1
|
Zheng Y, Luo S, Xu M, He Q, Xie J, Wu J, Huang Y. Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation. Acta Pharm Sin B 2024; 14:3876-3900. [PMID: 39309496 PMCID: PMC11413706 DOI: 10.1016/j.apsb.2024.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the promising prospects of nanoparticles in oral drug delivery, the process of oral administration involves a complex transportation pathway that includes cellular uptake, intracellular trafficking, and exocytosis by intestinal epithelial cells, which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects. Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells, including surface properties such as ligand modification, surface charge, hydrophilicity/hydrophobicity, intestinal protein corona formation, as well as holistic properties like particle size, shape, and rigidity. Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems. Therefore, this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles, elucidating the underlying principles governing their impact on transepithelial transport. The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.
Collapse
Affiliation(s)
- Yaxian Zheng
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shiqin Luo
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Min Xu
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin He
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiang Xie
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiawei Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Ejazi SA, Louisthelmy R, Maisel K. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. ACS NANO 2023. [PMID: 37410891 DOI: 10.1021/acsnano.3c02403] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Oral drug administration has been a popular choice due to patient compliance and limited clinical resources. Orally delivered drugs must circumvent the harsh gastrointestinal (GI) environment to effectively enter the systemic circulation. The GI tract has a number of structural and physiological barriers that limit drug bioavailability including mucus, the tightly regulated epithelial layer, immune cells, and associated vasculature. Nanoparticles have been used to enhance oral bioavailability of drugs, as they can act as a shield to the harsh GI environment and prevent early degradation while also increasing uptake and transport of drugs across the intestinal epithelium. Evidence suggests that different nanoparticle formulations may be transported via different intracellular mechanisms to cross the intestinal epithelium. Despite the existence of a significant body of work on intestinal transport of nanoparticles, many key questions remain: What causes the poor bioavailability of the oral drugs? What factors contribute to the ability of a nanoparticle to cross different intestinal barriers? Do nanoparticle properties such as size and charge influence the type of endocytic pathways taken? In this Review, we summarize the different components of intestinal barriers and the types of nanoparticles developed for oral delivery. In particular, we focus on the various intracellular pathways used in nanoparticle internalization and nanoparticle or cargo translocation across the epithelium. Understanding the gut barrier, nanoparticle characteristics, and transport pathways may lead to the development of more therapeutically useful nanoparticles as drug carriers.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Rebecca Louisthelmy
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Wen C, Zhang J, Zhang H, Duan Y. New Perspective on Natural Plant Protein-Based Nanocarriers for Bioactive Ingredients Delivery. Foods 2022; 11:foods11121701. [PMID: 35741899 PMCID: PMC9223235 DOI: 10.3390/foods11121701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The health effects of bioactive substances in the human body are affected by several factors, including food processing conditions, storage conditions, light and heat, among others. These factors greatly limit the stability and bioavailability of bioactive substances. These problems can be solved by a novel protein-based nanocarrier technology, which has the excellent potential to enhance solubility, bioavailability, and the controlled release of bioactive substances. In addition, plant protein has the advantages of economy, environmental protection, and high nutrition compared to animal protein. In this review, the preparation, characterization, and application of plant protein-based nanocarriers are summarized. The research deficiency and future prospects of plant protein nanocarriers are emphasized.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
- Correspondence: (J.Z.); (Y.D.)
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Correspondence: (J.Z.); (Y.D.)
| |
Collapse
|
4
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
5
|
Cervantes-Jiménez R, Sánchez-Segura L, Estrada-Martínez LE, Topete-Camacho A, Mendiola-Olaya E, Rosas-Escareño AN, Saldaña-Gutiérrez C, Figueroa-Cabañas ME, Dena-Beltrán JL, Kuri-García A, Blanco-Labra A, García-Gasca T. Quantum Dot Labelling of Tepary Bean ( Phaseolus acutifolius) Lectins by Microfluidics. Molecules 2020; 25:E1041. [PMID: 32110921 PMCID: PMC7179211 DOI: 10.3390/molecules25051041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
Lectins are bioactive proteins with the ability to recognize cell membrane carbohydrates in a specific way. Diverse plant lectins have shown diagnostic and therapeutic potential against cancer, and their cytotoxicity against transformed cells is mediated through the induction of apoptosis. Previous works have determined the cytotoxic activity of a Tepary bean (Phaseolus acutifolius) lectin fraction (TBLF) and its anti-tumorigenic effect on colon cancer. In this work, lectins from the TBLF were additionally purified by ionic-exchange chromatography. Two peaks with agglutination activity were obtained: one of them was named TBL-IE2 and showed a single protein band in two-dimensional electrophoresis; this one was thus selected for coupling to quantum dot (QD) nanoparticles by microfluidics (TBL-IE2-QD). The microfluidic method led to low sample usage, and resulted in homogeneous complexes, whose visualization was achieved using multiphoton and transmission electron microscopy. The average particle size (380 nm) and the average zeta potential (-18.51 mV) were determined. The cytotoxicity of the TBL-IE2 and TBL-IE2-QD was assayed on HT-29 colon cancer cells, showing no differences between them (p ≤ 0.05), where the LC50 values were 1.0 × 10-3 and 1.7 × 10-3 mg/mL, respectively. The microfluidic technique allowed control of the coupling between the QD and the protein, substantially improving the labelling process, providing a rapid and efficient method that enabled the traceability of lectins. Future studies will focus on the potential use of the QD-labelled lectin to recognize tumor tissues.
Collapse
Affiliation(s)
- Ricardo Cervantes-Jiménez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Laura Elena Estrada-Martínez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Antonio Topete-Camacho
- Departamento de Fisiología, Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara CP 44340, Mexico; (A.T.-C.); (A.N.R.-E.)
| | - Elizabeth Mendiola-Olaya
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Abraham Noé Rosas-Escareño
- Departamento de Fisiología, Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara CP 44340, Mexico; (A.T.-C.); (A.N.R.-E.)
| | - Carlos Saldaña-Gutiérrez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Mónica Eugenia Figueroa-Cabañas
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - José Luis Dena-Beltrán
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Aarón Kuri-García
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato CP 36821, Mexico;
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro CP 76230, Mexico; (R.C.-J.); (L.E.E.-M.); (C.S.-G.); (M.E.F.-C.); (J.L.D.-B.); (A.K.-G.)
| |
Collapse
|
6
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
7
|
N-mercapto acetyl-N′-octyl-O, N″-glycol chitosan as an efficiency oral delivery system of paclitaxel. Carbohydr Polym 2018; 181:477-488. [DOI: 10.1016/j.carbpol.2017.10.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 01/30/2023]
|
8
|
García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 2017; 512:249-259. [PMID: 29073466 DOI: 10.1016/j.jcis.2017.10.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs), which have been widely used for the delivery of photosensitizers for photodynamic therapy (PDT) of cancer, can be dispersed in aqueous solutions improving the delivery of the hydrophobic photosensitizer into the body. Furthermore, the large surface of AuNPs can be functionalized with a variety of ligands, including proteins, nucleic acids and carbohydrates, that allow selective targeting to cancer tissue. In this study, gold nanoparticles were functionalized with a mixed monolayer of a zinc phthalocyanine and a lactose derivative. For the first time, a carbohydrate was used with a dual purpose, as the stabilizing agent of the gold nanoparticles in aqueous solutions and as the targeting agent for breast cancer cells. The functionalization of the phthalocyanine-AuNPs with lactose led to the production of water-dispersible nanoparticles that are able to generate singlet oxygen and effect cell death upon irradiation. The targeting ability of lactose of the lactose-phthalocyanine functionalized AuNPs was studied in vitro towards the galectin-1 receptor on the surface of breast cancer cells. The targeting studies showed the exciting potential of lactose as a specific targeting agent for galactose-binding receptors overexpressed on breast cancer cells.
Collapse
Affiliation(s)
- Paula García Calavia
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Isabelle Chambrier
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Michael J Cook
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alan H Haines
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David A Russell
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
9
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
10
|
Price D, Ackland ML, Suphioglu C. Identifying Epithelial Endocytotic Mechanisms of the Peanut Allergens Ara h 1 and Ara h 2. Int Arch Allergy Immunol 2017; 172:106-115. [DOI: 10.1159/000451085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
|
11
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
12
|
Fan W, Xia D, Zhu Q, Hu L, Gan Y. Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov Today 2016; 21:856-63. [DOI: 10.1016/j.drudis.2016.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
|
13
|
Wang ZG, Liu SL, Hu YJ, Tian ZQ, Hu B, Zhang ZL, Pang DW. Dissecting the Factors Affecting the Fluorescence Stability of Quantum Dots in Live Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8401-8408. [PMID: 26998815 DOI: 10.1021/acsami.6b01742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Labeling and imaging of live cells with quantum dots (QDs) has attracted great attention in the biomedical field over the past two decades. Maintenance of the fluorescence of QDs in a biological environment is crucial for performing long-term cell tracking to investigate the proliferation and functional evolution of cells. The cell-penetrating peptide transactivator of transcription (TAT) is a well-studied peptide to efficiently enhance the transmembrane delivery. Here, we used TAT peptide-conjugated QDs (TAT-QDs) as a model system to examine the fluorescence stability of QDs in live cells. By confocal microscopy, we found that TAT-QDs were internalized into cells by endocytosis, and transported into the cytoplasm via the mitochondria, Golgi apparatus, and lysosomes. More importantly, the fluorescence of TAT-QDs in live cells was decreased mainly by cell proliferation, and the low pH value in the lysosomes could also lower the fluorescence intensity of intracellular QDs. Quantitative analysis of the amount of QDs in the extracellular region and whole cells indicated that the exocytosis was not the primary cause of fluorescence decay of intracellular QDs. This work facilitates a better understanding of the fluorescence stability of QDs for cell imaging and long-term tracking in live cells. Also, it provides insights into the utility of TAT for transmembrane transportation, and the preparation and modification of QDs for cell imaging and tracking.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Yuan-Jun Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Zhi-Quan Tian
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
14
|
Yao L, Gu X, Song Q, Wang X, Huang M, Hu M, Hou L, Kang T, Chen J, Chen H, Gao X. Nanoformulated alpha-mangostin ameliorates Alzheimer's disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J Control Release 2016; 226:1-14. [PMID: 26836197 DOI: 10.1016/j.jconrel.2016.01.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is now representing one of the largest global healthcare challenges. However, an effective therapy is still lacking. Accumulation of amyloid-beta (Aβ) in the brain is supposed to trigger pathogenic cascades that eventually lead to AD. Therefore, Aβ clearance strategy is being actively pursued as a promising disease modifying therapy. Here, we found that α-mangostin (α-M), a polyphenolic xanthone derivative from mangosteen, up-regulated low density lipoprotein receptor (LDLR) expression in microglia and liver cells, and efficiently facilitated Aβ clearance. However, the in vivo application of α-M is limited due to its hydrophobic nature, poor aqueous solubility and stability, and thus low bioavailability and accumulation in the target organs. To overcome this limitation, α-M was encapsulated into the core of poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles [NP(α-M)]. Such nanoencapsulation improved the biodistribution of α-M in both the brain and liver, enhanced the brain clearance of (125)I-radiolabeled Aβ1-42 in an LDLR-dependent manner, reduced Aβ deposition, attenuated neuroinflammatory responses, ameliorated neurologic changes and reversed behavioral deficits in AD model mice. These findings justified the concept that polyphenol-mediated modulation of LDLR expression might serve as a safe and efficient disease-modifying therapy for AD by accelerating Aβ clearance. It also demonstrated the powerful capacity of nanotechnology in modulating the biodistribution behavior of drug to improve its therapeutic efficacy in AD.
Collapse
Affiliation(s)
- Lei Yao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Xiao Gu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Xiaolin Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Meng Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Meng Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Lina Hou
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China
| | - Ting Kang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Jun Chen
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, PR China.
| |
Collapse
|
15
|
Chowdary PD, Che DL, Kaplan L, Chen O, Pu K, Bawendi M, Cui B. Nanoparticle-assisted optical tethering of endosomes reveals the cooperative function of dyneins in retrograde axonal transport. Sci Rep 2015; 5:18059. [PMID: 26656461 PMCID: PMC4674899 DOI: 10.1038/srep18059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/27/2015] [Indexed: 01/01/2023] Open
Abstract
Dynein-dependent transport of organelles from the axon terminals to the cell bodies is essential to the survival and function of neurons. However, quantitative knowledge of dyneins on axonal organelles and their collective function during this long-distance transport is lacking because current technologies to do such measurements are not applicable to neurons. Here, we report a new method termed nanoparticle-assisted optical tethering of endosomes (NOTE) that made it possible to study the cooperative mechanics of dyneins on retrograde axonal endosomes in live neurons. In this method, the opposing force from an elastic tether causes the endosomes to gradually stall under load and detach with a recoil velocity proportional to the dynein forces. These recoil velocities reveal that the axonal endosomes, despite their small size, can recruit up to 7 dyneins that function as independent mechanical units stochastically sharing load, which is vital for robust retrograde axonal transport. This study shows that NOTE, which relies on controlled generation of reactive oxygen species, is a viable method to manipulate small cellular cargos that are beyond the reach of current technology.
Collapse
Affiliation(s)
- Praveen D. Chowdary
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Daphne L. Che
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Luke Kaplan
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Ou Chen
- Department of Chemistry, Massachussets Institute of Technology, 77 Massachussets Ave, Cambridge, MA 02139, USA
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.3, B2-05, Singapore 637459
| | - Moungi Bawendi
- Department of Chemistry, Massachussets Institute of Technology, 77 Massachussets Ave, Cambridge, MA 02139, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Loka RS, McConnell MS, Nguyen HM. Studies of Highly-Ordered Heterodiantennary Mannose/Glucose-Functionalized Polymers and Concanavalin A Protein Interactions Using Isothermal Titration Calorimetry. Biomacromolecules 2015; 16:4013-4021. [PMID: 26580410 DOI: 10.1021/acs.biomac.5b01380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preparations of the highly ordered monoantennary, homofunctional diantennary, and heterofunctional diantennary neoglycopolymers of α-d-mannose and β-d-glucose residues were achieved via ring-opening metathesis polymerization. Isothermal titration calorimetry measurements of these synthetic neoglycopolymers with Concanavalin A (Con A), revealed that heterofunctional diantennary architectures bearing both α-mannose and nonbinding β-glucose units, poly(Man-Glc), binds to Con A (Ka = 16.1 × 10(6) M(-1)) comparably to homofunctional diantennary neoglycopolymer (Ka = 30 × 10(6) M(-1)) bearing only α-mannose unit, poly(Man-Man). In addition, poly(Man-Glc) neoglycopolymer shows a nearly 5-fold increasing in binding affinity compared to monoantennary neoglycopolymer, poly(Man). Although the exact mechanism for the high binding affinity of poly(Man-Glc) to Con A is unclear, we hypothesize that the α-mannose bound to Con A might facilitate interaction of β-glucose with the extended binding site of Con A due to the close proximity of β-glucose to α-mannose residues in the designed polymerizable scaffold.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry, University of Iowa, Iowa 52242, United States
| | | | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa 52242, United States
| |
Collapse
|
17
|
Quantum dot nanoprobe-based high-content monitoring of notch pathway inhibition of breast cancer stem cell by capsaicin. Mol Cell Probes 2015; 29:376-381. [DOI: 10.1016/j.mcp.2015.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
|
18
|
Kang T, Jiang M, Jiang D, Feng X, Yao J, Song Q, Chen H, Gao X, Chen J. Enhancing Glioblastoma-Specific Penetration by Functionalization of Nanoparticles with an Iron-Mimic Peptide Targeting Transferrin/Transferrin Receptor Complex. Mol Pharm 2015; 12:2947-61. [PMID: 26149889 DOI: 10.1021/acs.molpharmaceut.5b00222] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Treatment of glioblastoma (GBM) remains to be the most formidable challenge because of the hindrance of the blood-brain barrier (BBB) along with the poor drug penetration into the glioma parenchyma. Nanoparticulate drug delivery systems (DDS) utilizing transferrin (Tf) as the targeting ligand to target the glioma-associated transferrin receptor (TfR) had met the problem of loss of specificity in biological environment due to the high level of endogenous Tf. Here we conjugated CRT peptide, an iron-mimicry moiety targeting the whole complex of Tf/TfR, to poly(ethylene glycol)-poly(l-lactic-co-glycolic acid) nanoparticles (CRT-NP), to open a new route to overcome such obstacle. High cellular associations, advanced transport ability through the BBB model, and penetration in 3-dimensional C6 glioma spheroids in vitro had preliminarily proved the advantages of CRT-NP over Tf-nanoparticle conjugates (Tf-NP). Compared with Tf-NP, NP, and Taxol, paclitaxel-loaded CRT-NP (CRT-NP-PTX) displayed a superior antiproliferation effect on C6 glioma cells and stronger inhibitory effect on glioma spheroids. Favored pharmacokinetics behavior and enhanced accumulation in glioma foci was observed, together with a much deeper distribution pattern in glioma parenchyma compared with unmodified nanoparticles and Tf-NP. Eventually, mice treated with CRT-NP-PTX showed a remarkably prolonged median survival compared to those treated with Taxol, NP, or Tf-NP. In conclusion, the modification of CRT to nanoparticles holds great promise for enhancement of antiglioma therapy.
Collapse
Affiliation(s)
- Ting Kang
- †Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, P. R. China
| | - Mengyin Jiang
- †Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, P. R. China
| | - Di Jiang
- †Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, P. R. China
| | - Xingye Feng
- †Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, P. R. China
| | - Jianhui Yao
- †Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, P. R. China
| | - Qingxiang Song
- §Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P. R. China
| | - Hongzhuan Chen
- §Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P. R. China
| | - Xiaoling Gao
- §Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P. R. China
| | - Jun Chen
- †Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, P. R. China
| |
Collapse
|
19
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 564] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
20
|
Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. J Control Release 2014; 196:168-83. [DOI: 10.1016/j.jconrel.2014.09.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
|
21
|
You X, Xing Q, Tuo J, Song W, Zeng Y, Hu H. Optimizing surfactant content to improve oral bioavailability of ibuprofen in microemulsions: Just enough or more than enough? Int J Pharm 2014; 471:276-84. [DOI: 10.1016/j.ijpharm.2014.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/22/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022]
|
22
|
Du R, Zhong T, Zhang WQ, Song P, Song WD, Zhao Y, Wang C, Tang YQ, Zhang X, Zhang Q. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomedicine 2014; 9:3091-105. [PMID: 25028548 PMCID: PMC4077607 DOI: 10.2147/ijn.s65664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the present study, we prepared a novel delivery system of iRGD (CRGDK/RGPD/EC)-modified sterically stabilized liposomes (SSLs) containing conjugated linoleic acid–paclitaxel (CLA-PTX). The anti-tumor effect of iRGD-SSL-CLA-PTX was investigated on B16-F10 melanoma in vitro and in vivo. The in vitro targeting effect of iRGD-modified SSLs was investigated in a real-time confocal microscopic analysis experiment. An endocytosis-inhibition assay was used to evaluate the endocytosis pathways of the iRGD-modified SSLs. In addition, the in vitro cellular uptake and in vitro cytotoxicity of iRGD-SSL-CLA-PTX were evaluated in B16-F10 melanoma cells. In vivo biodistribution and in vivo antitumor effects of iRGD-SSL-CLA-PTX were investigated in B16-F10 tumor-bearing mice. The induction of apoptosis by iRGD-SSL-CLA-PTX was evaluated in tumor-tissue sections. Real-time confocal microscopic analysis results indicated that the iRGD-modified SSLs internalized into B16-F10 cells faster than SSLs. The identified endocytosis pathway of iRGD-modified SSLs indicated that energy- and lipid raft-mediated endocytosis played a key role in the liposomes’ cellular uptake. The results of the cellular uptake experiment indicated that the increased cellular uptake of CLA-PTX in the iRGD-SSL-CLA-PTX-treated group was 1.9-, 2.4-, or 2.1-fold compared with that in the CLA-PTX group after a 2-, 4-, or 6-hour incubation, respectively. In the biodistribution test, the CLA-PTX level in tumor tissues from iRGD-SSL-CLA-PTX-treated mice at 1 hour (1.84±0.17 μg/g) and 4 hours (1.17±0.28 μg/g) was 2.3- and 2.0-fold higher than that of CLA-PTX solution at 1 hour (0.79±0.06 μg/g) and 4 hours (0.58±0.04 μg/g). The value of the area under the curve for the first 24 hours in the tumors of iRGD-SSL-CLA-PTX-treated mice was significantly higher than that in the SSL-CLA-PTX and CLA-PTX solution-treated groups (P<0.01). The in vivo antitumor results indicated that iRGD-SSL-CLA-PTX significantly inhibited the growth of B16-F10 tumors compared with the SSL-CLA-PTX or CLA-PTX solution-treatment groups (P<0.01). The results of tumor-cell apoptosis showed that tumors from the iRGD-SSL-CLA-PTX-treated group exhibited more advanced cell apoptosis compared with the control, CLA-PTX solution-, and SSL-CLA-PTX-treated groups. In conclusion, the antitumor effect of iRGD-SSL-CLA-PTX was confirmed on B16-F10 melanoma in vitro and in vivo.
Collapse
Affiliation(s)
- Ruo Du
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Wei-Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Ping Song
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Wen-Ding Song
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yang Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Chao Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yi-Qun Tang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing ; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing ; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| |
Collapse
|
23
|
Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 2013; 65:822-32. [PMID: 23123292 DOI: 10.1016/j.addr.2012.10.007] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/19/2022]
Abstract
As the field of biotechnology has advanced, oral protein delivery has also made significant progress. Oral delivery is the most common method of drug administration with high levels of patient acceptance. Despite the preference of oral delivery, administration of therapeutic proteins has been extremely difficult. Increasing the bioavailability of oral protein drugs to the therapeutically acceptable level is still a challenging goal. Poor membrane permeability, high molecular weight, and enzymatic degradation of protein drugs have remained unsolved issues. Among diverse strategies, nanotechnology has provided a glimpse of hope in oral delivery of protein drugs. Nanoparticles have advantages, such as small size, high surface area, and modification using functional groups for high capacity or selectivity. Nanoparticles with peptidic ligands are especially worthy of notice because they can be used for specific targeting in the gastrointestinal (GI) tract. This article reviews the transport mechanism of the GI tract, barriers to protein absorption, current status and limitations of nanotechnology for oral protein delivery system.
Collapse
|
24
|
Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, Hu Q, Song Q, Yao L, Tu Y, Chen H, Jiang X, Chen J. B6 Peptide-Modified PEG-PLA Nanoparticles for Enhanced Brain Delivery of Neuroprotective Peptide. Bioconjug Chem 2013; 24:997-1007. [DOI: 10.1021/bc400055h] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhongyang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Xiaoling Gao
- Department of
Pharmacology,
Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai,
200025, PR China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Mengyin Jiang
- School of
Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong People’s Republic
of China
| | - Deyu Miao
- School of
Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong People’s Republic
of China
| | - Guangzhi Gu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Quanyin Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Qingxiang Song
- Department of
Pharmacology,
Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai,
200025, PR China
| | - Lei Yao
- Department of
Pharmacology,
Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai,
200025, PR China
| | - Yifan Tu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Hongzhuan Chen
- Department of
Pharmacology,
Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai,
200025, PR China
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| |
Collapse
|
25
|
Li W, Liu R, Wang Y, Zhao Y, Gao X. Temporal techniques: dynamic tracking of nanomaterials in live cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1585-1594. [PMID: 23135828 DOI: 10.1002/smll.201201508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/28/2012] [Indexed: 06/01/2023]
Abstract
Temporal analytical techniques to track nanoparticles in live cell would provide rich information to well understand the biologic properties of nanoparticles in molecular level. Significant advances in fluorescence microscopy techniques with high temporal and spatial resolution allow single nanoparticles to label biomolecules, ions, and microstructures in live cells, which will address many fundamental questions in cell biology. This review highlights the real time tracking techniques for monitoring the movement of nanomaterials such as carbon nanotubes (CNTs), quantum dots (QDs), metal clusters, upconver-sional nanomaterials, and polystyrene (PS) nanoparticles etc. in live cells. The biological properties of nanoparticles in live cells are also briefly summarized according to fluorescence microscopy studies.
Collapse
Affiliation(s)
- Wei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | |
Collapse
|
26
|
Abstract
Glycans are key participants in biological processes ranging from reproduction to cellular communication to infection. Revealing glycan roles and the underlying molecular mechanisms by which glycans manifest their function requires access to glycan derivatives that vary systematically. To this end, glycopolymers (polymers bearing pendant carbohydrates) have emerged as valuable glycan analogs. Because glycopolymers can readily be synthesized, their overall shape can be varied, and they can be altered systematically to dissect the structural features that underpin their activities. This review provides examples in which glycopolymers have been used to effect carbohydrate-mediated signal transduction. Our objective is to illustrate how these powerful tools can reveal the molecular mechanisms that underlie carbohydrate-mediated signal transduction.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | |
Collapse
|
27
|
Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells. Int J Pharm 2013; 445:58-68. [DOI: 10.1016/j.ijpharm.2013.01.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/29/2012] [Accepted: 01/24/2013] [Indexed: 02/06/2023]
|
28
|
Liu Z, Jiang M, Kang T, Miao D, Gu G, Song Q, Yao L, Hu Q, Tu Y, Pang Z, Chen H, Jiang X, Gao X, Chen J. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 2013; 34:3870-81. [PMID: 23453061 DOI: 10.1016/j.biomaterials.2013.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/01/2013] [Indexed: 01/22/2023]
Abstract
Development of effective non-invasive drug delivery systems is of great importance to the treatment of Alzheimer's diseases and has made great progress in recent years. In this work, lactoferrin (Lf), a natural iron binding protein, whose receptor is highly expressed in both respiratory epithelial cells and neurons is here utilized to facilitate the nose-to-brain drug delivery of neuroprotection peptides. The Lf-conjugated PEG-PCL nanoparticle (Lf-NP) was constructed via a maleimide-thiol reaction with the Lf conjugation confirmed by CBQCA Protein Quantitation and XPS analysis. Other important parameters such as particle size distribution, zeta potential and in vitro release of fluorescent probes were also characterized. Compared with unmodified nanoparticles (NP), Lf-NP exhibited a significantly enhanced cellular accumulation in 16HBE14o-cells through both caveolae-/clathrin-mediated endocytosis and direct translocation. Following intranasal administration, Lf-NP facilitated the brain distribution of the coumarin-6 incorporated with the AUC0-8h in rat cerebrum (with hippocampus removed), cerebellum, olfactory tract, olfactory bulb and hippocampus 1.36, 1.53, 1.70, 1.57 and 1.23 times higher than that of coumarin-6 carried by NP, respectively. Using a neuroprotective peptide - NAPVSIPQ (NAP) as the model drug, the neuroprotective and memory improvement effect of Lf-NP was observed even at lower dose than that of NP in a Morris water maze experiment, which was also confirmed by the evaluation of acetylcholinesterase, choline acetyltransferase activity and neuronal degeneration in the mice hippocampus. In conclusion, Lf-NP may serve as a promising nose-to-brain drug delivery carrier especially for peptides and proteins.
Collapse
Affiliation(s)
- Zhongyang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials 2013; 34:196-208. [DOI: 10.1016/j.biomaterials.2012.09.044] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022]
|
30
|
Mechanisms of transcellular transport of wheat germ agglutinin-functionalized polymeric nanoparticles in Caco-2 cells. Biomaterials 2012; 33:6769-82. [DOI: 10.1016/j.biomaterials.2012.05.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 05/28/2012] [Indexed: 12/15/2022]
|
31
|
Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, Song Q, Yao L, Pang Z, Jiang X, Chen J, Chen H. Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. Int J Pharm 2012; 436:840-50. [DOI: 10.1016/j.ijpharm.2012.07.029] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/17/2012] [Indexed: 12/15/2022]
|
32
|
Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, Gu G, Jiang M, Pang Z, Chen H, Chen J, Fang L. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. Int J Nanomedicine 2012; 7:3703-18. [PMID: 22888230 PMCID: PMC3414211 DOI: 10.2147/ijn.s32599] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents.
Collapse
Affiliation(s)
- Ni Zeng
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
On the cellular processing of non-viral nanomedicines for nucleic acid delivery: Mechanisms and methods. J Control Release 2012; 161:566-81. [DOI: 10.1016/j.jconrel.2012.05.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 11/24/2022]
|
34
|
Zhang Z, Gao F, Bu H, Xiao J, Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:740-7. [DOI: 10.1016/j.nano.2011.08.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 06/27/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
35
|
Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 2012; 161:38-49. [DOI: 10.1016/j.jconrel.2012.04.036] [Citation(s) in RCA: 550] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022]
|
36
|
Obaid G, Chambrier I, Cook MJ, Russell DA. Targeting the Oncofetal Thomsen-Friedenreich Disaccharide Using Jacalin-PEG Phthalocyanine Gold Nanoparticles for Photodynamic Cancer Therapy. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Obaid G, Chambrier I, Cook MJ, Russell DA. Targeting the Oncofetal Thomsen-Friedenreich Disaccharide Using Jacalin-PEG Phthalocyanine Gold Nanoparticles for Photodynamic Cancer Therapy. Angew Chem Int Ed Engl 2012; 51:6158-62. [DOI: 10.1002/anie.201201468] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Indexed: 12/28/2022]
|
38
|
Ho CC, Chang H, Tsai HT, Tsai MH, Yang CS, Ling YC, Lin P. Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung. Nanotoxicology 2011; 7:105-15. [DOI: 10.3109/17435390.2011.635814] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials 2011; 32:7616-24. [DOI: 10.1016/j.biomaterials.2011.06.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
|
40
|
Vieweger M, Goicochea N, Koh ES, Dragnea B. Photothermal imaging and measurement of protein shell stoichiometry of single HIV-1 Gag virus-like nanoparticles. ACS NANO 2011; 5:7324-33. [PMID: 21854038 PMCID: PMC3184602 DOI: 10.1021/nn202184x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Virus life stages often constitute a complex chain of events, difficult to track in vivo and in real-time. Challenges are associated with spatial and time limitations of current probes: most viruses are smaller than the diffraction limit of optical microscopes while the entire time scale of virus dynamics spans over 8 orders of magnitude. Thus, virus processes such as entry, disassembly, and egress have generally remained poorly understood. Here we discuss photothermal heterodyne imaging (PHI) as a possible alternative to fluorescence microscopy in the study of single virus-like nanoparticle (VNP) dynamics, with relevance in particular to virus uncoating. Being based on optical absorption rather than emission, PHI could potentially surpass some of the current limitations associated with fluorescent labels. As proof-of-principle, single VNPs self-assembled from 60 nm DNA-functionalized gold nanoparticles (DNA-Au NPs) encapsulated in a Gag protein shell of the human immunodeficiency virus (HIV-1) were imaged, and their photothermal response was compared with DNA-Au NPs. For the first time, the protein stoichiometry of a single virus-like particle was estimated by a method other than electron microscopy.
Collapse
Affiliation(s)
- Mario Vieweger
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Nancy Goicochea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Eun Sohl Koh
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
41
|
Xia H, Gao X, Gu G, Liu Z, Zeng N, Hu Q, Song Q, Yao L, Pang Z, Jiang X, Chen J, Chen H. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 2011; 32:9888-98. [PMID: 21937105 DOI: 10.1016/j.biomaterials.2011.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 09/01/2011] [Indexed: 12/14/2022]
Abstract
The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. Low-molecular-weight protamine (LMWP) as a cell-penetrating peptide possesses distinct advantages including high cell translocation potency, absence of toxicity of peptide itself, and the feasibility as an efficient carrier for delivering therapeutics. Therefore, it was hypothesized that brain delivery of nanoparticles conjugated with LMWP should be efficiently enhanced following intranasal administration. LMWP was functionalized to the surface of PEG-PLA nanoparticles (NP) via a maleimide-mediated covalent binding procedure. Important parameters such as particle size distribution, zeta potential and surface content were determined, which confirmed the conjugation of LMWP to the surface of nanoparticle. Using 16HBE14o- cells as the cell model, LMWP-NP was found to exhibit significantly enhanced cellular accumulation than that of unmodified NP via both lipid raft-mediated endocytosis and direct translocation processes without causing observable cytotoxic effects. Following intranasal administration of coumarin-6-loaded LMWP-NP, the AUC(0-8 h) of the fluorescent probe detected in the rat cerebrum, cerebellum, olfactory tract and olfactory bulb was found to be 2.03, 2.55, 2.68 and 2.82 folds, respectively, compared to that of coumarin carried by NP. Brain distribution analysis suggested LMWP-NP after intranasal administration could be delivered to the central nervous system along both the olfactory and trigeminal nerves pathways. The findings clearly indicated that the brain delivery of nanoparticles could be greatly facilitated by LMWP and the LMWP-functionalized nanoparticles appears as a effective and safe carrier for nose-to-brain drug delivery in potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Huimin Xia
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 2011; 32:8010-20. [PMID: 21788069 DOI: 10.1016/j.biomaterials.2011.07.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/04/2011] [Indexed: 01/06/2023]
Abstract
Targeted delivery of therapeutic nanoparticles in a disease-specific manner represents a potentially powerful technology especially when treating infiltrative brain tumors such as gliomas. We developed a nanoparticulate drug delivery system decorated with AS1411 (Ap), a DNA aptamer specifically binding to nucleolin which was highly expressed in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood vessels, as the targeting ligand to facilitate anti-glioma delivery of paclitaxel (PTX). Ap was conjugated to the surface of PEG-PLGA nanoparticles (NP) via an EDC/NHS technique. With the conjugation confirmed by Urea PAGE and XPS, the resulting Ap-PTX-NP was uniformly round with particle size at 156.0 ± 54.8 nm and zeta potential at -32.93 ± 3.1 mV. Ap-nucleolin interaction significantly enhanced cellular association of nanoparticles in C6 glioma cells, and increased the cytotoxicity of its payload. Prolonged circulation and enhanced PTX accumulation at the tumor site was achieved for Ap-PTX-NP, which eventually obtained significantly higher tumor inhibition on mice bearing C6 glioma xenografts and prolonged animal survival on rats bearing intracranial C6 gliomas when compared with PTX-NP and Taxol(®). The results of this contribution demonstrated the potential utility of AS1411-functionalized nanoparticles for a therapeutic application in the treatment of gliomas.
Collapse
|
43
|
Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. Int J Pharm 2011; 413:174-83. [DOI: 10.1016/j.ijpharm.2011.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022]
|
44
|
Plapied L, Duhem N, des Rieux A, Préat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2010.12.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Im JK, Maiti KK, Kim WI, Kim KT, Chung SK. Cellular Uptake Properties of the Complex Derived from Quantum Dots and G8 Molecular Transporter. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.4.1282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Mo R, Jin X, Li N, Ju C, Sun M, Zhang C, Ping Q. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials 2011; 32:4609-20. [PMID: 21440934 DOI: 10.1016/j.biomaterials.2011.03.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/03/2011] [Indexed: 01/19/2023]
Abstract
The overall objective of the present investigation was to demonstrate the effect of N-octyl-O-sulfate chitosan (NOSC) micelles on enhancing the oral absorption of paclitaxel (PTX) in vivo and in vitro, and identify the mechanism of this action of NOSC. In vivo, the oral bioavailability of PTX loaded in NOSC micelles (PTX-M) was 6-fold improved in comparison with that of an orally dosed Taxol(®). In the Caco-2 uptake studies, NOSC micelles brought about a significantly higher amount of PTX accumulated in Caco-2 cells via both clathrin- and caveolae-mediated endocytosis, and NOSC had the effect on inhibiting PTX secreted by P-glycoprotein (P-gp), which was also proved by the studies on rhodamine 123 incorporated in NOSC micelles, fluorescence labeled micelles. The mechanism of NOSC on P-gp inhibition was demonstrated in connection with interfering the P-gp ATPase by NOSC rather than reducing the P-gp expression. Moreover, NOSC with the concentration approaching the critical micellar concentration (CMC) had the strongest effect on P-gp inhibition. In the Caco-2 transport studies, the presence of verapamil and NOSC both improved the transport of Taxol(®), which further certified the effect of NOSC on P-gp inhibition, and PTX-M enhanced the permeability of PTX compared with Taxol(®). The apparent permeability coefficient (Papp) of PTX-M decreased significantly at 4 °C in comparison with at 37 °C, which indicated a predominant active endocytic mechanism for the transport of PTX-M, a P-gp-independent way. Furthermore, the transcytosis of PTX-M was via clathrin-mediated rather than caveolae-mediated. In addition, the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers had no significant change during the transport study, which pointed out that NOSC had no effect on opening the intercellular tight junctions. Based on the obtained results, it is suggested that NOSC micelles might be a potentially applicable tool for enhancing the oral absorption of P-gp substrates.
Collapse
Affiliation(s)
- Ran Mo
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Luminescent Quantum Dots, Making Invisibles Visible in Bioimaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:53-99. [DOI: 10.1016/b978-0-12-416020-0.00002-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
48
|
Lin CH, Yang MH, Chang LW, Yang CS, Chang H, Chang WH, Tsai MH, Wang CJ, Lin P. Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice. Nanotoxicology 2010; 5:650-63. [DOI: 10.3109/17435390.2010.539712] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Poiroux G, Pitié M, Culerrier R, Ségui B, Van Damme EJM, Peumans WJ, Bernadou J, Levade T, Rougé P, Barre A, Benoist H. Morniga G: a plant lectin as an endocytic ligand for photosensitizer molecule targeting toward tumor-associated T/Tn antigens. Photochem Photobiol 2010; 87:370-7. [PMID: 21143236 DOI: 10.1111/j.1751-1097.2010.00858.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyrins are used as photosensitizer (PS) in photodynamic therapy in cancer treatment. Nevertheless, the development of photochemotherapy in oncology remains limited, because of the low selectivity of PSs. In order to allow PS targeting toward tumor-associated antigens, for the first time a white-light activatable porphyrin, [5-(4-(5-carboxy-1-butoxy)-phenyl)-10,15,20-tris(4-N-methyl)-pyridiniumyl)-porphyrin] (TrMPyP) was covalently linked to Morniga G (MorG), a galactose-specific binding plant lectin, known to recognize with high-affinity tumor-associated T/Tn antigen in cell-free systems. Firstly, using fluorescein-labeled MorG, the sugar-dependent binding and uptake of lectin by Tn-positive (Jurkat lymphoid leukemia) cells was demonstrated. Secondly, the TrMPyP-MorG conjugate was molecularly characterized. Cytometric and confocal microscopic analysis demonstrated that PS covalent linking to MorG preserved sugar-dependent specific binding and uptake of lectin by Jurkat leukemia lymphocytes. Thirdly, the conjugate (with a 1:1 PS:lectin ratio) that was bound and quickly (5 min) taken-up, induced greater than 90% cytotoxicity upon irradiation at 10 nm concentration, whereas the free PS was absolutely nontoxic. On the contrary, normal lymphocytes strongly resisted to the conjugate-mediated phototoxicity. Thus, owing to their binding and endocytosis capacities, plant lectins represent promising molecules for targeting of tumor glycan alteration and to enhance the efficiency of specific delivery of PSs to tumor cells.
Collapse
|
50
|
Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv 2010; 7:895-913. [PMID: 20629604 DOI: 10.1517/17425247.2010.501792] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IMPORTANCE OF THE FIELD The last 10 years have seen a dramatic growth in understanding and controlling how complex, drug-loaded (nano)structures, as well as pathogens, or biopharmaceuticals can gather access to the cytoplasm, which is a key step to increasing the effectiveness of their action. AREAS COVERED IN THIS REVIEW The review offers an updated overview of the current knowledge of endocytic processes; furthermore, the cell surface receptors most commonly used in drug delivery are here discussed on the basis of their reported internalization mechanisms, with examples of their use as nanocarrier targets taken from the most recent scientific literature. WHAT THE READER WILL GAIN Knowledge of molecular biology details is increasingly necessary for a rational design of drug delivery systems. Here, the aim is to provide the reader with an attempt to link a mechanistic knowledge of endocytic mechanisms with the identification of appropriate targets (internalization receptors) for nanocarriers. TAKE HOME MESSAGE Much advance is still needed to create a complete and coherent biological picture of endocytosis, but current knowledge already allows individuation of a good number of targetable groups for a predetermined intracellular fate of nanocarriers.
Collapse
Affiliation(s)
- Noha M Zaki
- Ain Shams University, Department of Pharmaceutics, Faculty of Pharmacy, Monazamet El Wehda El Afrikia St, El Abbassia, Cairo, Egypt
| | | |
Collapse
|