1
|
Abstract
Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.
Collapse
Affiliation(s)
- Markus Rudowitz
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
2
|
Feng P, Skowyra ML, Rapoport TA. Structure and function of the peroxisomal ubiquitin ligase complex. Biochem Soc Trans 2022; 50:1921-1930. [PMID: 36421406 PMCID: PMC9788354 DOI: 10.1042/bst20221393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 09/26/2023]
Abstract
Peroxisomes are membrane-bounded organelles that exist in most eukaryotic cells and are involved in the oxidation of fatty acids and the destruction of reactive oxygen species. Depending on the organism, they house additional metabolic reactions that range from glycolysis in parasitic protozoa to the production of ether lipids in animals and antibiotics in fungi. The importance of peroxisomes for human health is revealed by various disorders - notably the Zellweger spectrum - that are caused by defects in peroxisome biogenesis and are often fatal. Most peroxisomal metabolic enzymes reside in the lumen, but are synthesized in the cytosol and imported into the organelle by mobile receptors. The receptors accompany cargo all the way into the lumen and must return to the cytosol to start a new import cycle. Recycling requires receptor monoubiquitination by a membrane-embedded ubiquitin ligase complex composed of three RING finger (RF) domain-containing proteins: PEX2, PEX10, and PEX12. A recent cryo-electron microscopy (cryo-EM) structure of the complex reveals its function as a retro-translocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that assemble into an open channel. The N terminus of a receptor likely inserts into the pore from the lumenal side, and is then monoubiquitinated by one of the RFs to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitinated by the concerted action of the other two RFs and ultimately degraded. The new data provide mechanistic insight into a crucial step of peroxisomal protein import.
Collapse
Affiliation(s)
- Peiqiang Feng
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| | - Michael L. Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| | - Tom A. Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A
| |
Collapse
|
3
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
4
|
Feng P, Wu X, Erramilli SK, Paulo JA, Knejski P, Gygi SP, Kossiakoff AA, Rapoport TA. A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel. Nature 2022; 607:374-380. [PMID: 35768507 PMCID: PMC9279156 DOI: 10.1038/s41586-022-04903-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
Peroxisomes are ubiquitous organelles that house various metabolic reactions and are essential for human health1-4. Luminal peroxisomal proteins are imported from the cytosol by mobile receptors, which then recycle back to the cytosol by a poorly understood process1-4. Recycling requires receptor modification by a membrane-embedded ubiquitin ligase complex comprising three RING finger domain-containing proteins (Pex2, Pex10 and Pex12)5,6. Here we report a cryo-electron microscopy structure of the ligase complex, which together with biochemical and in vivo experiments reveals its function as a retrotranslocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that co-assemble into an open channel. The three ring finger domains form a cytosolic tower, with ring finger 2 (RF2) positioned above the channel pore. We propose that the N terminus of a recycling receptor is inserted from the peroxisomal lumen into the pore and monoubiquitylated by RF2 to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitylated by the concerted action of RF10 and RF12 and degraded. This polyubiquitylation pathway also maintains the homeostasis of other peroxisomal import factors. Our results clarify a crucial step during peroxisomal protein import and reveal why mutations in the ligase complex cause human disease.
Collapse
Affiliation(s)
- Peiqiang Feng
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Xudong Wu
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pawel Knejski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Tom A Rapoport
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Traver MS, Bradford SE, Olmos JL, Wright ZJ, Miller MD, Xu W, Phillips GN, Bartel B. The Structure of the Arabidopsis PEX4-PEX22 Peroxin Complex-Insights Into Ubiquitination at the Peroxisomal Membrane. Front Cell Dev Biol 2022; 10:838923. [PMID: 35300425 PMCID: PMC8922245 DOI: 10.3389/fcell.2022.838923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/28/2022] [Indexed: 01/11/2023] Open
Abstract
Peroxisomes are eukaryotic organelles that sequester critical oxidative reactions and process the resulting reactive oxygen species into less toxic byproducts. Peroxisome function and formation are coordinated by peroxins (PEX proteins) that guide peroxisome biogenesis and division and shuttle proteins into the lumen and membrane of the organelle. Despite the importance of peroxins in plant metabolism and development, no plant peroxin structures have been reported. Here we report the X-ray crystal structure of the PEX4-PEX22 peroxin complex from the reference plant Arabidopsis thaliana. PEX4 is a ubiquitin-conjugating enzyme (UBC) that ubiquitinates proteins associated with the peroxisomal membrane, and PEX22 is a peroxisomal membrane protein that anchors PEX4 to the peroxisome and facilitates PEX4 activity. We co-expressed Arabidopsis PEX4 as a translational fusion with the soluble PEX4-interacting domain of PEX22 in E. coli. The fusion was linked via a protease recognition site, allowing us to separate PEX4 and PEX22 following purification and solve the structure of the complex. We compared the structure of the PEX4-PEX22 complex to the previously published structures of yeast orthologs. Arabidopsis PEX4 displays the typical UBC structure expected from its sequence. Although Arabidopsis PEX22 lacks notable sequence identity to yeast PEX22, it maintains a similar Rossmann fold-like structure. Several salt bridges are positioned to contribute to the specificity of PEX22 for PEX4 versus other Arabidopsis UBCs, and the long unstructured PEX22 tether would allow PEX4-mediated ubiquitination of distant peroxisomal membrane targets without dissociation from PEX22. The Arabidopsis PEX4-PEX22 structure also revealed that the residue altered in pex4-1 (P123L), a mutant previously isolated via a forward-genetic screen for peroxisomal dysfunction, is near the active site cysteine of PEX4. We demonstrated in vitro UBC activity for the PEX4-PEX22 complex and found that the pex4-1 enzyme has reduced in vitro ubiquitin-conjugating activity and altered specificity compared to PEX4. Our findings illuminate the role of PEX4 and PEX22 in peroxisome structure and function and provide tools for future exploration of ubiquitination at the peroxisome surface.
Collapse
Affiliation(s)
- Melissa S. Traver
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Sarah E. Bradford
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Jose Luis Olmos
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Zachary J. Wright
- Department of Biosciences, Rice University, Houston, TX, United States
| | | | - Weijun Xu
- Department of Biosciences, Rice University, Houston, TX, United States
| | - George N. Phillips
- Department of Biosciences, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, TX, United States
| |
Collapse
|
6
|
Bacheva AV, Gotmanova NN, Belogurov AA, Kudriaeva AA. Control of Genome through Variative Nature of Histone-Modifying Ubiquitin Ligases. BIOCHEMISTRY (MOSCOW) 2021; 86:S71-S95. [PMID: 33827401 DOI: 10.1134/s0006297921140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.
Collapse
Affiliation(s)
- Anna V Bacheva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Alexey A Belogurov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
7
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
8
|
Abstract
Blobel and coworkers discovered in 1978 that peroxisomal proteins are synthesized on free ribosomes in the cytosol and thus provided the grounds for the conception of peroxisomes as self-containing organelles. Peroxisomes are highly adaptive and versatile organelles carrying out a wide variety of metabolic functions. A striking feature of the peroxisomal import machinery is that proteins can traverse the peroxisomal membrane in a folded and even oligomeric state via cycling receptors. We outline essential steps of peroxisomal matrix protein import, from targeting of the proteins to the peroxisomal membrane, their translocation via transient pores and export of the corresponding cycling import receptors with emphasis on the situation in yeast. Peroxisomes can contribute to the adaptation of cells to different environmental conditions. This is realized by changes in metabolic functions and thus the enzyme composition of the organelles is adopted according to the cellular needs. In recent years, it turned out that this organellar diversity is based on an elaborate regulation of gene expression and peroxisomal protein import. The latter is in the focus of this review that summarizes our knowledge on the composition and function of the peroxisomal protein import machinery with emphasis on novel alternative protein import pathways.
Collapse
Affiliation(s)
- Thomas Walter
- Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
9
|
McClellan AJ, Laugesen SH, Ellgaard L. Cellular functions and molecular mechanisms of non-lysine ubiquitination. Open Biol 2019; 9:190147. [PMID: 31530095 PMCID: PMC6769291 DOI: 10.1098/rsob.190147] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protein ubiquitination is of great cellular importance through its central role in processes such as degradation, DNA repair, endocytosis and inflammation. Canonical ubiquitination takes place on lysine residues, but in the past 15 years non-lysine ubiquitination on serine, threonine and cysteine has been firmly established. With the emerging importance of non-lysine ubiquitination, it is crucial to identify the responsible molecular machinery and understand the mechanistic basis for non-lysine ubiquitination. Here, we first provide an overview of the literature that has documented non-lysine ubiquitination. Informed by these examples, we then discuss the molecular mechanisms and cellular implications of non-lysine ubiquitination, and conclude by outlining open questions and future perspectives in the field.
Collapse
Affiliation(s)
- Amie J McClellan
- Division of Science and Mathematics, Bennington College, 1 College Drive, Bennington, VT 05201, USA
| | - Sophie Heiden Laugesen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
El Magraoui F, Brinkmeier R, Mastalski T, Hupperich A, Strehl C, Schwerter D, Girzalsky W, Meyer HE, Warscheid B, Erdmann R, Platta HW. The deubiquitination of the PTS1-import receptor Pex5p is required for peroxisomal matrix protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:199-213. [PMID: 30408545 DOI: 10.1016/j.bbamcr.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/13/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed. In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Biomedizinische Forschung, Leibniz-Insitute for Analytische Wissenschaften - ISAS e.V. - (ISAS e.V.), 44139 Dortmund, Germany; Systembiochemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Mastalski
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Alexander Hupperich
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Christofer Strehl
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | | | - Helmut E Meyer
- Biomedizinische Forschung, Leibniz-Insitute for Analytische Wissenschaften - ISAS e.V. - (ISAS e.V.), 44139 Dortmund, Germany
| | - Bettina Warscheid
- Functional Proteomics, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
11
|
Abstract
Ubiquitylation is an essential posttranslational modification that controls cell division, differentiation, and survival in all eukaryotes. By combining multiple E3 ligases (writers), ubiquitin-binding effectors (readers), and de-ubiquitylases (erasers) with functionally distinct ubiquitylation tags, the ubiquitin system constitutes a powerful signaling network that is employed in similar ways from yeast to humans. Here, we discuss conserved principles of ubiquitin-dependent signaling that illustrate how this posttranslational modification shapes intracellular signaling networks to establish robust development and homeostasis throughout the eukaryotic kingdom.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Rodrigues TA, Francisco T, Azevedo JE. PEX13 Enters the RING, Lives Fast, Dies Young. J Mol Biol 2018; 430:1559-1561. [PMID: 29655985 DOI: 10.1016/j.jmb.2018.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Chen X, Devarajan S, Danda N, Williams C. Insights into the Role of the Peroxisomal Ubiquitination Machinery in Pex13p Degradation in the Yeast Hansenula polymorpha. J Mol Biol 2018; 430:1545-1558. [PMID: 29694833 DOI: 10.1016/j.jmb.2018.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
The import of matrix proteins into peroxisomes in yeast requires the action of the ubiquitin-conjugating enzyme Pex4p and a complex consisting of the ubiquitin E3 ligases Pex2p, Pex10p and Pex12p. Together, this peroxisomal ubiquitination machinery is thought to ubiquitinate the cycling receptor protein Pex5p and members of the Pex20p family of co-receptors, a modification that is required for receptor recycling. However, recent reports have demonstrated that this machinery plays a role in additional peroxisome-associated processes. Hence, our understanding of the function of these proteins in peroxisome biology is still incomplete. Here, we identify a role for the peroxisomal ubiquitination machinery in the degradation of the peroxisomal membrane protein Pex13p. Our data demonstrate that Pex13p levels build up in cells lacking members of this machinery and also establish that Pex13p undergoes rapid degradation in wild-type cells. Furthermore, we show that Pex13p is ubiquitinated in wild-type cells and also establish that Pex13p ubiquitination is reduced in cells lacking a functional peroxisomal E3 ligase complex. Finally, deletion of PEX2 causes Pex13p to build up at the peroxisomal membrane. Taken together, our data provide further evidence that the role of the peroxisomal ubiquitination machinery in peroxisome biology goes much deeper than receptor recycling alone.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Srishti Devarajan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Natasha Danda
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands.
| |
Collapse
|
14
|
Suaste-Olmos F, Zirión-Martínez C, Takano-Rojas H, Peraza-Reyes L. Meiotic development initiation in the fungus Podospora anserina requires the peroxisome receptor export machinery. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:572-586. [DOI: 10.1016/j.bbamcr.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/19/2023]
|
15
|
Yang X, Arines FM, Zhang W, Li M. Sorting of a multi-subunit ubiquitin ligase complex in the endolysosome system. eLife 2018; 7:33116. [PMID: 29355480 PMCID: PMC5811209 DOI: 10.7554/elife.33116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The yeast Dsc E3 ligase complex has long been recognized as a Golgi-specific protein ubquitination system. It shares a striking sequence similarity to the Hrd1 complex that plays critical roles in the ER-associated degradation pathway. Using biochemical purification and mass spectrometry, we identified two novel Dsc subunits, which we named as Gld1 and Vld1. Surprisingly, Gld1 and Vld1 do not coexist in the same complex. Instead, they compete with each other to form two functionally independent Dsc subcomplexes. The Vld1 subcomplex takes the AP3 pathway to reach the vacuole membrane, whereas the Gld1 subcomplex travels through the VPS pathway and is cycled between Golgi and endosomes by the retromer. Thus, instead of being Golgi-specific, the Dsc complex can regulate protein levels at three distinct organelles, namely Golgi, endosome, and vacuole. Our study provides a novel model of achieving multi-tasking for transmembrane ubiquitin ligases with interchangeable trafficking adaptors. Proteins perform many tasks and, to remain healthy, each cell must ensure that its proteins are in good condition and present at the right levels. Plants, animals and fungi all largely deal with damaged, or otherwise unneeded, proteins by tagging them with a small marker called ubiquitin. The tagged proteins are then rapidly destroyed, which prevents them from harming the cells. Enzymes known as E3 ligases attach ubiquitin to proteins. Yet, the number of E3 ligases is dwarfed by the number of proteins modified with ubiquitin. For instance, humans have approximately 20,000 different proteins, about one third of which are found in or on cell membranes. However, there are only around 600 E3 ligases, and only about 50 of them are associated with cell membranes. This is further complicated by the fact that proteins are also present in distinct compartments within the cell. The Dsc complex, for example, is an E3 ligase from yeast that is found within a compartment of the cell known as the Golgi. It was thus expected to only attach ubiquitin to Golgi proteins. Yet some recent studies showed that the Dsc complex could also tag proteins present in two other compartments of yeast cells: the endosome and vacuole. How can the Dsc complex act on proteins in three distinct compartments? The Dsc complex is actually made from multiple proteins, and Yang et al. now report two new protein components. Biochemical and genetic tools showed that these two proteins do not co-exist in the same Dsc complex. Instead, they compete with each other to form two different kinds of Dsc complexes, which Yang et al. refer to as subcomplexes. Further work showed that the two new proteins determine the route taken by the Dsc complex along the cell’s protein transport pathway. One subcomplex is transported to the vacuole and the other cycles between the Golgi and endosomes. Thus, by changing just one component, the Dsc complex can be sent to different locations within the cell. These findings describe a new mechanism that enables E3 ligases to multi-task on a wide range of proteins, even across distinct compartments of the cell. Future work will determine whether plant and animal cells also use a similar strategy. Since defects in protein quality control contribute to many human diseases, such as Alzheimer's and Parkinson's disease, working out how E3 ligases work is important for the field of biomedicine.
Collapse
Affiliation(s)
- Xi Yang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Felichi Mae Arines
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Weichao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Ming Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
16
|
Kalel VC, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries. Subcell Biochem 2018; 89:299-321. [PMID: 30378029 DOI: 10.1007/978-981-13-2233-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins. The involvement of cycling receptors is a special feature of peroxisomal protein import. Complex machineries of peroxin (PEX) proteins mediate peroxisomal matrix and membrane protein import. Identification of PEX genes was dominated by forward genetic techniques in the early 90s. However, recent developments in proteomic techniques has revolutionized the detailed characterization of peroxisomal protein import. Here, we summarize the current knowledge on peroxisomal protein import with emphasis on the contribution of proteomic approaches to our understanding of the composition and function of the peroxisomal protein import machineries.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
17
|
Blomqvist M, Ahlberg K, Lindgren J, Ferdinandusse S, Asin-Cayuela J. Identification of a novel mutation in PEX10 in a patient with attenuated Zellweger spectrum disorder: a case report. J Med Case Rep 2017; 11:218. [PMID: 28784167 PMCID: PMC5547663 DOI: 10.1186/s13256-017-1365-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/23/2017] [Indexed: 12/05/2022] Open
Abstract
Background The peroxisome biogenesis disorders, which are caused by mutations in any of 13 different PEX genes, include the Zellweger spectrum disorders. Severe defects in one of these PEX genes result in the absence of functional peroxisomes which is seen in classical Zellweger syndrome. These patients present with hypotonia and seizures shortly after birth. Other typical symptoms are dysmorphic features, liver disease, retinal degeneration, sensorineural deafness, polycystic kidneys, and the patient does not reach any developmental milestones. Case presentation We report a case of a patient with Zellweger spectrum disorder due to a novel mutation in the PEX10 gene, presenting with a mild late-onset neurological phenotype. The patient, an Assyrian girl originating from Iraq, presented with sensorineural hearing impairment at the age of 5 followed by sensorimotor polyneuropathy, cognitive delay, impaired gross and fine motor skills, and tremor and muscle weakness in her teens. Analyses of biochemical markers for peroxisomal disease suggested a mild peroxisomal defect and functional studies in fibroblasts confirmed the existence of a peroxisome biogenesis disorder. Diagnosis was confirmed by next generation sequencing analysis, which showed a novel homozygous mutation (c.530 T > G (p.Leu177Arg) (NM_153818.1)) in the PEX10 gene predicted to be pathogenic. Conclusions This case highlights the importance of performing biochemical, functional, and genetic peroxisomal screening in patients with clinical presentations milder than those usually observed in Zellweger spectrum disorders.
Collapse
Affiliation(s)
- Maria Blomqvist
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| | - Karin Ahlberg
- Paediatric Clinic, Central Hospital, S-65185, Karlstad, Sweden
| | - Julia Lindgren
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Jorge Asin-Cayuela
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
18
|
Francisco T, Rodrigues TA, Dias AF, Barros-Barbosa A, Bicho D, Azevedo JE. Protein transport into peroxisomes: Knowns and unknowns. Bioessays 2017; 39. [PMID: 28787099 DOI: 10.1002/bies.201700047] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the "plunger" - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the "barrel" - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the "barrel" is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.
Collapse
Affiliation(s)
- Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana F Dias
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Diana Bicho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Schwerter DP, Grimm I, Platta HW, Erdmann R. ATP-driven processes of peroxisomal matrix protein import. Biol Chem 2017; 398:607-624. [PMID: 27977397 DOI: 10.1515/hsz-2016-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
In peroxisomal matrix protein import two processes directly depend on the binding and hydrolysis of ATP, both taking place at the late steps of the peroxisomal import cycle. First, ATP hydrolysis is required to initiate a ubiquitin-transfer cascade to modify the import (co-)receptors. These receptors display a dual localization in the cytosol and at the peroxisomal membrane, whereas only the membrane bound fraction receives the ubiquitin modification. The second ATP-dependent process of the import cycle is carried out by the two AAA+-proteins Pex1p and Pex6p. These ATPases form a heterohexameric complex, which is recruited to the peroxisomal import machinery by the membrane anchor protein Pex15p. The Pex1p/Pex6p complex recognizes the ubiquitinated import receptors, pulls them out of the membrane and releases them into the cytosol. There the deubiquitinated receptors are provided for further rounds of import. ATP binding and hydrolysis are required for Pex1p/Pex6p complex formation and receptor export. In this review, we summarize the current knowledge on the peroxisomal import cascade. In particular, we will focus on the ATP-dependent processes, which are so far best understood in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Daniel P Schwerter
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| | - Immanuel Grimm
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| |
Collapse
|
20
|
Wloka C, Van Meervelt V, van Gelder D, Danda N, Jager N, Williams CP, Maglia G. Label-Free and Real-Time Detection of Protein Ubiquitination with a Biological Nanopore. ACS NANO 2017; 11:4387-4394. [PMID: 28353339 PMCID: PMC5444049 DOI: 10.1021/acsnano.6b07760] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
The covalent addition of ubiquitin to target proteins is a key post-translational modification that is linked to a myriad of biological processes. Here, we report a fast, single-molecule, and label-free method to probe the ubiquitination of proteins employing an engineered Cytolysin A (ClyA) nanopore. We show that ionic currents can be used to recognize mono- and polyubiquitinated forms of native proteins under physiological conditions. Using defined conjugates, we also show that isomeric monoubiquitinated proteins can be discriminated. The nanopore approach allows following the ubiquitination reaction in real time, which will accelerate the understanding of fundamental mechanisms linked to protein ubiquitination.
Collapse
Affiliation(s)
- Carsten Wloka
- Chemical
Biology I, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | | | - Dewi van Gelder
- Molecular
Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natasha Danda
- Molecular
Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Nienke Jager
- Chemical
Biology I, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Chris P. Williams
- Molecular
Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, 9747 AG Groningen, The Netherlands
- E-mail:
| | - Giovanni Maglia
- Chemical
Biology I, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, 9747 AG Groningen, The Netherlands
- E-mail:
| |
Collapse
|
21
|
Motley AM, Galvin PC, Ekal L, Nuttall JM, Hettema EH. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis. J Cell Biol 2016; 211:1041-56. [PMID: 26644516 PMCID: PMC4674274 DOI: 10.1083/jcb.201412066] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Analysis of Pex1 and dynamin-related protein function indicates peroxisomes multiply mainly by growth and division in Saccharomyces cerevisiae, whereas no evidence was found for the previously proposed role for Pex1 in peroxisome formation by fusion of ER-derived preperoxisomal vesicles. A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division.
Collapse
Affiliation(s)
- Alison M Motley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Paul C Galvin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Lakhan Ekal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - James M Nuttall
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| | - Ewald H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England, UK
| |
Collapse
|
22
|
Grimm I, Erdmann R, Girzalsky W. Role of AAA(+)-proteins in peroxisome biogenesis and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:828-37. [PMID: 26453804 DOI: 10.1016/j.bbamcr.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
Abstract
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
Collapse
Affiliation(s)
- Immanuel Grimm
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | - Wolfgang Girzalsky
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
23
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
24
|
Platta HW, Brinkmeier R, Reidick C, Galiani S, Clausen MP, Eggeling C. Regulation of peroxisomal matrix protein import by ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:838-49. [PMID: 26367801 DOI: 10.1016/j.bbamcr.2015.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
25
|
Cysteine-specific ubiquitination protects the peroxisomal import receptor Pex5p against proteasomal degradation. Biosci Rep 2015; 35:BSR20150103. [PMID: 26182377 PMCID: PMC4613714 DOI: 10.1042/bsr20150103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
Peroxisomal import receptors cycle between the peroxisomal membrane and the cytosol. A monoubiquitinated cysteine is required for efficient recycling of the peroxisomal import receptor Pex5p and prevents the protein from polyubiquitination, which leads to a rapid degradation of the protein. Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p.
Collapse
|
26
|
Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol 2015; 427:1176-90. [PMID: 25681696 PMCID: PMC4726662 DOI: 10.1016/j.jmb.2015.02.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. Peroxisomal membrane and matrix proteins require distinct factors for their transport. Matrix proteins fold in the cytosol prior to their import. Loaded targeting receptors form part of the matrix protein translocation pore. Many membrane proteins are directly inserted into the peroxisomal membrane. Some peroxisomal membrane proteins are transported via the ER to peroxisomes.
Collapse
Affiliation(s)
- P K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - E H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire S10 2TN, United Kingdom.
| |
Collapse
|
27
|
Gardner BM, Chowdhury S, Lander GC, Martin A. The Pex1/Pex6 complex is a heterohexameric AAA+ motor with alternating and highly coordinated subunits. J Mol Biol 2015; 427:1375-1388. [PMID: 25659908 DOI: 10.1016/j.jmb.2015.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 12/13/2022]
Abstract
Pex1 and Pex6 are Type-2 AAA+ ATPases required for the de novo biogenesis of peroxisomes. Mutations in Pex1 and Pex6 account for the majority of the most severe forms of peroxisome biogenesis disorders in humans. Here, we show that the ATP-dependent complex of Pex1 and Pex6 from Saccharomyces cerevisiae is a heterohexamer with alternating subunits. Within the Pex1/Pex6 complex, only the D2 ATPase ring hydrolyzes ATP, while nucleotide binding in the D1 ring promotes complex assembly. ATP hydrolysis by Pex1 is highly coordinated with that of Pex6. Furthermore, Pex15, the membrane anchor required for Pex1/Pex6 recruitment to peroxisomes, inhibits the ATP-hydrolysis activity of Pex1/Pex6.
Collapse
Affiliation(s)
- Brooke M Gardner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3220, USA.
| |
Collapse
|
28
|
Burkhart SE, Kao YT, Bartel B. Peroxisomal ubiquitin-protein ligases peroxin2 and peroxin10 have distinct but synergistic roles in matrix protein import and peroxin5 retrotranslocation in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1329-44. [PMID: 25214533 PMCID: PMC4226347 DOI: 10.1104/pp.114.247148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/11/2014] [Indexed: 05/20/2023]
Abstract
Peroxisomal matrix proteins carry peroxisomal targeting signals (PTSs), PTS1 or PTS2, and are imported into the organelle with the assistance of peroxin (PEX) proteins. From a microscopy-based screen to identify Arabidopsis (Arabidopsis thaliana) mutants defective in matrix protein degradation, we isolated unique mutations in PEX2 and PEX10, which encode ubiquitin-protein ligases anchored in the peroxisomal membrane. In yeast (Saccharomyces cerevisiae), PEX2, PEX10, and a third ligase, PEX12, ubiquitinate a peroxisome matrix protein receptor, PEX5, allowing the PEX1 and PEX6 ATP-hydrolyzing enzymes to retrotranslocate PEX5 out of the membrane after cargo delivery. We found that the pex2-1 and pex10-2 Arabidopsis mutants exhibited defects in peroxisomal physiology and matrix protein import. Moreover, the pex2-1 pex10-2 double mutant exhibited severely impaired growth and synergistic physiological defects, suggesting that PEX2 and PEX10 function cooperatively in the wild type. The pex2-1 lesion restored the unusually low PEX5 levels in the pex6-1 mutant, implicating PEX2 in PEX5 degradation when retrotranslocation is impaired. PEX5 overexpression altered pex10-2 but not pex2-1 defects, suggesting that PEX10 facilitates PEX5 retrotranslocation from the peroxisomal membrane. Although the pex2-1 pex10-2 double mutant displayed severe import defects of both PTS1 and PTS2 proteins into peroxisomes, both pex2-1 and pex10-2 single mutants exhibited clear import defects of PTS1 proteins but apparently normal PTS2 import. A similar PTS1-specific pattern was observed in the pex4-1 ubiquitin-conjugating enzyme mutant. Our results indicate that Arabidopsis PEX2 and PEX10 cooperate to support import of matrix proteins into plant peroxisomes and suggest that some PTS2 import can still occur when PEX5 retrotranslocation is slowed.
Collapse
Affiliation(s)
- Sarah E Burkhart
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Yun-Ting Kao
- Department of BioSciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of BioSciences, Rice University, Houston, Texas 77005
| |
Collapse
|
29
|
Abstract
Pex7p is the cytosolic receptor for peroxisomal matrix proteins harbouring PTS2 (peroxisome-targeting signal type-2). Mutations in the PEX7 gene cause RCDP (rhizomelic chondrodysplasia punctata) type 1, a distinct PTS2-import-defective phenotype of peroxisome biogenesis disorders. The mechanisms by which the protein level and quality of Pex7p are controlled remain largely unknown. In the present study we show that dysfunctional Pex7p, including mutants from RCDP patients, is degraded by a ubiquitin-dependent proteasomal pathway involving the CRL4A (Cullin4A-RING ubiquitin ligase) complex. Furthermore, we demonstrate that the degradation of dysfunctional Pex7p is essential for maintaining normal PTS2 import, thereby suggesting that CRL4A functions as an E3 ligase in the quality control of Pex7p. Our results define a mechanism underlying Pex7p homoeostasis and highlight its importance for regulating PTS2 import. These findings may lead to a new approach to Pex7p-based therapies for the treatment of peroxisome biogenesis disorders such as RCDP.
Collapse
|
30
|
Peripheral nervous system defects in a mouse model for peroxisomal biogenesis disorders. Dev Biol 2014; 395:84-95. [PMID: 25176044 DOI: 10.1016/j.ydbio.2014.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
Peroxisome biogenesis disorders (PBD) are autosomal recessive disorders in humans characterized by skeletal, eye and brain abnormalities. Despite the fact that neurological deficits, including peripheral nervous system (PNS) defects, can be observed at birth in some PBD patients including those with PEX10 mutations, the embryological basis of the PNS defects is unclear. Using a forward genetic screen, we identified a mouse model for Pex10 deficiency that exhibits neurological abnormalities during fetal development. Homozygous Pex10 mutant mouse embryos display biochemical abnormalities related to a PBD deficiency. During late embryogenesis, Pex10 homozygous mutant mice experience progressive loss of movement and at birth they become cyanotic and die shortly thereafter. Homozygous Pex10 mutant fetuses display decreased integrity of axons and synapses, over-extension of axons in the diaphragm and decreased Schwann cell numbers. Our neuropathological, molecular and electrophysiological studies provide new insights into the embryological basis of the PNS deficits in a PBD model. Our findings identify PEX10 function, and likely other PEX proteins, as an essential component of the spinal locomotor circuit.
Collapse
|
31
|
Hagstrom D, Ma C, Guha-Polley S, Subramani S. The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20. Mol Biol Cell 2014; 25:2634-43. [PMID: 25009284 PMCID: PMC4148252 DOI: 10.1091/mbc.e13-12-0716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Pichia pastoris, the PTS2 receptor, Pex7, is selectively degraded in a regulated manner. The shuttling of Pex7, and consequently its degradation, depends on the receptor recycling pathways used by Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20. Peroxisomal matrix protein import uses two peroxisomal targeting signals (PTSs). Most matrix proteins use the PTS1 pathway and its cargo receptor, Pex5. The PTS2 pathway is dependent on another receptor, Pex7, and its coreceptor, Pex20. We found that during the matrix protein import cycle, the stability and dynamics of Pex7 differ from those of Pex5 and Pex20. In Pichia pastoris, unlike Pex5 and Pex20, Pex7 is constitutively degraded in wild-type cells but is stabilized in pex mutants affecting matrix protein import. Degradation of Pex7 is more prevalent in cells grown in methanol, in which the PTS2 pathway is nonessential, in comparison with oleate, suggesting regulation of Pex7 turnover. Pex7 must shuttle into and out of peroxisomes before it is polyubiquitinated and degraded by the proteasome. The shuttling of Pex7, and consequently its degradation, is dependent on the receptor recycling pathways of Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. We also found that blocking the export of Pex20 from peroxisomes inhibits PTS1-mediated import, suggesting sharing of limited components in the export of PTS receptors/coreceptors. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20, exemplifying a novel interdependence of the PTS1 and PTS2 pathways.
Collapse
Affiliation(s)
- Danielle Hagstrom
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322 College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Soumi Guha-Polley
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| |
Collapse
|
32
|
Williams C. Going against the flow: A case for peroxisomal protein export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1386-92. [DOI: 10.1016/j.bbamcr.2014.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
33
|
Lanyon-Hogg T, Hooper J, Gunn S, Warriner SL, Baker A. PEX14 binding to Arabidopsis PEX5 has differential effects on PTS1 and PTS2 cargo occupancy of the receptor. FEBS Lett 2014; 588:2223-9. [PMID: 24879895 PMCID: PMC4065332 DOI: 10.1016/j.febslet.2014.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/16/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022]
Abstract
The interaction between Arabidopsis PEX5 and PEX14N is independent of cargo binding. The affinity of a PTS1 peptide for PEX5 is unaffected by PEX14N binding. Arabidopsis PEX5 complexes PTS1 and PTS2 cargoes. PEX5 and 7 co-isolate with PEX14N, but the PTS2 cargo thiolase does not. PEX14N does not unload canonical PTS1 cargo peptide in vitro but may play a role in PTS2 release.
PEX5 acts as a cycling receptor for import of PTS1 proteins into peroxisomes and as a co-receptor for PEX7, the PTS2 receptor, but the mechanism of cargo unloading has remained obscure. Using recombinant protein domains we show PEX5 binding to the PEX14N-terminal domain (PEX14N) has no effect on the affinity of PEX5 for a PTS1 containing peptide. PEX5 can form a complex containing both recombinant PTS1 cargo and endogenous PEX7-thiolase simultaneously but isolation of the complex via the PEX14 construct resulted in an absence of thiolase, suggesting a possible role for PEX14 in the unloading of PTS2 cargos. pMDH1physically interacts with PEX5 by pull down (View interaction) PEX5Cbinds to PEX14N by filter binding (View interaction) PEX14Nbinds to PEX5C by pull down (View interaction) PEX14Nphysically interacts with PEX7 by pull down (View interaction) PEX5physically interacts with PEX7 by pull down (View interaction) DCI1physically interacts with PEX5 by pull down (View interaction) PEX5physically interacts with thiolase PTS2-cargo by pull down (View interaction) pMDH1physically interacts with PEX7 by pull down (View interaction) DCI1physically interacts with thiolase PTS2-cargo by pull down (View interaction) DCI1physically interacts with PEX7 by pull down (View interaction) PEX14Nphysically interacts with PEX5 by pull down (View interaction)
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Jacob Hooper
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah Gunn
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Alison Baker
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
34
|
Okumoto K, Noda H, Fujiki Y. Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import. J Biol Chem 2014; 289:14089-108. [PMID: 24662292 DOI: 10.1074/jbc.m113.527937] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome targeting signal type-1 (PTS1) receptor, Pex5p, is a key player in peroxisomal matrix protein import. Pex5p recognizes PTS1 cargoes in the cytosol, targets peroxisomes, translocates across the membrane, unloads the cargoes, and shuttles back to the cytosol. Ubiquitination of Pex5p at a conserved cysteine is required for the exit from peroxisomes. However, any potential ubiquitin ligase (E3) remains unidentified in mammals. Here, we establish an in vitro ubiquitination assay system and demonstrate that RING finger Pex10p functions as an E3 with an E2, UbcH5C. The E3 activity of Pex10p is essential for its peroxisome-restoring activity, being enhanced by another RING peroxin, Pex12p. The Pex10p·Pex12p complex catalyzes monoubiquitination of Pex5p at one of multiple lysine residues in vitro, following the dissociation of Pex5p from Pex14p and the PTS1 cargo. Several lines of evidence with lysine-to-arginine mutants of Pex5p demonstrate that Pex10p RING E3-mediated ubiquitination of Pex5p is required for its efficient export from peroxisomes to the cytosol and peroxisomal matrix protein import. RING peroxins are required for both modes of Pex5p ubiquitination, thus playing a pivotal role in Pex5p shuttling.
Collapse
Affiliation(s)
- Kanji Okumoto
- From the Department of Biology, Faculty of Sciences, and the Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Hiromi Noda
- From the Department of Biology, Faculty of Sciences, and
| | - Yukio Fujiki
- From the Department of Biology, Faculty of Sciences, and
| |
Collapse
|
35
|
A disulphide bond in the E2 enzyme Pex4p modulates ubiquitin-conjugating activity. Sci Rep 2014; 3:2212. [PMID: 23896733 PMCID: PMC6505396 DOI: 10.1038/srep02212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/26/2013] [Indexed: 11/10/2022] Open
Abstract
The ubiquitin-conjugating enzyme Pex4p together with its binding partner, the peroxisomal membrane protein Pex22p, co-ordinates cysteine-dependent ubiquitination of the cycling receptor protein Pex5p. Unusually for an ubiquitin-conjugating enzyme, Saccharomyces cerevisiae Pex4p can form a disulphide bond between the cysteine residues at positions 105 and 146. We found that mutating the disulphide forming cysteine residues in Pex4p to serines does not disturb the secondary structure of the protein but does reduce the in vitro activity of Pex4p. From the crystal structure of Pex4p C105S, C146S in complex with the soluble domain of Pex22p, we observe a narrowing of the active site cleft, caused by loss of the disulphide bond. This modification of the active site microenvironment is likely to restrict access of ubiquitin to the active site cysteine, modulating Pex4p activity. Finally, based on sequence and structural alignments, we have identified other ubiquitin-conjugating enzymes that may contain disulphide bonds.
Collapse
|
36
|
Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2013; 98:16-28. [PMID: 24345375 DOI: 10.1016/j.biochi.2013.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022]
Abstract
The biogenesis of peroxisomes is an ubiquitin-dependent process. In particular, the import of matrix proteins into the peroxisomal lumen requires the modification of import receptors with ubiquitin. The matrix proteins are synthesized on free polyribosomes in the cytosol and are recognized by import receptors via a peroxisomal targeting sequence (PTS). Subsequent to the transport of the receptor/cargo-complex to the peroxisomal membrane and the release of the cargo into the peroxisomal lumen, the PTS-receptors are exported back to the cytosol for further rounds of matrix protein import. The exportomer represents the molecular machinery required for the retrotranslocation of the PTS-receptors. It comprises enzymes for the ubiquitination as well as for the ATP-dependent extraction of the PTS-receptors from the peroxisomal membrane. Furthermore, recent evidence indicates a mechanistic interconnection of the ATP-dependent removal of the PTS-receptors with the translocation of the matrix protein into the organellar lumen. Interestingly, the components of the peroxisomal exportomer seem also to be involved in cellular tasks that are distinct from the ubiquitination and dislocation of the peroxisomal PTS-receptors. This includes work that indicates a central function of this machinery in the export of peroxisomal matrix proteins in plants, while a subset of exportomer components is involved in the meiocyte formation in some fungi, the peroxisome-chloroplast contact during photorespiration in plants and possibly even the selective degradation of peroxisomes via pexophagy. In this review, we want to discuss the central role of the exportomer during matrix protein import, but also highlight distinct roles of exportomer constituents in additional cellular processes. This article is part of a Special Issue entitled: Peroxisomes: biogenesis, functions and diseases.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Stefanie Hagen
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
37
|
El Magraoui F, Brinkmeier R, Schrötter A, Girzalsky W, Müller T, Marcus K, Meyer HE, Erdmann R, Platta HW. Distinct Ubiquitination Cascades Act on the Peroxisomal Targeting Signal Type 2 Co-receptor Pex18p. Traffic 2013; 14:1290-301. [DOI: 10.1111/tra.12120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Fouzi El Magraoui
- Biochemie Intrazellulärer Transportprozesse; Ruhr-Universität Bochum; Bochum 44780 Germany
- Systembiochemie; Ruhr-Universität Bochum; Bochum 44780 Germany
- Medizinische Proteomik/Bioanalytik, AG Neuro Proteomics; Medizinisches Proteom-Center; Bochum 44801 Germany
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse; Ruhr-Universität Bochum; Bochum 44780 Germany
| | - Andreas Schrötter
- Medizinische Proteomik/Bioanalytik, AG Neuro Proteomics; Medizinisches Proteom-Center; Bochum 44801 Germany
| | | | - Thorsten Müller
- Funktionelle Proteomik; Medizinisches Proteom-Center; Bochum 44801 Germany
| | - Katrin Marcus
- Funktionelle Proteomik; Medizinisches Proteom-Center; Bochum 44801 Germany
| | - Helmut E. Meyer
- Medizinische Proteomik/Bioanalytik; Medizinisches Proteom-Center; Bochum 44801 Germany
| | - Ralf Erdmann
- Systembiochemie; Ruhr-Universität Bochum; Bochum 44780 Germany
| | - Harald W. Platta
- Biochemie Intrazellulärer Transportprozesse; Ruhr-Universität Bochum; Bochum 44780 Germany
| |
Collapse
|
38
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
39
|
Francisco T, Rodrigues TA, Pinto MP, Carvalho AF, Azevedo JE, Grou CP. Ubiquitin in the peroxisomal protein import pathway. Biochimie 2013; 98:29-35. [PMID: 23954799 DOI: 10.1016/j.biochi.2013.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
PEX5 is the shuttling receptor for newly synthesized peroxisomal matrix proteins. Alone, or with the help of an adaptor protein, this receptor binds peroxisomal matrix proteins in the cytosol and transports them to the peroxisomal membrane docking/translocation module (DTM). The interaction between cargo-loaded PEX5 and the DTM ultimately results in its insertion into the DTM with the concomitant translocation of the cargo protein across the organelle membrane. PEX5 is not consumed in this event; rather it is dislocated back into the cytosol so that it can promote additional rounds of protein transportation. Remarkably, the data collected in recent years indicate that dislocation is preceded by monoubiquitination of PEX5 at a conserved cysteine residue. This mandatory modification is not the only type of ubiquitination occurring at the DTM. Indeed, several findings suggest that defective receptors jamming the DTM are polyubiquitinated and targeted to the proteasome for degradation.
Collapse
Affiliation(s)
- Tânia Francisco
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tony A Rodrigues
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Manuel P Pinto
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Andreia F Carvalho
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Jorge E Azevedo
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Cláudia P Grou
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, R. do Campo Alegre, 823, 4150-180 Porto, Portugal.
| |
Collapse
|
40
|
Williams C, van der Klei IJ. Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system. Biochem Biophys Res Commun 2013; 438:395-401. [PMID: 23899522 DOI: 10.1016/j.bbrc.2013.07.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 11/29/2022]
Abstract
Peroxisome autophagy, also known as pexophagy, describes the wholesale degradation of peroxisomes via the vacuole, when organelles become damaged or redundant. In the methylotrophic yeast Hansenula polymorpha, pexophagy is stimulated when cells growing on methanol are exposed to excess glucose. Degradation of the peroxisomal membrane protein Pex3p, a process that does not involve the vacuole, was shown to trigger pexophagy. In this contribution, we have characterised pexophagy-associated Pex3p degradation further. We show that Pex3p breakdown depends on ubiquitin and confirm that Pex3p is a target for ubiquitination. Furthermore, we identify a role for the peroxisomal E3 ligases Pex2p and Pex10p in Pex3p degradation, suggesting the existence of a ubiquitin-dependent pathway involved in removing proteins from the peroxisomal membrane.
Collapse
Affiliation(s)
- Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands.
| | | |
Collapse
|
41
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
42
|
RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:47-60. [PMID: 23747565 DOI: 10.1016/j.bbamcr.2013.05.026] [Citation(s) in RCA: 428] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 01/02/2023]
Abstract
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
|
43
|
Tabak HF, Braakman I, Zand AVD. Peroxisome Formation and Maintenance Are Dependent on the Endoplasmic Reticulum. Annu Rev Biochem 2013; 82:723-44. [DOI: 10.1146/annurev-biochem-081111-125123] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Henk F. Tabak
- Section of Cellular Protein Chemistry, Faculty of Science, Utrecht University, NL-3584 CH Utrecht, the Netherlands;
| | - Ineke Braakman
- Section of Cellular Protein Chemistry, Faculty of Science, Utrecht University, NL-3584 CH Utrecht, the Netherlands;
| | - Adabella van der Zand
- Section of Cellular Protein Chemistry, Faculty of Science, Utrecht University, NL-3584 CH Utrecht, the Netherlands;
| |
Collapse
|
44
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
45
|
Liu X, Subramani S. Unique requirements for mono- and polyubiquitination of the peroxisomal targeting signal co-receptor, Pex20. J Biol Chem 2013; 288:7230-40. [PMID: 23344950 DOI: 10.1074/jbc.m112.424911] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Pichia pastoris, the peroxisomal targeting signal 2 (PTS2)-dependent peroxisomal matrix protein import pathway requires the receptor, Pex7, and its co-receptor Pex20. A conserved lysine (Lys(19)) near the N terminus of Pex20 is required for its polyubiquitination and proteasomal degradation, whereas a conserved cysteine (Cys(8)) is essential for its recycling. In this study, we found that Cys(8) is required for the DTT-sensitive mono- and diubiquitination of Pex20. We also show that the PTS2 cargo receptor, Pex7, is required for Pex20 polyubiquitination. Pex4, the E2 ubiquitin-conjugation enzyme, is required for monoubiquitination of Pex20. However, it is also necessary for polyubiquitination of Pex20, making its behavior distinct from the ubiquitination described for other PTS receptors. Unlike the roles of specific RING peroxins in Pex5 ubiquitination, we found that all the RING peroxins (Pex2, Pex10, and Pex12) are required as E3 ubiquitin ligases for Pex20 mono- and polyubiquitination. A model for Pex20 ubiquitination is proposed based on these observations. This is the first description of the complete ubiquitination pathway of Pex20, which provides a better understanding of the recycling and degradation of this PTS2 cargo co-receptor.
Collapse
Affiliation(s)
- Xueqian Liu
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | |
Collapse
|
46
|
Kaur N, Zhao Q, Xie Q, Hu J. Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins(F). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:108-20. [PMID: 23336935 DOI: 10.1111/jipb.12014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Peroxisomes are essential eukaryotic organelles that mediate various metabolic processes. Peroxisome import depends on a group of peroxisome biogenesis factors called peroxins, many of which are evolutionarily conserved. PEX2, PEX10, and PEX12 are three RING-finger-domain-containing integral membrane peroxins crucial for protein import. In yeast (Saccharomyces cerevisae), RING peroxins act as E3 ligases, facilitating the recycling of the peroxisome import receptor protein PEX5 through ubiquitination. In plants, RING peroxins are essential to plant vitality. To elucidate the mode of action of the plant RING peroxins, we employed in vitro assays to show that the Arabidopsis RING peroxins also have E3 ligase activities. We also identified a PEX2-interacting protein, DSK2b, which is a member of the ubiquitin receptor family known to function as shuttle factors ferrying polyubiquitinated substrates to the proteasome for degradation. DSK2b and its tandem duplicate DSK2a are localized in the cytosol and the nucleus, and both interact with the RING domain of PEX2 and PEX12. DSK2 artificial microRNA lines did not display obvious defects in plant growth or peroxisomal processes, indicating functional redundancies among Arabidopsis ubiquitin receptor proteins. Our results suggest that Arabidopsis RING peroxins can function as E3 ligases and act together with the ubiquitin receptor protein DSK2 in the peroxisomal membrane-associated protein degradation system.
Collapse
Affiliation(s)
- Navneet Kaur
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Pieuchot L, Jedd G. Peroxisome Assembly and Functional Diversity in Eukaryotic Microorganisms. Annu Rev Microbiol 2012; 66:237-63. [DOI: 10.1146/annurev-micro-092611-150126] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Pieuchot
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| |
Collapse
|
49
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
50
|
Recent advances in peroxisomal matrix protein import. Curr Opin Cell Biol 2012; 24:484-9. [PMID: 22683191 DOI: 10.1016/j.ceb.2012.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/14/2012] [Indexed: 11/22/2022]
Abstract
Peroxisomes are essential organelles responsible for many metabolic reactions, such as the oxidation of very long chain and branched fatty acids, D-amino acids and polyamines, as well as the production and turnover of hydrogen peroxide. They comprise a class of organelles called microbodies, including glycosomes, glyoxysomes and Woronin bodies. Dysfunction of human peroxisomes causes severe and often fatal peroxisome biogenesis disorders (PBDs). Peroxisomal matrix protein import is mediated by receptors that shuttle between the cytosol and peroxisomal matrix using ubiquitination/deubiquitination reactions and ATP hydrolysis for receptor recycling. We focus on the machinery involved in the peroxisomal matrix protein import cycle, highlighting recent advances in peroxisomal matrix protein import, cargo release and receptor recycling/degradation.
Collapse
|