1
|
Dwivedi S, Choudhary P, Gupta A, Singh S. Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie 2023; 211:35-56. [PMID: 36842627 DOI: 10.1016/j.biochi.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The merits of stem cell therapy and research are undisputed due to their widespread usage in the treatment of neurodegenerative diseases and demyelinating disorders. Cell replacement therapy especially revolves around stem cells and their induction into different cell lineages both adult and progenitor - belonging to each germ layer, prior to transplantation or disease modeling studies. The nervous system is abundant in glial cells and among these are oligodendrocytes capable of myelinating new-born neurons and remyelination of axons with lost or damaged myelin sheath. But demyelinating diseases generate tremendous deficit between myelin loss and recovery. To compensate for this loss, analyze the defects in remyelination mechanisms as well as to trigger full recovery in such patients mesenchymal stem cells (MSCs) have been induced to transdifferentiate into oligodendrocytes. But such experiments are riddled with problems like prolonged, tenuous and complicated protocols that stretch longer than the time taken for the spread of demyelination-associated after-effects. This review delves into such protocols and the combinations of different molecules and factors that have been recruited to derive bona fide oligodendrocytes from in vitro differentiation of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and MSCs with special focus on MSC-derived oligodendrocytes.
Collapse
Affiliation(s)
- Shrey Dwivedi
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India.
| |
Collapse
|
2
|
Yabe H. Allogeneic hematopoietic stem cell transplantation for inherited metabolic disorders. Int J Hematol 2022; 116:28-40. [PMID: 35594014 DOI: 10.1007/s12185-022-03383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has been used to treat patients with inherited metabolic disorders (IMDs) for more than 40 years. In the first two decades, various IMDs were treated by HSCT with a wide variety of donor sources and conditioning regimens selected at the institutional level. However, HSCT was not always successful due to post-transplant complications such as graft failure. In the third decade, myeloablative conditioning with targeted busulfan-based pharmacokinetic monitoring was established as an optimal conditioning regimen, and unrelated cord blood was recognized as an excellent donor source. During the fourth decade, further improvements were made to transplant procedures, including modification of the conditioning regimen, and the survival rate after HSCT markedly improved. Simultaneously, several long-term observational studies for patients after HSCT clarified its therapeutic effects on growth and development of cognitive function, fine motor skills, and activities of daily living when compared with enzyme replacement therapy. Although immune-mediated cytopenia was newly highlighted as a problematic morbidity after HSCT for IMDs, especially in younger patients who received unrelated cord blood, a recent study with rituximab added to the conditioning raised expectations that this issue can be overcome.
Collapse
Affiliation(s)
- Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
3
|
Zdolińska-Malinowska I, Boruczkowski D, Hołowaty D, Krajewski P, Snarski E. Rationale for the Use of Cord Blood in Hypoxic-Ischaemic Encephalopathy. Stem Cells Int 2022; 2022:9125460. [PMID: 35599846 PMCID: PMC9117076 DOI: 10.1155/2022/9125460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) is a severe complication of asphyxia at birth. Therapeutic hypothermia, the standard method for HIE prevention, is effective in only 50% of the cases. As the understanding of the immunological basis of these changes increases, experiments have begun with the use of cord blood (CB) because of its neuroprotective properties. Mechanisms for the neuroprotective effects of CB stem cells include antiapoptotic and anti-inflammatory actions, stimulation of angiogenesis, production of trophic factors, and mitochondrial donation. In several animal models of HIE, CB decreased oxidative stress, cell death markers, CD4+ T cell infiltration, and microglial activation; restored normal brain metabolic activity; promoted neurogenesis; improved myelination; and increased the proportion of mature oligodendrocytes, neuron numbers in the motor cortex and somatosensory cortex, and brain weight. These observations translate into motor strength, limb function, gait, and cognitive function and behaviour. In humans, the efficacy and safety of CB administration were reported in a few early clinical studies which confirmed the feasibility and safety of this intervention for up to 10 years. The results of these studies showed an improvement in the developmental outcomes over hypothermia. Two phase-2 clinical studies are ongoing under the United States regulations, namely one controlled study and one blinded study.
Collapse
Affiliation(s)
| | - Dariusz Boruczkowski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
| | - Dominika Hołowaty
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Paweł Krajewski
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Emilian Snarski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Widowati W, Gunanegara RF, Rizal R, Widodo WS, Amalia A, Wibowo SHB, Handono K, Marlina M, Lister INE, Chiuman L. Comparative Analysis of Wharton’s Jelly Mesenchymal Stem Cell (WJ-MSCs) Isolated Using Explant and Enzymatic Methods. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1374/1/012024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Hassan G, Kasem I, Soukkarieh C, Aljamali M. A Simple Method to Isolate and Expand Human Umbilical Cord Derived Mesenchymal Stem Cells: Using Explant Method and Umbilical Cord Blood Serum. Int J Stem Cells 2017; 10:184-192. [PMID: 28844128 PMCID: PMC5741200 DOI: 10.15283/ijsc17028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 12/26/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from umbilical cords and are therapeutically used because of their ability to differentiate into various types of cells, in addition to their immunosuppressive and anti-inflammatory properties. Fetal bovine serum (FBS), considered as the standard additive when isolating and culturing MSCs, has a major limitation related to its animal origin. Here, we employed a simple and economically efficient protocol to isolate MSCs from human umbilical cord tissues without using digestive enzymes and replacing FBS with umbilical cord blood serum (CBS). Methods and Results MSCs were isolated by culturing umbilical cord pieces in CBS or FBS supplemented media. Expansion and proliferation kinetics of cells isolated by explant method in the presence of either FBS or CBS were measured, with morphology and multi-differentiation potential of expanded cells characterized by flow cytometry, RT-PCR, and immunofluorescence. MSCs maintained morphology, immunophenotyping, multi-differentiation potential, and self-renewal ability, with better proliferation rates for cells cultured in CBS compared to FBS supplement media. Conclusions We here present a simple, reliable and efficient method to isolate MSCs from umbilical cord tissues, where cells maintained proliferation, differentiation potential and immunophenotyping properties and could be efficiently expanded for clinical applications.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Issam Kasem
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Majd Aljamali
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| |
Collapse
|
6
|
Sato N, Fricke C, McGuckin C, Forraz N, Degoul O, Atzeni G, Sakurai H. Cord blood processing by a novel filtration system. Cell Prolif 2015; 48:671-81. [PMID: 26456086 PMCID: PMC6496033 DOI: 10.1111/cpr.12217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022] Open
Abstract
Objectives Availability of cord blood (CB) processing has been limited by the need for electrically aided centrifugal techniques, which often produce only low final cell product yield. Here, we describe development and characterization of a novel filter device aimed at allowing CB processing, using gentle gravity‐led flow. Materials and methods CB was processed with a novel filter device (CellEffic CB, consisting of non‐woven fabric), without any centrifugation. Cells were harvested by flushing the filter with either HES or physiological saline solution (SALINE). Differential cell counts and viability analysis, combined with Fluorescence‐Activated Cell Sorting (FACS) (total nucleated cells [TNC], mononuclear cells [MNC], CD45+ CD34+ cells, hematopoietic precursor cells [HPCs]) and clonogenic assay, were employed for analysis of CB pre‐ and post‐processing, and after freeze/thawing. Results Processing using the novel filter yielded high quality RBC depletion while maintaining good recovery of TNC, MNC, CD34+, HPCs and colony forming unit (CFU) output. The filter performed equally well using HES or SALINE. Gravity‐led flow provided gentle cell movement and protection of the stem cell compartment. Post‐thaw CFU output was maintained particularly, an important indicator for CB banking. Conclusions Geographical limitations of CB transplantation and banking have required a non‐electrical, non‐centrifugal solution. This novel filter CellEffic CB device revealed rapid yet gentle cell processing while maintaining the stem/progenitor cell compartment required for both haematological and regenerative medicine therapies.
Collapse
Affiliation(s)
- N Sato
- Medical Devices Division, Kaneka Corporation, Osaka, 530-8288, Japan
| | - C Fricke
- Kaneka Pharma Europe N.V. German Branch, DE-65760, Eschborn, Germany
| | - C McGuckin
- CTI-BIOTECH, Cell Therapy Research Institute, 69330, MEYZIEU-LYON, France
| | - N Forraz
- CTI-BIOTECH, Cell Therapy Research Institute, 69330, MEYZIEU-LYON, France
| | - O Degoul
- CTI-BIOTECH, Cell Therapy Research Institute, 69330, MEYZIEU-LYON, France
| | - G Atzeni
- CTI-BIOTECH, Cell Therapy Research Institute, 69330, MEYZIEU-LYON, France
| | - H Sakurai
- Kaneka Pharma Europe N.V. German Branch, DE-65760, Eschborn, Germany
| |
Collapse
|
7
|
Sypecka J, Sarnowska A. Mesenchymal cells of umbilical cord and umbilical cord blood as a source of human oligodendrocyte progenitors. Life Sci 2015; 139:24-9. [PMID: 26285174 DOI: 10.1016/j.lfs.2015.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego str., 02-106 Warsaw, Poland.
| | - Anna Sarnowska
- Translative Platform for Regenerative Medicine, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; Stem Cell Bioengineering Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Askari N, Yaghoobi MM, Shamsara M, Esmaeili-Mahani S. Tetracycline-regulated expression of OLIG2 gene in human dental pulp stem cells lead to mouse sciatic nerve regeneration upon transplantation. Neuroscience 2015; 305:197-208. [PMID: 26254831 DOI: 10.1016/j.neuroscience.2015.07.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022]
Abstract
Numerous studies have indicated dental pulp stem cells (DPSCs) potency to differentiate into several types of cell lineages. Oligodendrocyte lineage transcription factor 2 (OLIG2) plays an important role in the oligodendrogenic pathway. In this study, a tetracycline (Tet)-inducible system expressing OLIG2 gene was transfected into human DPSCs to direct their differentiation toward oligodendrocyte progenitor cells (OPCs). Following induction, the expression of stage-specific markers was studied by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR), immunocytochemistry and western blotting. In the following, the cells were transplanted into the mouse model of local sciatic demyelination damage by lysolecithin. Recovery of lysolecithin-induced lesions in sciatic nerve was studied by treadmill exercise, von Frey filament test and hind paw withdrawal in response to a thermal stimulus. Improvement of behavioral symptoms was efficiently observed from the second week to the sixth week post-transplantation. Our findings showed that exogenous expression of the OLIG2 gene by a Tet-regulated system could be used as an efficient way to induce the differentiation of DPSCs into functional oligodendrocytes. Meanwhile, the DPSC-derived OPCs have relevant therapeutic potential in the animal model of sciatic nerve injury and therefore might represent a valuable tool for stem cell-based therapy in inflammatory and degenerative diseases of the peripheral and central nervous systems (CNSs).
Collapse
Affiliation(s)
- N Askari
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - M M Yaghoobi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - M Shamsara
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - S Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
9
|
Li J, McDonald CA, Fahey MC, Jenkin G, Miller SL. Could cord blood cell therapy reduce preterm brain injury? Front Neurol 2014; 5:200. [PMID: 25346720 PMCID: PMC4191167 DOI: 10.3389/fneur.2014.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022] Open
Abstract
Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications.
Collapse
Affiliation(s)
- Jingang Li
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia
| | | | - Michael C Fahey
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Paediatrics, Monash University , Clayton, VIC , Australia
| | - Graham Jenkin
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Clayton, VIC , Australia
| | - Suzanne L Miller
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Clayton, VIC , Australia
| |
Collapse
|
10
|
Yao L, He C, Zhao Y, Wang J, Tang M, Li J, Wu Y, Ao L, Hu X. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: Electrophysiological changes and long-term efficacy. Neural Regen Res 2014; 8:397-403. [PMID: 25206680 PMCID: PMC4146127 DOI: 10.3969/j.issn.1673-5374.2013.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/08/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time < 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time > 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury.
Collapse
Affiliation(s)
- Liqing Yao
- Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Chuan He
- Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Ying Zhao
- Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Jirong Wang
- Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Mei Tang
- Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Jun Li
- Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Ying Wu
- Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Lijuan Ao
- Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Xiang Hu
- Shenzhen Beike Cell Engineering Research Institute, Shenzhen 518057, Guangdong Province, China
| |
Collapse
|
11
|
Alvarez-Gonzalez C, Duggleby R, Vagaska B, Querol S, Gomez SG, Ferretti P, Madrigal A. Cord blood Lin(-)CD45(-) embryonic-like stem cells are a heterogeneous population that lack self-renewal capacity. PLoS One 2013; 8:e67968. [PMID: 23840798 PMCID: PMC3695943 DOI: 10.1371/journal.pone.0067968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/24/2013] [Indexed: 02/02/2023] Open
Abstract
Human umbilical cord blood (hUCB) has been proposed to contain not only haematopoietic stem cells, but also a rare pluripotent embryonic-like stem cell (ELSc) population that is negative for hematopoietic markers (Lin−CD45−) and expresses markers typical of pluripotent cells. The aim of this work was to isolate, characterise and expand this ELSc fraction from hUCB, as it may provide a valuable cell source for regenerative medicine applications. We found that we could indeed isolate a Lin−CD45− population of small cells (3–10 µm diameter) with a high nucleus to cytoplasm ratio that expressed the stem cell markers CD34 and CXCR4. However, in contrast to some previous reports, this fraction was not positive for CD133. Furthermore, although these cells expressed transcripts typical of pluripotent cells, such as SOX2, OCT3/4, and NANOG, they were not able to proliferate in any of the culture media known to support stem cell growth that we tested. Further analysis of the Lin−CD45− population by flow cytometry showed the presence of a Lin−CD45−Nestin+ population that were also positive for CD34 (20%) but negative for CXCR4. These data suggest that the Lin−CD45− stem cell fraction present in the cord blood represents a small heterogeneous population with phenotypic characteristics of stem cells, including a Lin−CD45−Nestin+ population not previously described. This study also suggests that heterogeneity within the Lin−CD45− cell fraction is the likely explanation for differences in the hUCB cell populations described by different groups that were isolated using different methods. These populations have been widely called “embryonic-like stem cell” on the basis of their phenotypical similarity to embryonic stem cells. However, the fact they do not seem to be able to self-renew casts some doubt on their identity, and warns against defining them as “embryonic-like stem cell” at this stage.
Collapse
Affiliation(s)
- Cesar Alvarez-Gonzalez
- Anthony Nolan Research Institute, London, United Kingdom
- Cancer Institute, University College London, London, United Kingdom
| | | | - Barbora Vagaska
- Development Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Sergio Querol
- Anthony Nolan Research Institute, London, United Kingdom
- Banc de Sang i Teixits, Barcelona, Spain
| | - Susana G. Gomez
- Anthony Nolan Research Institute, London, United Kingdom
- Anthony Nolan Cell Therapy Centre, Nottingham, United Kingdom
| | - Patrizia Ferretti
- Development Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | |
Collapse
|
12
|
Ebrahimi-Barough S, Kouchesfahani HM, Ai J, Massumi M. Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J Mol Neurosci 2013; 51:265-73. [PMID: 23338937 DOI: 10.1007/s12031-013-9957-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/09/2013] [Indexed: 01/21/2023]
Abstract
Oligodendrocytes are myelinating cells in the central nervous system that form the myelin sheath of axons to support rapid nerve conduction. Human endometrial stromal cells (EnSCs) are the abundant and easy available source for cell replacement therapy. In the present study, the EnSCs were coaxed to oligodendrocyte progenitor programming by induction of neuronal condition media, including bFGF, epidermal growth factor, and platelet-derived growth factor (PDGF)-AA signaling molecules as well as triiodothyronine. Differentiated cells were analyzed for expression of oligodendrocytic markers by quantitative reverse transcription PCR and immunocytochemistry. The results showed the expression of oligodendrocyte lineage markers such as nestin, PDGF receptor alpha (PDGFRα), Sox10, and Olig2 in the level of mRNAs. The expression of nestin and PDGFRα increased after 8 days posttreatment. Interestingly, the expression of nestin and PDGFRα genes at the levels of mRNA and proteins decreased 24 days after induction. The expression of A2B5, O4, and Olig2 proteins in EnSCs was confirmed using immunocytochemistry. The results confirmed that EnSCs could response to the signaling molecules which routinely applied for oligodendrocyte differentiation. Here for the first time, we demonstrated that EnSCs could be programmed into oligodendrocyte progenitor cells and may convince to consider these cells as suitable source for cell therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Somayeh Ebrahimi-Barough
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University (TMU), Tehran, Iran,
| | | | | | | |
Collapse
|
13
|
|
14
|
Cardoso TC, Novais JB, Antello TF, Silva-Frade C, Ferrarezi MC, Ferrari HF, Gameiro R, Flores EF. Susceptibility of neuron-like cells derived from bovine Wharton's jelly to bovine herpesvirus type 5 infections. BMC Vet Res 2012; 8:242. [PMID: 23227933 PMCID: PMC3528423 DOI: 10.1186/1746-6148-8-242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/03/2012] [Indexed: 11/14/2022] Open
Abstract
Background Bovine herpesvirus type 5 (BoHV-5), frequently lethal in cattle, is associated with significant agricultural economic losses due to neurological disease. Cattle and rabbits are frequently used as models to study the biology and pathogenesis of BoHV-5 infection. In particular, neural invasion and proliferation are two of the factors important in BoHV-5 infection. The present study investigated the potential of bovine Wharton’s jelly mesenchymal stromal cells (bWJ-MSCs) to differentiate into a neuronal phenotype and support robust BoHV-5 replication. Results Upon inducing differentiation within a defined neuronal specific medium, most bWJ-MSCs acquired the distinctive neuronal morphological features and stained positively for the neuronal/glial markers MAP2 (neuronal microtubule associated protein 2), N200 (neurofilament 200), NT3 (neutrophin 3), tau and GFAP (glial fibrillary acidic protein). Expression of nestin, N200, β-tubulin III (TuJI) and GFAP was further demonstrated by reverse transcriptase polymerase chain reaction (RT-PCR). Following BoHV-5 inoculation, there were low rates of cell detachment, good cell viability at 96 h post-infection (p.i.), and small vesicles developed along neuronal branches. Levels of BoHV-5 antigens and DNA were associated with the peak in viral titres at 72 h p.i. BoHV-5 glycoprotein C mRNA expression was significantly correlated with production of progeny virus at 72 h p.i. (p < 0.05). Conclusion The results demonstrated the ability of bWJ-MSCs to differentiate into a neuronal phenotype in vitro and support productive BoHV-5 replication. These findings constitute a remarkable contribution to the in vitro study of neurotropic viruses. This work may pave the way for bWJ-MSCs to be used as an alternative to animal models in the study of BoHV-5 biology.
Collapse
Affiliation(s)
- Tereza C Cardoso
- UNESP - University of São Paulo State, Laboratory of Animal Virology and Cell Culture, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SMR, Ghanbari Z, Javidan AN, Mortazavi-Tabatabaei SA, Massumi M, Barough SE. Human endometrial stem cells as a new source for programming to neural cells. CELL BIOLOGY INTERNATIONAL REPORTS 2012; 19:e00015. [PMID: 23124318 PMCID: PMC3475442 DOI: 10.1042/cbr20110009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 11/17/2022]
Abstract
Human EnSC (endometrial-derived stem cell) is an abundant and easily available source for cell replacement therapy. Many investigations have shown the potency of the cells to differentiate into several mesoderm-derived cell lineages, including osteocytes and adipocytes. Here, the potency of EnSC in neural differentiation has been investigated. Flow cytometric analysis showed that they were positive for CD90, CD105, OCT4, CD44 and negative for CD31, CD34, CD133. The characterized cells were induced into neural differentiation by bFGF (basic fibroblast growth factor), PDGF (platelet-derived growth factor) and EGF (epidermal growth factor) signalling molecules, respectively in a sequential protocol, and differentiated cells were analysed for expression of neuronal markers by RT-PCR (reverse transcription-PCR) and immunocytochemistry, including Nestin, GABA (γ-aminobutyric acid), MAP2 (microtubule-associated protein 2), β3-tub (class III β-tubulin) and NF-L (neurofilament-light) at the level of their mRNAs. The expression of MAP2, β3-tub and NF-L proteins in EnSC was confirmed 28 days PT (post-treatment) by immunocytochemistry. In conclusion, EnSC can respond to signalling molecules that are usually used as standards in neural differentiation and can programme neuronal cells, making these cells worth considering as a unique source for cell therapy in neurodegenerative disease.
Collapse
Key Words
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco's modified Eagle's medium
- EGF, epidermal growth factor
- ES, embryonic stem
- EnSC, endometrial-derived stem cell
- GABA, γ-aminobutyric acid
- GFAP, glial fibrillary acidic protein
- HBSS, Hank's balanced salt solution
- MAP2, microtubule-associated protein 2
- MSC, mesenchymal stem cell
- NF-L, neurofilament-light
- PDGF, platelet-derived growth factor
- PFA, paraformaldehyde
- PT, post-treatment
- RT–PCR, reverse transcription–PCR
- T-PBS, Triton X-100 in PBS
- bFGF, basic fibroblast growth factor
- differentiation
- endometrial stem cell
- neural cell
- β3-tub, class III β-tubulin
Collapse
Affiliation(s)
- Zahra Taherian Mobarakeh
- *Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- †Department of Tissue Engineering, Faculty of Advanced Medical Technologies, Tehran University of Medical Sciences and Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- ‡Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
- §Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- ‖Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Yazdani
- *Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zinat Ghanbari
- **Gynecology, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Noroozi Javidan
- ‡Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Massumi
- †Department of Tissue Engineering, Faculty of Advanced Medical Technologies, Tehran University of Medical Sciences and Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
16
|
Kaka GR, Tiraihi T, Delshad A, Arabkheradmand J, Kazemi H. In vitro differentiation of bone marrow stromal cells into oligodendrocyte-like cells using triiodothyronine as inducer. Int J Neurosci 2012; 122:237-47. [PMID: 22115181 DOI: 10.3109/00207454.2011.642037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An in vitro technique was devised to induced autologous adult stem cells into oligodendrocyte-like cells. In this study, a protocol was developed for the induction of bone marrow stromal cells (BMSCs) into oligodendrocyte-like cells. BMSCs were incubated in one of these three pre-inducers: dimethyl sulfoxide (DMSO), β-mercaptoethanol (βME) or biotylated hydroxyanisol (BHA), each followed by retinoic acid (RA) treatment. The percentage of viable cells in BHA-RA preinduced cells was significantly lower than the others. The results showed that the preinduced cells were immunoreactive for nestin and NF-68; among the mentioned protocols, the immunoreactivity yielded by following the DMSO-RA protocol was significantly higher than the others. Moreover, no significant immunoreactivity was observed for preinduced cells to O4, O1, MBP (myelin basic protein), S100, and GFAP (glial fibrillary acidic protein). The cells were immunoreactive to oligo-2. Two phases of induction were done: the first was a combination of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) and heregulin (HRG), followed by either triiodothyronine (T3) or Forskolin (FSK) as the second phase. The conclusion is that the trans-differentiation of BMSCs by DMSO followed by RA (preinduction stage) then bFGF-PDGF-HRG followed by T3 (10 ng/ml) (induction stage) can be a potential source for oligodendrocyte-like cells preparation.
Collapse
Affiliation(s)
- Gholam Reza Kaka
- Department of Anatomical Sciences, Faculty of medical Sciences, Tarbiat Modares, Tehran, Iran
| | | | | | | | | |
Collapse
|
17
|
Slovinska L, Novotna I, Kubes M, Radonak J, Jergova S, Cigankova V, Rosocha J, Cizkova D. Umbilical Cord Blood Cells CD133+/CD133− Cultivation in Neural Proliferation Media Differentiates Towards Neural Cell Lineages. Arch Med Res 2011; 42:555-62. [DOI: 10.1016/j.arcmed.2011.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/26/2011] [Indexed: 01/10/2023]
|
18
|
Jurga M, Forraz N, Basford C, Atzeni G, Trevelyan AJ, Habibollah S, Ali H, Zwolinski SA, McGuckin CP. Neurogenic properties and a clinical relevance of multipotent stem cells derived from cord blood samples stored in the biobanks. Stem Cells Dev 2011; 21:923-36. [PMID: 21732816 DOI: 10.1089/scd.2011.0224] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Several innovative therapies with human umbilical cord blood stem cells (SCs) are currently developing to treat central nervous system (CNS) diseases. It has been shown that cord blood contains multipotent lineage-negative (LinNEG) SCs capable of neuronal differentiation. Clinically useful cord blood samples are stored in different biobanks worldwide, but the content and neurogenic properties of LinNEG cells are unknown. Here we have compared 5 major methods of blood processing: Sepax, Hetastarch, plasma depletion, Prepacyte-SC, and density gradient. We showed that Sepax-processed blood units contained 10-fold higher number of LinNEG cells after cryopreservation in comparison to all other methods. We showed in this study that multipotent SCs derived from fresh and frozen cord blood samples could be efficiently induced in defined serum-free medium toward neuronal progenitors (NF200+, Ki67+). During neuronal differentiation, the multipotent SCs underwent precise sequential changes at the molecular and cellular levels: Oct4 and Sox2 downregulation and Ngn1, NeuN, and PSD95 upregulation, similar to neurogenesis process in vivo. We expect that data presented here will be valuable for clinicians, researchers, biobanks, and patients and will contribute for better efficacy of future clinical trials in regeneration of CNS.
Collapse
Affiliation(s)
- Marcin Jurga
- Cell Therapy Research Institute (CTI-Lyon), Parc Technologique de Lyon-Saint Priest, Saint Priest, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy. Sci Rep 2011; 1:76. [PMID: 22355595 PMCID: PMC3216563 DOI: 10.1038/srep00076] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Umbilical cord blood (UCB)–derived myeloid progenitor cells have been shown to decrease neuronal damage associated with ischemia in the central nervous system. In this study we show that UCB-derived CD14+ progenitor cells provide rescue effects in a mouse model of ischemic retinopathy by promoting physiological angiogenesis and reducing associated inflammation. We use confocal microscopy to trace the fate of injected human UCB-derived CD14+ cells and PCR with species-specific probes to investigate their gene expression profile before and after injection. Metabolomic analysis measures changes induced by CD14+ cells. Our results demonstrate that human cells differentiate in vivo into M2 macrophages and induce the polarization of resident M2 macrophages. This leads to stabilization of the ischemia-injured retinal vasculature by modulating the inflammatory response, reducing oxidative stress and apoptosis and promoting tissue repair.
Collapse
|
20
|
Chua SJ, Casper RF, Rogers IM. Toward transgene-free induced pluripotent stem cells: lessons from transdifferentiation studies. Cell Reprogram 2011; 13:273-80. [PMID: 21599518 DOI: 10.1089/cell.2010.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract Regenerative medicine has received much attention over the years due to its clinical and commercial potential. The excitement around regenerative medicine waxes and wanes as new discoveries add to its foundation but are not immediately clinically applicable. The recent discovery of induced pluripotent stem cells has lead to a sustained effort from many research groups to develop clinically relevant regenerative medicine therapies. A major focus of cellular reprogramming is to generate safe cellular products through the use of proteins or small molecules instead of transgenes. The successful reprogramming of somatic nuclei to generate pluripotential cells capable of embryo development was pioneered over 50 years ago by Briggs and King and followed by Gurdon in the early 1960s. The success of these studies, the cloning of Dolly, and more current studies involving adult stem cells and transdifferentiation provide us with a large repository of potential candidate molecules and experimental systems that will assist in the generation of safe, transgene-free pluripotential cells.
Collapse
Affiliation(s)
- Shawn J Chua
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Shi M, Bradner J, Hancock AM, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Kim HM, Leverenz JB, Montine TJ, Ginghina C, Kang UJ, Cain KC, Wang Y, Aasly J, Goldstein DS, Zhang J. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 2011; 69:570-80. [PMID: 21400565 PMCID: PMC3117674 DOI: 10.1002/ana.22311] [Citation(s) in RCA: 320] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVE There is a clear need to develop biomarkers for Parkinson disease (PD) diagnosis, differential diagnosis of Parkinsonian disorders, and monitoring disease progression. We and others have demonstrated that a decrease in DJ-1 and/or α-synuclein in the cerebrospinal fluid (CSF) is a potential index for Parkinson disease diagnosis, but not for PD severity. METHODS Using highly sensitive and quantitative Luminex assays, we measured total tau, phosphorylated tau, amyloid beta peptide 1-42 (Aβ(1-42)), Flt3 ligand, and fractalkine levels in CSF in a large cohort of PD patients at different stages as well as healthy and diseased controls. The utility of these 5 markers was evaluated for disease diagnosis and severity/progression correlation alone, as well as in combination with DJ-1 and α-synuclein. The major results were further validated in an independent cohort of cross-sectional PD patients as well as in PD cases with CSF samples collected longitudinally. RESULTS The results demonstrated that combinations of these biomarkers could differentiate PD patients not only from normal controls but also from patients with Alzheimer disease (AD) and multiple system atrophy. Particularly, with CSF Flt3 ligand, PD could be clearly differentiated from multiple system atrophy, a disease that overlaps with PD clinically, with excellent sensitivity (99%) and specificity (95%). In addition, we identified CSF fractalkine/Aβ(1-42) that positively correlated with PD severity in cross-sectional samples as well as with PD progression in longitudinal samples. INTERPRETATION We have demonstrated that this panel of 7 CSF proteins could aid in Parkinson disease diagnosis, differential diagnosis, and correlation with disease severity and progression.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Joshua Bradner
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aneeka M. Hancock
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathryn A. Chung
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Elaine R. Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California at San Diego, San Diego, CA, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Cyrus P. Zabetian
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hojoong M. Kim
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - James B. Leverenz
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas J. Montine
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Carmen Ginghina
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Un Jung Kang
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Kevin C. Cain
- Department of Biostatistics, University of Washington School of Medicine, Seattle, WA, USA
| | - Yu Wang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway
| | - David S. Goldstein
- Clinical Neurocardiology Section, CNP, DIR, NINDS, NIH, Bethesda, MD, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
22
|
Abstract
The importance and essential functions of glial cells in the nervous system are now beginning to be understood and appreciated. Glial cell lines have been instrumental in the elucidation of many of these properties. In this Overview, the origin and properties of most of the existing cell lines for the major glial types: oligodendroglia, astroglia, microglia and Schwann cells, are documented. Particular emphasis is given to the culture conditions for each cell line and the degree to which the line can differentiate in vitro and in vivo. The major molecular markers for each glial cell lines are indicated. Finally, methods by which the glial cell lines have been developed are noted and the future directions of glial cell line research are discussed.
Collapse
|
23
|
Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury. J Neurol Sci 2010; 300:86-96. [PMID: 21071039 DOI: 10.1016/j.jns.2010.09.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 12/22/2022]
Abstract
Human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) have significant therapeutic potential in cell-based therapies following spinal cord injury (SCI). To evaluate this potential, we conducted our preliminary investigations on the remyelination of injured spinal cords with hUCB-MSC transplantations and we observed its long term effects on dogs with SCI. Of the ten injured dogs, seven were transplanted with hUCB-MSCs 1 week after SCI, whereas the remaining three dogs were not transplanted. Two transplanted dogs died over the first month after transplantation because of urinary tract infection, bedsores and sepsis. The SCI dogs showed no improvement in motor and sensory functions and their urinary dysfunction persisted until they were euthanized (from 3 months to 1 year) while hind-limb recovery in 4 dogs among the five transplanted dogs was significantly improved. In the recovered dogs, functional recovery was sustained for three years following transplantation. Histological results from five transplanted dogs showed that many axons were remyelinated by P0-positive myelin sheaths after transplantation. Our results suggest that transplantation of hUCB-derived MSCs may have beneficial therapeutic effects. Furthermore, histological results provided the first in vivo evidence that hUCB-MSCs are able to enhance the remyelination of peripheral-type myelin sheaths following SCI.
Collapse
|
24
|
The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine (Phila Pa 1976) 2010; 35:1520-6. [PMID: 20581748 DOI: 10.1097/brs.0b013e3181c3e963] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cytokine expression profile of umbilical cord blood (UCB) derived multipotential stem cells (MPSC) was produced. We then transplanted MPSCs into a rat model of spinal cord injury (SCI) and assessed neurologic function as well as spinal cord histology. OBJECTIVE To determine if MPSCs transplanted into a rat model of acute SCI would lead to a beneficial neurologic effect. SUMMARY OF BACKGROUND DATA Conditioned medium from UCB contains factors that could promote healing of endogenous neural tissues. Previously, our laboratory has demonstrated that UCB hematopoietic cells can develop into MPSCs capable of differentiating into multiple cell types including oligodendrocyte-like cells. METHODS We cultured MPSCs from UCB cells using fibroblast growth factor 4, stem cell factor and fms-like tyrosine kinase receptor-3 ligand supplemented serum-free medium. Using a cytokine antibody array, we produced a cytokines expression profile of MPSCs. We then transplanted MPSCs into an immunosuppressed rat model of SCI and assessed neurologic function weekly for 6 weeks by the Basso, Beattie, and Bresnahan locomotor test. The spinal cords were examined histologically and lesion areas quantified. RESULTS We detected elevated levels of cytokines and growth factors with known neuroprotective, angiogenic, and anti-inflammatory effects in the MPSC conditioned media. The SCI rats treated with MPSCs showed a significant improvement in Basso, Beattie, and Bresnahan scores after 6 weeks compared with the group that received vehicle only. Immunohistochemistry revealed transplanted human cells were present in the injured spinal cord after 1 week, but were no longer present by 6 weeks. There was a trend for the lesion size in treated rats to be smaller than that of the control group. CONCLUSION We conclude that UCB MPSCs improve neurologic function of rats with acute SCI, possibly by the release of factors that reduce secondary injury.
Collapse
|
25
|
Abstract
The mucopolysaccharidoses (MPSs) are inherited metabolic disorders (IMDs) caused by single-gene defects leading to progressive cellular accumulation of glycosaminoglycans (GAGs) and damage to multiple organs, including the central nervous, musculoskeletal, cardiorespiratory, and other systems. Hurler syndrome (MPS IH), the most severe form, is the prototypical model. Enzyme replacement therapy (ERT), available for MPS I, II, and VI, is beneficial in some patients. However, ERT does not improve neurocognitive function because of its inability to cross the blood-brain barrier. In contrast, allogeneic hematopoietic stem cell transplantation (HSCT) allows donor-derived, enzyme-producing cells to migrate to the brain and other organs to provide permanent enzyme therapy and thus help somatic organs, improve neurocognitive function and quality of life, and prolong survival, particularly when performed early in the course of the disease. Bone marrow has been the graft source in the past. However, in the last 5 years many patients have been treated with unrelated donor (URD) umbilical cord blood transplant (UCBT), allowing rapid and increased access to transplantation with favorable outcomes. This review describes published and our institutional clinical experiences, discusses the current status of the field, and provides therapy guidelines for patients with MPS.
Collapse
Affiliation(s)
- Vinod K Prasad
- Division of Pediatric Blood and Marrow Transplantation, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
26
|
Meyer AK, Maisel M, Hermann A, Stirl K, Storch A. Restorative approaches in Parkinson's Disease: Which cell type wins the race? J Neurol Sci 2010; 289:93-103. [DOI: 10.1016/j.jns.2009.08.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Wong CJ, Casper RF, Rogers IM. Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Exp Cell Res 2010; 316:927-39. [PMID: 20096686 DOI: 10.1016/j.yexcr.2010.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 12/26/2022]
Abstract
We have previously reported the existence of a subpopulation of cells from human umbilical cord blood capable of differentiating into oligodendrocytes, Schwann cells, bone, muscle, and endothelial cells despite their origins as CD45-positive cells. These stem cells (called FSFl cells) arise only after a period in vitro in medium containing FGF4, SCF, and Flt-3 ligand (FSFl medium) during which they express the pluripotency genes Oct4 and Nanog. The objective of this study was to determine if the novel expression of these pluripotency genes coupled with the newly acquired ability of these cells to differentiate into all three germ layers was the result of epigenetic changes to these cells after reprogramming in FSFl medium. We confirm that CD45-derived FSFl cells express Oct4 protein at levels similar to that observed among undifferentiated embryonic stem cells, during which time acetylated histones H3 and H4 display increased binding at the promoter region of Oct4. Changes to binding of acetylated histones at Oct4 when these cells are in a differentiated state (either prior to FSFl culture or after in vitro differentiation into neural cells) and when they are undifferentiated suggest that this is one way by which these cells acquire their pluripotency. While DNA hypermethylation at this gene region as well as the continued H3 and H4 acetylation at the CD45 promoter region among FSFl cells indicate this is only a partial reprogramming event, this is a significant step toward non-transgene reprogramming of somatic cells.
Collapse
Affiliation(s)
- Christine J Wong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, Canada ON M5T 3H7
| | | | | |
Collapse
|
28
|
Prasad VK, Kurtzberg J. Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status and future directions. Br J Haematol 2009; 148:356-72. [PMID: 19919654 DOI: 10.1111/j.1365-2141.2009.07974.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progressive degeneration of the central nervous system leading to the loss of neuromotor, neurophysiological and cognitive abilities is the fundamental clinical problem in patients with many inherited metabolic diseases (IMD). Worldwide experience shows that morbidity, quality of life, and survival in these patients can be improved by allogeneic haematopoietic stem cell transplantation (HSCT), particularly when performed early in the course of the disease. At present, while available for some conditions, exogenous enzyme replacement therapy is unable to correct cognitive and central nervous system disease because of its inability to cross the blood-brain barrier. In contrast, HSCT allows donor-derived, enzyme-producing cells to migrate to the brain and other organs providing a permanent enzyme replacement therapy. HSCT may also mediate non-hematopoietic cell regeneration or repair. Traditionally, bone marrow has been the graft source for IMD patients. However, in the last 5 years many studies utilizing unrelated donor umbilical cord blood (UCB) as a graft source have demonstrated that UCB provides rapid and increased access to transplantation with favourable outcomes. This review describes preclinical studies and past and present clinical treatment approaches and discusses current controversies and future directions of this promising field.
Collapse
Affiliation(s)
- Vinod K Prasad
- Division of Pediatric Blood and Marrow Transplantation, Box 3350, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
29
|
Abstract
Many factors, including lower risk of GVHD, rapid availability of 4/6-6/6 matched cord blood (CB) units and incremental gains in the outcomes, have led to an increasing use of CB transplantation (CBT) to treat many patients who lack fully matched adult BM donors. A large electronically searchable worldwide inventory of publicly banked CB units allows for quicker donor identification and selection. In this review, we examine the current status and cumulative experience of related and unrelated donor CBT for the treatment of non-malignant diseases, including hemoglobinopathies, BM failure syndromes, primary immunodeficiency diseases (PIDs) and inherited metabolic disorders (IMDs), and conclude that CBT offers a promising and effective therapy for these diseases. Future strategies to facilitate earlier diagnosis and to decrease transplant-related risks should further improve the short- and long-term outcomes. Every effort should be made to perform transplantation early in the course of disease before extensive damage to various tissues and organs ensues.
Collapse
|