1
|
Gaus B, Brüning D, Groß S, Müller M, Rustenbeck I. The changing view of insulin granule mobility: From conveyor belt to signaling hub. Front Endocrinol (Lausanne) 2022; 13:983152. [PMID: 36120467 PMCID: PMC9478610 DOI: 10.3389/fendo.2022.983152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Before the advent of TIRF microscopy the fate of the insulin granule prior to secretion was deduced from biochemical investigations, electron microscopy and electrophysiological measurements. Since Calcium-triggered granule fusion is indisputably necessary to release insulin into the extracellular space, much effort was directed to the measure this event at the single granule level. This has also been the major application of the TIRF microscopy of the pancreatic beta cell when it became available about 20 years ago. To better understand the metabolic modulation of secretion, we were interested to characterize the entirety of the insulin granules which are localized in the vicinity of the plasma membrane to identify the characteristics which predispose to fusion. In this review we concentrate on how the description of granule mobility in the submembrane space has evolved as a result of progress in methodology. The granules are in a state of constant turnover with widely different periods of residence in this space. While granule fusion is associated +with prolonged residence and decreased lateral mobility, these characteristics may not only result from binding to the plasma membrane but also from binding to the cortical actin web, which is present in the immediate submembrane space. While granule age as such affects granule mobility and fusion probability, the preceding functional states of the beta cell leave their mark on these parameters, too. In summary, the submembrane granules form a highly dynamic heterogeneous population and contribute to the metabolic memory of the beta cells.
Collapse
Affiliation(s)
- Bastian Gaus
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sofie Groß
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Ingo Rustenbeck,
| |
Collapse
|
2
|
Abstract
Background Insulin is stored within large dense-core granules in pancreatic beta (β)-cells and is released by Ca2+-triggered exocytosis with increasing blood glucose levels. Polarized and targeted secretion of insulin from β-cells in pancreatic islets into the vasculature has been proposed; however, the mechanisms related to cellular and molecular localization remain largely unknown. Within nerve terminals, the Ca2+-dependent release of a polarized transmitter is limited to the active zone, a highly specialized area of the presynaptic membrane. Several active zone-specific proteins have been characterized; among them, the CAST/ELKS protein family members have the ability to form large protein complexes with other active zone proteins to control the structure and function of the active zone for tight regulation of neurotransmitter release. Notably, ELKS but not CAST is also expressed in β-cells, implying that ELKS may be involved in polarized insulin secretion from β-cells. Scope of review This review provides an overview of the current findings regarding the role(s) of ELKS and other active zone proteins in β-cells and focuses on the molecular mechanism underlying ELKS regulation within polarized insulin secretion from islets. Major conclusions ELKS localizes at the vascular-facing plasma membrane of β-cells in mouse pancreatic islets. ELKS forms a potent insulin secretion complex with L-type voltage-dependent Ca2+ channels on the vascular-facing plasma membrane of β-cells, enabling polarized Ca2+ influx and first-phase insulin secretion from islets. This model provides novel insights into the functional polarity observed during insulin secretion from β-cells within islets at the molecular level. This active zone-like region formed by ELKS at the vascular side of the plasma membrane is essential for coordinating physiological insulin secretion and may be disrupted in diabetes.
Collapse
Affiliation(s)
- Mica Ohara-Imaizumi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| | - Kyota Aoyagi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
3
|
Müller M, Glombek M, Powitz J, Brüning D, Rustenbeck I. A Cellular Automaton Model as a First Model-Based Assessment of Interacting Mechanisms for Insulin Granule Transport in Beta Cells. Cells 2020; 9:E1487. [PMID: 32570905 PMCID: PMC7348896 DOI: 10.3390/cells9061487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
In this paper a first model is derived and applied which describes the transport of insulin granules through the cell interior and at the membrane of a beta cell. A special role is assigned to the actin network, which significantly influences the transport. For this purpose, microscopically measured actin networks are characterized and then further ones are artificially generated. In a Cellular Automaton model, phenomenological laws for granule movement are formulated and implemented. Simulation results are compared with experiments, primarily using TIRF images and secretion rates. In this respect, good similarities are already apparent. The model is a first useful approach to describe complex granule transport processes in beta cells, and offers great potential for future extensions. Furthermore, the model can be used as a tool to validate hypotheses and associated mechanisms regarding their effect on exocytosis or other processes. For this purpose, the source code for the model is provided online.
Collapse
Affiliation(s)
- Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (M.G.); (J.P.)
| | - Mathias Glombek
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (M.G.); (J.P.)
| | - Jeldrick Powitz
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (M.G.); (J.P.)
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany;
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany;
| |
Collapse
|
4
|
ELKS/Voltage-Dependent Ca 2+ Channel-β Subunit Module Regulates Polarized Ca 2+ Influx in Pancreatic β Cells. Cell Rep 2020; 26:1213-1226.e7. [PMID: 30699350 DOI: 10.1016/j.celrep.2018.12.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic β cells secrete insulin by Ca2+-triggered exocytosis. However, there is no apparent secretory site similar to the neuronal active zones, and the cellular and molecular localization mechanism underlying polarized exocytosis remains elusive. Here, we report that ELKS, a vertebrate active zone protein, is used in β cells to regulate Ca2+ influx for insulin secretion. β cell-specific ELKS-knockout (KO) mice showed impaired glucose-stimulated first-phase insulin secretion and reduced L-type voltage-dependent Ca2+ channel (VDCC) current density. In situ Ca2+ imaging of β cells within islets expressing a membrane-bound G-CaMP8b Ca2+ sensor demonstrated initial local Ca2+ signals at the ELKS-localized vascular side of the β cell plasma membrane, which were markedly decreased in ELKS-KO β cells. Mechanistically, ELKS directly interacted with the VDCC-β subunit via the GK domain. These findings suggest that ELKS and VDCCs form a potent insulin secretion complex at the vascular side of the β cell plasma membrane for polarized Ca2+ influx and first-phase insulin secretion from pancreatic islets.
Collapse
|
5
|
Takahashi H, Hidaka S, Seki C, Yokoi N, Seino S. Characteristics of repaglinide effects on insulin secretion. Eur J Pharmacol 2018; 828:52-59. [PMID: 29555503 DOI: 10.1016/j.ejphar.2018.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
The dynamics of insulin secretion stimulated by repaglinide, a glinide, and the combinatorial effects of repaglinide and incretin were investigated. At 4.4 mM glucose, repaglinide induced insulin secretion with a gradually increasing first phase, showing different dynamics from that induced by glimepiride, a sulfonylurea. In the presence of glucagon-like peptide-1 (GLP-1), insulin secretion by repaglinide was augmented significantly but to lesser extent and showed different dynamics from that by glimepiride. At 4.4 mM glucose, the intracellular Ca2+ level was gradually increased by repaglinide alone or repaglinide plus GLP-1, which differs from the Ca2+ dynamics by glimepiride alone or glimepiride plus GLP-1, suggesting that the difference in Ca2+ dynamics contributes to the difference in the dynamics of insulin secretion. At a higher concentration (8.8 mM) of glucose, the dynamics of insulin secretion stimulated by repaglinide was similar to that by glimepiride. Combination of repaglinide and GLP-1 significantly augmented insulin secretion, the amount of which was comparable to that by the combination of glimepiride and GLP-1. The Ca2+ dynamics was similar for repaglinide and glimepiride at 8.8 mM glucose. Our data indicate that repaglinide has characteristic properties in its effects on the dynamics of insulin secretion and intracellular Ca2+ and that the combination of repaglinide and GLP-1 stimulates insulin secretion more effectively than the combination of glimepiride and GLP-1 at a high concentration of glucose, providing a basis for its use in clinical settings.
Collapse
Affiliation(s)
- Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Shihomi Hidaka
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Chihiro Seki
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
6
|
Brüning D, Reckers K, Drain P, Rustenbeck I. Glucose but not KCl diminishes submembrane granule turnover in mouse beta-cells. J Mol Endocrinol 2017; 59:311-324. [PMID: 28765259 DOI: 10.1530/jme-17-0063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023]
Abstract
KCl depolarization is widely used to mimic the depolarization during glucose-stimulated insulin secretion. Consequently, the insulin secretion elicited by KCl is often regarded as the equivalent of the first phase of glucose-induced insulin secretion. Here, the effects of both stimuli were compared by measuring the secretion of perifused mouse islets, the cytosolic Ca2+ concentration of single beta-cells and the mobility of submembrane insulin granules by TIRF microscopy of primary mouse beta-cells. Two cargo-directed granule labels were used namely insulin-EGFP and C-peptide-emGFP. The granule behaviour common to both was used to compare the effect of sequential stimulation with 40 mM KCl and 30 mM glucose and sequential stimulation with the same stimuli in reversed order. At the level of the cell secretory response, the sequential pulse protocol showed marked differences depending on the order of the two stimuli. KCl produced higher maximal secretion rates and diminished the response to the subsequent glucose stimulus, whereas glucose enhanced the response to the subsequent KCl stimulus. At the level of granule behaviour, a difference developed during the first stimulation phase in that the total number of granules, the short-term resident granules and the arriving granules, which are all parameters of granule turnover, were significantly smaller for glucose than for KCl. These differences at both the level of the cell secretory response and granule behaviour in the submembrane space are incompatible with identical initial response mechanisms to KCl and glucose stimulation.
Collapse
Affiliation(s)
- Dennis Brüning
- Institute of Pharmacology and ToxicologyUniversity of Braunschweig, Braunschweig, Germany
| | - Kirstin Reckers
- Institute of Pharmacology and ToxicologyUniversity of Braunschweig, Braunschweig, Germany
| | - Peter Drain
- Department of Cell BiologyUniversity of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ingo Rustenbeck
- Institute of Pharmacology and ToxicologyUniversity of Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Aoyagi K, Ohara-Imaizumi M, Itakura M, Torii S, Akimoto Y, Nishiwaki C, Nakamichi Y, Kishimoto T, Kawakami H, Harada A, Takahashi M, Nagamatsu S. VAMP7 Regulates Autophagy to Maintain Mitochondrial Homeostasis and to Control Insulin Secretion in Pancreatic β-Cells. Diabetes 2016; 65:1648-59. [PMID: 26953164 DOI: 10.2337/db15-1207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/03/2016] [Indexed: 11/13/2022]
Abstract
VAMP7 is a SNARE protein that mediates specific membrane fusions in intracellular trafficking and was recently reported to regulate autophagosome formation. However, its function in pancreatic β-cells is largely unknown. To elucidate the physiological role of VAMP7 in β-cells, we generated pancreatic β-cell-specific VAMP7 knockout (Vamp7(flox/Y);Cre) mice. VAMP7 deletion impaired glucose-stimulated ATP production and insulin secretion, though VAMP7 was not localized to insulin granules. VAMP7-deficient β-cells showed defective autophagosome formation and reduced mitochondrial function. p62/SQSTM1, a marker protein for defective autophagy, was selectively accumulated on mitochondria in VAMP7-deficient β-cells. These findings suggest that accumulation of dysfunctional mitochondria that are degraded by autophagy caused impairment of glucose-stimulated ATP production and insulin secretion in Vamp7(flox/Y);Cre β-cells. Feeding a high-fat diet to Vamp7(flox/Y);Cre mice exacerbated mitochondrial dysfunction, further decreased ATP production and insulin secretion, and consequently induced glucose intolerance. Moreover, we found upregulated VAMP7 expression in wild-type mice fed a high-fat diet and in db/db mice, a model for diabetes. Thus our data indicate that VAMP7 regulates autophagy to maintain mitochondrial quality and insulin secretion in response to pathological stress in β-cells.
Collapse
Affiliation(s)
- Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | - Seiji Torii
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Chiyono Nishiwaki
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoko Nakamichi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Takuma Kishimoto
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Schumacher K, Matz M, Brüning D, Baumann K, Rustenbeck I. Granule mobility, fusion frequency and insulin secretion are differentially affected by insulinotropic stimuli. Traffic 2015; 16:493-509. [PMID: 25615411 DOI: 10.1111/tra.12261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 01/01/2023]
Abstract
The pre-exocytotic behavior of insulin granules was studied against the background of the entirety of submembrane granules in MIN6 cells, and the characteristics were compared with the macroscopic secretion pattern and the cytosolic Ca(2+) concentration of MIN6 pseudo-islets at 22°C, 32°C and 37°C. The mobility of granules labeled by insulin-EGFP and the fusion events were assessed by TIRF microscopy utilizing an observer-independent algorithm. In the z-dimension, 40 mm K(+) or 30 mm glucose increased the granule turnover. The effect of high K(+) was quickly reversible. The increase by glucose was more sustained and modified the efficacy of a subsequent K(+) stimulus. The effect size of glucose increased with physiological temperature whereas that of high K(+) did not. The mobility in the x/y-dimension and the fusion rates were little affected by the stimuli, in contrast to secretion. Fusion and secretion, however, had the same temperature dependence. Granules that appeared and fused within one image sequence had significantly larger caging diameters than pre-existent granules that underwent fusion. These in turn had a different mobility than residence-matched non-fusing granules. In conclusion, delivery to the membrane, tethering and fusion of granules are differently affected by insulinotropic stimuli. Fusion rates and secretion do not appear to be tightly coupled.
Collapse
Affiliation(s)
- Kirstin Schumacher
- Institute of Pharmacology and Toxicology, University of Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
9
|
Geron E, Boura-Halfon S, Schejter ED, Shilo BZ. The Edges of Pancreatic Islet β Cells Constitute Adhesive and Signaling Microdomains. Cell Rep 2015; 10:317-325. [PMID: 25600867 DOI: 10.1016/j.celrep.2014.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/11/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022] Open
Abstract
Pancreatic islet β cells are organized in rosette-like structures around blood vessels and exhibit an artery-to-vein orientation, but they do not display the typical epithelial polarity. It is unclear whether these cells present a functional asymmetry related to their spatial organization. Here, we identify murine β cell edges, the sites at which adjacent cell faces meet at a sharp angle, as surface microdomains of cell-cell adhesion and signaling. The edges are marked by enrichment of F-actin and E-cadherin and are aligned between neighboring cells. The edge organization is E-cadherin contact dependent and correlates with insulin secretion capacity. Edges display elevated levels of glucose transporters and SNAP25 and extend numerous F-actin-rich filopodia. A similar β cell edge organization was observed in human islets. When stimulated, β cell edges exhibit high calcium levels. In view of the functional importance of intra-islet communication, the spatial architecture of their edges may prove fundamental for coordinating physiological insulin secretion.
Collapse
Affiliation(s)
- Erez Geron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Matz M, Schumacher K, Hatlapatka K, Lorenz D, Baumann K, Rustenbeck I. Observer-independent quantification of insulin granule exocytosis and pre-exocytotic mobility by TIRF microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:206-218. [PMID: 24230985 DOI: 10.1017/s1431927613013767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Total internal reflection fluorescence microscopy of fluorescently labeled secretory granules permits monitoring of exocytosis and the preceding granule behavior in one experiment. While observer-dependent evaluation may be sufficient to quantify exocytosis, most of the other information contained in the video files cannot be accessed this way. The present program performs observer-independent detection of exocytosis and tracking of the entire submembrane population of insulin granules. A precondition is the exact localization of the peak of the granule fluorescence. Tracking is based on the peak base radius, peak intensity, and the precrossing itineraries. Robustness of the tracking was shown by simulated tracks of original granule patterns. Mobility in the X-Y dimension is described by the caging diameter which in contrast to the widely used mean square displacement has an inherent time resolution. Observer-independent detection of exocytosis in MIN6 cells labeled with insulin-EGFP is based on the maximal decrease in fluorescence intensity and position of the centroid of the dissipating cloud of released material. Combining the quantification of KCl-induced insulin exocytosis with the analysis of prefusion mobility showed that during the last 3 s pre-exocytotic granules had a smaller caging diameter than control granules and that it increased significantly immediately before fusion.
Collapse
Affiliation(s)
- Magnus Matz
- Institute of Medicinal and Pharmaceutical Chemistry, University of Braunschweig, Braunschweig D38106, Germany
| | - Kirstin Schumacher
- Institute of Pharmacology and Toxicology, University of Braunschweig, Braunschweig D38106, Germany
| | - Kathrin Hatlapatka
- Institute of Pharmacology and Toxicology, University of Braunschweig, Braunschweig D38106, Germany
| | - Dirk Lorenz
- Institute of Analysis and Algebra, University of Braunschweig, Braunschweig D38106, Germany
| | - Knut Baumann
- Institute of Medicinal and Pharmaceutical Chemistry, University of Braunschweig, Braunschweig D38106, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, University of Braunschweig, Braunschweig D38106, Germany
| |
Collapse
|
11
|
Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Ueki K, Kadowaki T, Nagamatsu S. Acute inhibition of PI3K-PDK1-Akt pathway potentiates insulin secretion through upregulation of newcomer granule fusions in pancreatic β-cells. PLoS One 2012; 7:e47381. [PMID: 23077605 PMCID: PMC3471824 DOI: 10.1371/journal.pone.0047381] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/12/2012] [Indexed: 02/03/2023] Open
Abstract
In glucose-induced insulin secretion from pancreatic β-cells, a population of insulin granules fuses with the plasma membrane without the typical docking process (newcomer granule fusions), however, its mechanism is unclear. In this study, we investigated the PI3K signaling pathways involved in the upregulation of newcomer granule fusions. Acute treatment with the class IA-selective PI3K inhibitors, PIK-75 and PI-103, enhanced the glucose-induced insulin secretion. Total internal reflection fluorescent microscopy revealed that the PI3K inhibitors increased the fusion events from newcomer granules. We developed a new system for transfection into pancreatic islets and demonstrated the usefulness of this system in order for evaluating the effect of transfected genes on the glucose-induced secretion in primary cultured pancreatic islets. Using this transfection system together with a series of constitutive active mutants, we showed that the PI3K-3-phosphoinositide dependent kinase-1 (PDK1)-Akt pathway mediated the potentiation of insulin secretion. The Akt inhibitor also enhanced the glucose-induced insulin secretion in parallel with the upregulation of newcomer granule fusions, probably via increased motility of intracellular insulin granules. These data suggest that the PI3K-PDK1-Akt pathway plays a significant role in newcomer granule fusions, probably through an alteration of the dynamics of the intracellular insulin granules.
Collapse
Affiliation(s)
- Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Chiyono Nishiwaki
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoko Nakamichi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Straub SG, Sharp GWG. Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins. Am J Physiol Cell Physiol 2012; 302:C1687-98. [PMID: 22492651 DOI: 10.1152/ajpcell.00282.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Norepinephrine has for many years been known to have three major effects on the pancreatic β-cell which lead to the inhibition of insulin release. These are activation of K(+) channels to hyperpolarize the cell and prevent the gating of voltage-dependent Ca(2+) channels that increase intracellular Ca(2+) concentration ([Ca(2+)](i)) and trigger release; inhibition of adenylyl cyclases, thus preventing the augmentation of stimulated insulin release by cyclic AMP; and a "distal" effect that occurs downstream of increased [Ca(2+)](i) to inhibit exocytosis. All three are mediated by the pertussis toxin (PTX)-sensitive heterotrimeric Gi and Go proteins. The distal inhibitory effect on exocytosis is now known to be due to the binding of G protein βγ subunits to the synaptosomal-associated protein of 25 kDa (SNAP-25) on the soluble NSF attachment protein receptor (SNARE) complex. Recent studies have uncovered two more actions of norepinephrine on the β-cell: 1) retardation of the refilling of the readily releasable granule pool after it has been discharged, an action that is mediated by Gαi(1) and/or Gαi(2); and 2) inhibition of endocytosis that is mediated by Gz. Of importance also are new findings that Gαo regulates the number of docked granules in the β-cell, and that Gαo(2) maintains a tonic inhibitory influence on secretion. The latter provides another explanation as to why PTX, which blocks the effect of Gαo(2), was initially called "islet activating protein." Finally, there is clear evidence that overexpression of α(2A)-adrenergic receptors in β-cells can cause type 2 diabetes.
Collapse
Affiliation(s)
- Susanne G Straub
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853-6401, USA
| | | |
Collapse
|
13
|
Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 2011; 51:300-8. [PMID: 22177710 PMCID: PMC3334273 DOI: 10.1016/j.ceca.2011.11.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 12/15/2022]
Abstract
The glucoregulatory hormones insulin and glucagon are released from the β- and α-cells of the pancreatic islets. In both cell types, secretion is secondary to firing of action potentials, Ca2+-influx via voltage-gated Ca2+-channels, elevation of [Ca2+]i and initiation of Ca2+-dependent exocytosis. Here we discuss the mechanisms that underlie the reciprocal regulation of insulin and glucagon secretion by changes in plasma glucose, the roles played by different types of voltage-gated Ca2+-channel present in α- and β-cells and the modulation of hormone secretion by Ca2+-dependent and -independent processes. We also consider how subtle changes in Ca2+-signalling may have profound impact on β-cell performance and increase risk of developing type-2 diabetes.
Collapse
|
14
|
Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:293-303. [PMID: 21920379 DOI: 10.1016/j.pbiomolbio.2011.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 12/26/2022]
Abstract
Insulin secretory responses to nutrient stimuli and hormonal modulators in pancreatic beta-cells are controlled by a variety of secondary messengers. We have analyzed numerous mechanisms responsible for regulated exocytosis in these cells and present an integrated mathematical model of cytosolic Ca²⁺, cAMP and granule dynamics. The insulin-containing granules in the beta-cell were divided into four classes: a large "reserve" granule pool, a smaller pool of the morphologically docked granules that is chemically 'primed' for release or the "readily releasable pool", and a pool of "restless newcomer granules" that undergoes preferential exocytosis. The model incorporates glucose and other aspects of metabolism, the cAMP amplifying pathway, insulin granule dynamics and the exocyst concept for granule binding. The values of most of the model parameters were inferred from available experimental data. The model can generate both the fast first phase and slow biphasic insulin secretion found experimentally in response to a step increase of membrane potential or of glucose. The numerical simulations have also reproduced a variety of experimental conditions, such as periodic stimulation by high K⁺ and the potentiation induced in islets by pre-incubation with cAMP pathway activators. The explicit incorporation of Ca²⁺ channels, Ca²⁺ and cAMP dynamics allows the model to be further connected to current models for calcium and metabolic dynamics and provides an interpretation of the roles of the triggering and amplifying pathways of glucose-stimulated insulin secretion. The model may be important in the identification of pharmacological targets for improving insulin secretion in type 2 diabetes.
Collapse
|
15
|
Mathematical modeling and statistical analysis of calcium-regulated insulin granule exocytosis in β-cells from mice and humans. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:257-64. [PMID: 21839108 DOI: 10.1016/j.pbiomolbio.2011.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 07/12/2011] [Accepted: 07/28/2011] [Indexed: 11/24/2022]
Abstract
Insulin is released from pancreatic β-cells as a result of Ca²⁺-evoked exocytosis of dense-core granules. Secretion is biphasic, which has been suggested to correspond to the release of different granule pools. Here we review and carefully reanalyze previously published patch-clamp data on depolarization-evoked Ca²⁺-currents and corresponding capacitance measurements. Using a statistical mixed-effects model, we show that the data indicate that pool depletion is negligible in response to short depolarizations in mouse β-cells. We then review mathematical models of granule dynamics and exocytosis in rodent β-cells and present a mathematical description of Ca²⁺-evoked exocytosis in human β-cells, which show clear differences to their rodent counterparts. The model suggests that L- and P/Q-type Ca²⁺-channels are involved to a similar degree in exocytosis during electrical activity in human β-cells.
Collapse
|
16
|
Hatlapatka K, Matz M, Schumacher K, Baumann K, Rustenbeck I. Bidirectional insulin granule turnover in the submembrane space during K(+) depolarization-induced secretion. Traffic 2011; 12:1166-78. [PMID: 21668594 DOI: 10.1111/j.1600-0854.2011.01231.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like primary mouse islets, MIN6 pseudoislets responded to the depolarization by 40 mm KCl and the resulting increase in the free cytosolic Ca(2+) concentration ([Ca(2+) ](i) ) with a massive increase in insulin secretion, whereas 15 mm KCl had little effect in spite of a clear increase in [Ca(2+) ](i) . Analysis of insulin-enhanced green fluorescent protein (EGFP)-labeled granules in MIN6 cells by total internal reflection fluorescence (TIRF) microscopy showed that 40 mm KCl increased the number of short-term resident granules (<1 second presence in the submembrane space), while the total granule number and the number of long-term resident granules decreased. The rates of granule arrival at and departure from the submembrane space changed in parallel and were two orders of magnitude higher than the release rates, suggesting a back-and-forth movement of the granules as the primary determinant of the submembrane granule number. The effect of 15 mm KCl resembled that of 40 mm but did not achieve significance. Both 15 and 40 mm KCl evoked a [Ca(2+) ](i) increase, which was antagonized by 10 µm nifedipine. Nifedipine also antagonized the effect on secretion and on granule number and mobility. In conclusion, during KCl depolarization L-type Ca(2+) channels seem to regulate two processes, insulin granule turnover in the submembrane space and granule exocytosis.
Collapse
Affiliation(s)
- Kathrin Hatlapatka
- Institute of Pharmacology and Toxicology, University of Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
17
|
Ravier MA, Cheng-Xue R, Palmer AE, Henquin JC, Gilon P. Subplasmalemmal Ca(2+) measurements in mouse pancreatic beta cells support the existence of an amplifying effect of glucose on insulin secretion. Diabetologia 2010; 53:1947-57. [PMID: 20461354 PMCID: PMC3297670 DOI: 10.1007/s00125-010-1775-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Glucose-induced insulin secretion is attributed to a rise of beta cell cytosolic free [Ca(2+)] ([Ca(2+)](c)) (triggering pathway) and amplification of the action of Ca(2+). This concept of amplification rests on observations that glucose can increase Ca(2+)-induced insulin secretion without further elevating an imposed already high [Ca(2+)](c). However, it remains possible that this amplification results from an increase in [Ca(2+)] just under the plasma membrane ([Ca(2+)](SM)), which escaped detection by previous measurements of global [Ca(2+)](c). This was the hypothesis that we tested here by measuring [Ca(2+)](SM). METHODS The genetically encoded Ca(2+) indicators D3-cpv (untargeted) and LynD3-cpv (targeted to plasma membrane) were expressed in clusters of mouse beta cells. LynD3-cpv was also expressed in beta cells within intact islets. [Ca(2+)](SM) changes were monitored using total internal reflection fluorescence microscopy. Insulin secretion was measured in parallel. RESULTS Beta cells expressing D3cpv or LynD3cpv displayed normal [Ca(2+)] changes and insulin secretion in response to glucose. Distinct [Ca(2+)](SM) fluctuations were detected during repetitive variations of KCl between 30 and 32-35 mmol/l, attesting to the adequate sensitivity of our system. When the amplifying pathway was evaluated (high KCl + diazoxide), increasing glucose from 3 to 15 mmol/l consistently lowered [Ca(2+)](SM) while stimulating insulin secretion approximately two fold. Blocking Ca(2+) uptake by the endoplasmic reticulum largely attenuated the [Ca(2+)](SM) decrease produced by high glucose but did not unmask localised [Ca(2+)](SM) increases. CONCLUSIONS/INTERPRETATION Glucose can increase Ca(2+)-induced insulin secretion without causing further elevation of beta cell [Ca(2+)](SM). The phenomenon is therefore a true amplification of the triggering action of Ca(2+).
Collapse
Affiliation(s)
- M. A. Ravier
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, 1200 Brussels, Belgium
| | - R. Cheng-Xue
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, 1200 Brussels, Belgium
| | - A. E. Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - J. C. Henquin
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, 1200 Brussels, Belgium
| | - P. Gilon
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, 1200 Brussels, Belgium
| |
Collapse
|
18
|
Glinide, but not sulfonylurea, can evoke insulin exocytosis by repetitive stimulation: imaging analysis of insulin exocytosis by secretagogue-induced repetitive stimulations. EXPERIMENTAL DIABETES RESEARCH 2009; 2009:278762. [PMID: 20069052 PMCID: PMC2801449 DOI: 10.1155/2009/278762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 09/14/2009] [Accepted: 11/15/2009] [Indexed: 12/31/2022]
Abstract
To investigate the different effects between sulfonylurea (SU) and glinide drugs in insulin secretion, pancreatic β-cells were repeatedly stimulated with SU (glimepiride) or glinide (mitiglinide). Total internal reflection fluorescent (TIRF) microscopy revealed that secondary stimulation with glimepiride, but not glucose and mitiglinide, failed to evoke fusions of insulin granules although primary stimulation with glucose, glimepiride, and mitiglinide induced equivalent numbers of exocytotic responses. Glimepiride, but not glucose and mitiglinide, induced abnormally sustained [Ca2+]i elevations and reductions of docked insulin granules on the plasma membrane. Our data suggest that the effect of glinide on insulin secretory mechanisms is similar to that of glucose.
Collapse
|
19
|
Ohara-Imaizumi M, Aoyagi K, Akimoto Y, Nakamichi Y, Nishiwaki C, Kawakami H, Nagamatsu S. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy. Biochem Biophys Res Commun 2009; 390:16-20. [PMID: 19766598 DOI: 10.1016/j.bbrc.2009.09.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic beta cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.
Collapse
Affiliation(s)
- Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | |
Collapse
|