- cell volume regulation
- iclswell
Collapse
Affiliation(s)
- Sonja Kössler
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
19
|
Curcumin inhibits hERG potassium channels in vitro. Toxicol Lett 2011; 208:192-6. [PMID: 22101212 DOI: 10.1016/j.toxlet.2011.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/21/2022]
Abstract
Curcumin is reported to exert antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anti-tumor activities. The human ether-a-go-go related gene (hERG) encodes the rapid component of the delayed rectifier K⁺ currents. Inhibition of hERG K⁺ channels leads to cardiac repolarization prolongation, which contributes to either the anti-arrhythmic effects of anti-arrhythmic drugs, or the pro-arrhythmic effects (induction of long QT syndrome) of some drugs not used for anti-arrhythmias. Since curcumin shows multiple beneficial effects and clinical significance, the aim of the present study is to investigate the effect of curcumin on hERG K⁺ channels, elucidating its potential cardiac therapeutic or toxic effects. In whole-cell patch-clamp experiments, we found that curcumin inhibited hERG K⁺ currents in HEK293 cells stably expressing hERG channels in a dose-dependent manner, with IC₅₀ value of 5.55 μM. The deactivation, inactivation and the recovery time from inactivation of hERG channels were significantly changed by acute treatment of 10 μM curcumin. Incubation of 20 μM curcumin for 24h reduced the HEK293 cell viability. Intravenous injection of maximal amount of curcumin in rabbits (20 mg/animal) did not affect the cardiac repolarization manifested with QTc value. We conclude that curcumin inhibits hERG K⁺ channels in vitro.
Collapse
|
20
|
|
21
|
Xi G, Zhang X, Zhang L, Sui Y, Hui J, Liu S, Wang Y, Li L, Zhang Z. Fluoxetine attenuates the inhibitory effect of glucocorticoid hormones on neurogenesis in vitro via a two-pore domain potassium channel, TREK-1. Psychopharmacology (Berl) 2011; 214:747-59. [PMID: 21069514 DOI: 10.1007/s00213-010-2077-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/27/2010] [Indexed: 01/17/2023]
Abstract
RATIONALE Sustained stress and elevated glucocorticoid reduces neurogenesis, whereas chronic treatment with antidepressants increases neurogenesis and blocks the effects of stress. Recently, TREK-1, a two-pore domain (K(2)p) potassium channel, has been shown to be involved in the mechanisms of major depression. OBJECTIVES This study aimed to investigate whether TREK-1 is involved in the alteration of neurogenesis according to glucocorticoids and antidepressants. RESULTS The present study addressed the expression of TREK-1 in neural stem cells (NSCs) and found TREK-1 was only associated with NSC proliferation. Bupivacaine and curcumin, two strong TREK-1 channel inhibitors, significantly increased embryonic NSC viability and proliferation while transfection of hTREK-1 decreased cell proliferation in embryonic NSCs. Dexamethasone, a glucocorticoid hormone receptor agonist, upregulated both protein and mRNA levels of TREK-1 leading to decreased NSC proliferation which could be reversed by bupivacaine. Fluoxetine, a serotonin reuptake inhibitor antidepressant that has been previously found to inhibit TREK-1 channels, robustly, could attenuate the upregulation of TREK-1 expression and the inhibition of NSC proliferation induced by dexamethasone. CONCLUSIONS Taken together, these data suggest that TREK-1 is associated with NSC proliferation and probably is a modulator of the effect that fluoxetine attenuates the inhibitory neurogenesis induced by glucocorticoid hormones.
Collapse
Affiliation(s)
- Guangjun Xi
- The Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Al-Suhaimi EA, Al-Riziza NA, Al-Essa RA. Physiological and therapeutical roles of ginger and turmeric on endocrine functions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:215-31. [PMID: 21476200 DOI: 10.1142/s0192415x11008762] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The natural product ginger (Zingiber officinale) has active constituents gingerol, Shogaol and Zerumbone, while turmeric (Curcuma longa) contains three active major curcuminoids, namely, curcumin, demethoxycurcumin, and bisdemethoxycurcumin. They have the same scientific classification and are reported to have anti-inflammatory and many therapeutic effects. This article reviews the physiological and therapeutic effects of ginger and turmeric on some endocrine gland functions, and signal pathways involved to mediate their actions. With some systems and adipose tissue, ginger and turmeric exert their actions through some/all of the following signals or molecular mechanisms: (1) through reduction of high levels of some hormones (as: T4, leptin) or interaction with hormone receptors; (2) by inhibition of cytokines/adipokine expression; (3) acting as a potent inhibitor of reactive oxygen species (ROS)-generating enzymes, which play an essential role between inflammation and progression of diseases; (4) mediation of their effects through the inhibition of signaling transcription factors; and/or (5) decrease the proliferative potent by down-regulation of antiapoptotic genes, which may suppress tumor promotion by blocking signal transduction pathways in the target cells. These multiple mechanisms of protection against inflammation and oxidative damage make ginger and curcumin particularly promising natural agents in fighting the ravages of aging and degenerative diseases, and need to be paid more attention by studies.
Collapse
Affiliation(s)
- Ebtesam A Al-Suhaimi
- Department of Biology, Sciences College, Dammam University, Dammam, Saudi Arabia.
| | | | | |
Collapse
|
23
|
Banderali U, Belke D, Singh A, Jayanthan A, Giles WR, Narendran A. Curcumin Blocks Kv11.1 ( erg) Potassium Current and Slows Proliferation in the Infant Acute Monocytic Leukemia Cell line THP-1. Cell Physiol Biochem 2011; 28:1169-80. [DOI: 10.1159/000335850] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2011] [Indexed: 12/13/2022] Open
|
24
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 642] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
25
|
Hayashi C, Iino K, Oki Y, Matsushita F, Yamashita M, Yogo K, Sasaki S, Kumada T, Nakamura H. Possible contribution of 2-aminoethoxydiphenyl-borate-sensitive Ca2+ mobilization to adrenocorticotropin-induced glucocorticoid synthesis in rat adrenocortical cells. Endocr J 2010; 57:109-17. [PMID: 19851032 DOI: 10.1507/endocrj.k09e-138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic calcium ([Ca(2+)](i)) provided through voltage-dependent Ca(2+) channels (VDCC) plays an important role in adrenocorticotropin (ACTH)-induced steroidogenesis in adrenocortical cells. To identify alternative mechanisms for [Ca(2+)](i) supply, we investigated the 2-aminoethoxydiphenyl borate (2APB)-sensitive pathway as one of the possible signaling pathways involved in [Ca(2+)](i) supply for ACTH-induced steroidogenesis. In monolayers of cultured rat adrenal fasciculate and reticularis cells, ACTH at 10(-11) M stimulated corticosterone synthesis without increasing intracellular cAMP, and corticosterone synthesis was decreased by 10 microM 2APB by 51.8% (6.71 +/- 0.97 vs. 3.23 +/- 0.05 ng/mL/4 hours; p<0.05). Furthermore, 2APB significantly decreased the 10(-11) M ACTH-stimulated [Ca(2+)](i). ACTH increased the intracellular inositol-1,4,5-trisphosphate (IP3) content with a peak at 10(-13) M ACTH, which illustrates the possibility that ACTH activates IP3/diacylglycerol- dependent protein kinase C signal transduction. However, the difference in ACTH concentrations between that responsible for the IP3 increase and steroidogenesis without elevated cAMP, suggest a hypothesis that IP3 is not required for steroidogenesis, but does involve an unknown messenger, which stimulates the release of Ca(2+) from the ER or the subsequent store-operated Ca(2+) entry (SOCE). The pregnenolone concentration in the culture medium was increased by ACTH, which was significantly suppressed by 2APB, showing that the 2APB-sensitive Ca(2+) supply affects cholesterol transport into the mitochondrial membrane via steroidogenic acute regulatory protein. Therefore, the SOCE may contribute to ACTH-induced steroidogenesis in the mitochondrial region. In conclusion, the [Ca(2+)](i) used for steroidogenesis may be derived from a 2APB-sensitive pathway and via VDCCs, particularly at physiological concentrations of ACTH. We suggest that ACTH receptors activate steroidogenesis via inositol triphosphate, or an unknown downstream messenger, which could be inhibited by 2APB.
Collapse
Affiliation(s)
- Chiga Hayashi
- Second Division, Department of Medicine, Hamamatsu University School of Medicine,1-20-1 Handayama, Higashi-ku, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|