1
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
2
|
Kiyomoto K, Matsuo I, Suita K, Ohnuki Y, Ishikawa M, Ito A, Mototani Y, Tsunoda M, Morii A, Nariyama M, Hayakawa Y, Amitani Y, Gomi K, Okumura S. Oral angiotensin-converting enzyme inhibitor captopril protects the heart from Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS One 2023; 18:e0292624. [PMID: 37983238 PMCID: PMC10659197 DOI: 10.1371/journal.pone.0292624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
Abstract
Although angiotensin converting enzyme (ACE) inhibitors are considered useful for the treatment of human heart failure, some experimental failing-heart models have shown little beneficial effect of ACE inhibitors in animals with poor oral health, particularly periodontitis. In this study, we examined the effects of the ACE inhibitor captopril (Cap; 0.1 mg/mL in drinking water) on cardiac dysfunction in mice treated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS) at a dose (0.8 mg/kg/day) equivalent to the circulating level in patients with periodontal disease. Mice were divided into four groups: 1) Control, 2) PG-LPS, 3) Cap, and 4) PG-LPS + Cap. After1 week, we evaluated cardiac function by echocardiography. The left ventricular ejection fraction was significantly decreased in PG-LPS-treated mice compared to the control (from 66 ± 1.8 to 59 ± 2.5%), while Cap ameliorated the dysfunction (63 ± 1.1%). The area of cardiac fibrosis was significantly increased (approximately 2.9-fold) and the number of apoptotic myocytes was significantly increased (approximately 5.6-fold) in the heart of PG-LPS-treated group versus the control, and these changes were suppressed by Cap. The impairment of cardiac function in PG-LPS-treated mice was associated with protein kinase C δ phosphorylation (Tyr-311), leading to upregulation of NADPH oxidase 4 and xanthine oxidase, and calmodulin kinase II phosphorylation (Thr-286) with increased phospholamban phosphorylation (Thr-17). These changes were also suppressed by Cap. Our results suggest that the renin-angiotensin system might play an important role in the development of cardiac diseases induced by PG-LPS.
Collapse
Affiliation(s)
- Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ichiro Matsuo
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasuharu Amitani
- Department of Mathematics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Ito A, Ohnuki Y, Suita K, Matsuo I, Ishikawa M, Mitsubayashi T, Mototani Y, Kiyomoto K, Tsunoda M, Morii A, Nariyama M, Hayakawa Y, Tomonari H, Okumura S. Effects of the angiotensin-converting enzyme inhibitor captopril on occlusal-disharmony-induced cardiac dysfunction in mice. Sci Rep 2023; 13:19927. [PMID: 37968296 PMCID: PMC10651878 DOI: 10.1038/s41598-023-43099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/19/2023] [Indexed: 11/17/2023] Open
Abstract
Occlusal disharmony is known to affect not only the oral cavity environment, but also the autonomic nervous system in the heart. Since the renin-angiotensin system (RAS) inhibitor captopril (Cap) is one of the first-line drugs for preventing cardiac remodeling in patients with heart failure, we hypothesized that Cap might prevent cardiac dysfunction induced by occlusal disharmony. Here, to test this idea, we used our bite-opening (BO) mouse model, which was developed by cementing a suitable appliance onto the mandibular incisor. Mice were divided into four groups: (1) Control, (2) BO, (3) Cap, and (4) BO + Cap. After 2 weeks, we evaluated cardiac function by echocardiography and confirmed that cardiac function was significantly decreased in the BO group compared to the control, while Cap ameliorated the dysfunction. Cardiac fibrosis, myocyte apoptosis and oxidative stress-induced myocardial damage in the BO group were significantly increased versus the control, and these increases were suppressed by Cap. Cardiac dysfunction induced by BO was associated with dual phosphorylation on PKCδ (Tyr-311/Thr-505), leading to activation of CaMKII with increased phosphorylation of RyR2 and phospholamban. Our results suggest that the RAS might play an important role in the development of cardiac diseases induced by occlusal anomalies.
Collapse
Affiliation(s)
- Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Ichiro Matsuo
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Takao Mitsubayashi
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 236-8501, Japan
| | - Yoshio Hayakawa
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
4
|
Banik A, Datta Chaudhuri R, Vashishtha S, Gupta S, Kar A, Bandyopadhyay A, Kundu B, Sarkar S. Deoxyelephantopin-a novel PPARγ agonist regresses pressure overload-induced cardiac fibrosis via IL-6/STAT-3 pathway in crosstalk with PKCδ. Eur J Pharmacol 2023:175841. [PMID: 37329972 DOI: 10.1016/j.ejphar.2023.175841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Pathological cardiac hypertrophy is associated with ventricular fibrosis leading to heart failure. The use of thiazolidinediones as Peroxisome Proliferator-Activated Receptor-gamma (PPARγ)-modulating anti-hypertrophic therapeutics has been restricted due to major side-effects. The present study aims to evaluate the anti-fibrotic potential of a novel PPARγ agonist, deoxyelephantopin (DEP) in cardiac hypertrophy. AngiotensinII treatment in vitro and renal artery ligation in vivo was performed to mimic pressure overload-induced cardiac hypertrophy. Myocardial fibrosis was evaluated by Masson's trichrome staining and hydroxyproline assay. Our results showed that DEP treatment significantly improves the echocardiographic parameters by ameliorating ventricular fibrosis without any bystander damage to other major organs. Following molecular docking, all atomistic molecular dynamics simulation, reverse transcription-polymerase chain reaction and immunoblot analyses, we established DEP as a PPARγ agonist stably interacting with the ligand-binding domain of PPARγ. DEP specifically downregulated the Signal Transducer and Activator of Transcription (STAT)-3-mediated collagen gene expression in a PPARγ-dependent manner, as confirmed by PPARγ silencing and site-directed mutagenesis of DEP-interacting PPARγ residues. Although DEP impaired STAT-3 activation, it did not have any effect on the upstream Interleukin (IL)-6 level implying possible crosstalk of the IL-6/STAT-3 axis with other signaling mediators. Mechanistically, DEP increased the binding of PPARγ with Protein Kinase C-delta (PKCδ) which impeded the membrane translocation and activation of PKCδ, downregulating STAT-3 phosphorylation and resultant fibrosis. This study, therefore, for the first time demonstrates DEP as a novel cardioprotective PPARγ agonist. The therapeutic potential of DEP as an anti-fibrotic remedy can be exploited against hypertrophic heart failure in the future.
Collapse
Affiliation(s)
- Anirban Banik
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Ratul Datta Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Soumyadeep Gupta
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Abhik Kar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | | | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
5
|
Miao LN, Pan D, Shi J, Du JP, Chen PF, Gao J, Yu Y, Shi DZ, Guo M. Role and Mechanism of PKC-δ for Cardiovascular Disease: Current Status and Perspective. Front Cardiovasc Med 2022; 9:816369. [PMID: 35242825 PMCID: PMC8885814 DOI: 10.3389/fcvm.2022.816369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C (PKC) is a protein kinase with important cellular functions. PKC-δ, a member of the novel PKC subfamily, has been well-documented over the years. Activation of PKC-δ plays an important regulatory role in myocardial ischemia/reperfusion (IRI) injury and myocardial fibrosis, and its activity and expression levels can regulate pathological cardiovascular diseases such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. This article aims to review the structure and function of PKC-δ, summarize the current research regarding its activation mechanism and its role in cardiovascular disease, and provide novel insight into further research on the role of PKC-δ in cardiovascular diseases.
Collapse
Affiliation(s)
- Li-na Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deng Pan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-peng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng-fei Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Da-Zhuo Shi
| | - Ming Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Ming Guo
| |
Collapse
|
6
|
Croteau L, Mercier C, Fafard-Couture É, Nadeau A, Robillard S, Breton V, Guay A, Lizotte F, Despatis MA, Geraldes P. Endothelial deletion of PKCδ prevents VEGF inhibition and restores blood flow reperfusion in diabetic ischemic limb. Diab Vasc Dis Res 2021; 18:1479164121999033. [PMID: 33722087 PMCID: PMC8481738 DOI: 10.1177/1479164121999033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
AIMS Peripheral artery disease is a complication of diabetes leading to critical hindlimb ischemia. Diabetes-induced inhibition of VEGF actions is associated with the activation of protein kinase Cδ (PKCδ). We aim to specifically investigate the role of PKCδ in endothelial cell (EC) function and VEGF signaling. METHODS Nondiabetic and diabetic mice, with (ec-Prkcd-/-) or without (ec-Prkcdf/f) endothelial deletion of PKCδ, underwent femoral artery ligation. Blood flow reperfusion was assessed up to 4 weeks post-surgery. Capillary density, EC apoptosis and VEGF signaling were evaluated in the ischemic muscle. Src homology region 2 domain-containing phosphatase-1 (SHP-1) phosphatase activity was assessed in vitro using primary ECs. RESULTS Ischemic muscle of diabetic ec-Prkcdf/f mice exhibited reduced blood flow reperfusion and capillary density while apoptosis increased as compared to nondiabetic ec-Prkcdf/f mice. In contrast, blood flow reperfusion and capillary density were significantly improved in diabetic ec-Prkcd-/- mice. VEGF signaling pathway was restored in diabetic ec-Prkcd-/- mice. The deletion of PKCδ in ECs prevented diabetes-induced VEGF unresponsiveness through a reduction of SHP-1 phosphatase activity. CONCLUSIONS Our data provide new highlights in mechanisms by which PKCδ activation in EC contributed to poor collateral vessel formation, thus, offering novel therapeutic targets to improve angiogenesis in the diabetic limb.
Collapse
Affiliation(s)
- Laura Croteau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Clément Mercier
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Fafard-Couture
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Nadeau
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Stéphanie Robillard
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Valérie Breton
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Andréanne Guay
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Farah Lizotte
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-Antoine Despatis
- Department of Surgery of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Geraldes
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Tettey CO, Yang IJ, Shin HM. Vasodilatory effect of kaempferol-7-O-α-L-rhamnopyranoside via NO-cGMP-PKG signaling. Arch Biochem Biophys 2019; 667:1-5. [PMID: 30981710 DOI: 10.1016/j.abb.2019.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023]
Abstract
Hypertension is one of the major causes of mortality. Though a host of drugs are available for the treatment of hypertension, majority have been linked to adverse side effects, necessitating the need for research into natural compounds with fewer side effects. Kaempferol-7-O-α-L-rhamnopyroside (KR) is a glycosylated flavone with neuroprotective and anti-inflammatory effects. However, no available literature exists on its vasodilatory effect. This study examined the pharmacological effect of KR on vasodilation/vasorelaxation and its mechanism of action in endothelial cells and rat thoracic aorta. Treatment of phenylephrine (PE; 2 × 10-6 M)-pre-contracted aortic rings with KR induced endothelium-dependent relaxation, which was suppressed by NG-nitro-l-arginine methyl ester (L-NAME; 10-4 M), (nitric oxide synthase (NOS) inhibitor). Phosphorylation of eNOS in human umbilical vein endothelial cells (HUVECs) was increased after exposure to KR. Pre-treatment of aortic rings with the cyclic GMP (cGMP) inhibitors; methylene blue (MB; 10-5 M) and 1-H-[1,2,4]-oxadiazolole-[4,3-α]-quinoxalin-10-one, (ODQ; 10-6 M) suppressed the KR-induced vasodilation. Furthermore, KR also increased protein kinase G (PKG) levels whereas it suppressed levels of phosphorylated myosin light chain (MLC) and protein kinase C (PKC) in aortic rings. These results suggest that KR induces endothelium-dependent vasorelaxation via the NO-cGMP-PKG pathway.
Collapse
Affiliation(s)
- Clement O Tettey
- Department of Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana; Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea; National Development Institute of Korean Medicine, Gyeongsan, Gyeongbuk, 712-210, South Korea.
| |
Collapse
|
8
|
TRPM7 regulates angiotensin II-induced sinoatrial node fibrosis in sick sinus syndrome rats by mediating Smad signaling. Heart Vessels 2018; 33:1094-1105. [PMID: 29511803 PMCID: PMC6096742 DOI: 10.1007/s00380-018-1146-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/02/2018] [Indexed: 01/09/2023]
Abstract
Sinoatrial node fibrosis is involved in the pathogenesis of sinus sick syndrome (SSS). Transient receptor potential (TRP) subfamily M member 7 (TRPM7) is implicated in cardiac fibrosis. However, the mechanisms underlying the regulation of sinoatrial node (SAN) fibrosis in SSS by TRPM7 remain unknown. The aim of this study was to investigate the role of angiotensin II (Ang II)/TRPM7/Smad pathway in the SAN fibrosis in rats with SSS. The rat SSS model was established with sodium hydroxide pinpoint pressing permeation. Forty-eight rats were randomly divided into six groups: normal control (ctrl), sham operation (sham), postoperative 1-, 2-, 3-, and 4-week SSS, respectively. The tissue explant culture method was used to culture cardiac fibroblasts (CFs) from rat SAN tissues. TRPM7 siRNA or encoding plasmids were used to knock down or overexpress TRPM7. Collagen (Col) distribution in SAN and atria was assessed using PASM–Masson staining. Ang II, Col I, and Col III levels in serum and tissues or in CFs were determined by ELISA. TRPM7, smad2 and p-smad2 levels were evaluated by real-time PCR, and/or western blot and immunohistochemistry. SAN and atria in rats of the SSS groups had more fibers and higher levels of Ang II, Col I and III than the sham rats. Similar findings were obtained for TRPM7 and pSmad2 expression. In vitro, Ang II promoted CFs collagen synthesis in a dose-dependent manner, and potentiated TRPM7 and p-Smad2 expression. TRPM7 depletion inhibited Ang II-induced p-Smad2 expression and collagen synthesis in CFs, whereas increased TRPM7 expression did the opposite. SAN fibrosis is regulated by the Ang II/TRPM7/Smad pathway in SSS, indicating that TRPM7 is a potential target for SAN fibrosis therapy in SSS.
Collapse
|
9
|
Liu LH, Fan X, Xia ZK, An XX, Yang RY. Angiotensin II stimulates melanogenesis via the protein kinase C pathway. Exp Ther Med 2015; 10:1528-1532. [PMID: 26622519 DOI: 10.3892/etm.2015.2682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which serve a crucial function in hyperpigmentation. The aim of the present study was to determine the effects of angiotensin II (Ang II) on melanogenesis and to elucidate the molecular events of Ang II-induced melanogenesis. Experiments were performed on human melanocytes to elucidate the pigmenting effect of Ang II and the underlying mechanisms. The elements involved in melanogenesis, including melanin content, tyrosinase (TYR) activity, and microphthalmia-associated transcription factor (MITF) and TYR expression at the mRNA and protein levels were evaluated. Melanin content and TYR activity increased in response to Ang II treatment in a concentration-dependent manner. MITF and TYR mRNA and protein expression levels were increased significantly in response to Ang II in a concentration-dependent manner. The Ang II-induced increase in melanin synthesis was reduced significantly in response to co-treatment with Ro-32-0432, a protein kinase C (PKC) inhibitor, whereas co-treatment with H-89, a PKA inhibitor, did not attenuate the Ang II-induced increase in melanin levels. These results suggest that PKC is required for Ang II-induced pigmentation in human melanocytes and that the mechanism involves the PKC pathway and MITF upregulation.
Collapse
Affiliation(s)
- Li-Hong Liu
- Graduate School, The Third Military Medical University, Chongqing 400038, P.R. China ; Department of Dermatology, General Hospital of Beijing Military Region of PLA, Beijing 100125, P.R. China
| | - Xin Fan
- Department of Dermatology, General Hospital of Beijing Military Region of PLA, Beijing 100125, P.R. China
| | - Zhi-Kuan Xia
- Department of Dermatology, General Hospital of Beijing Military Region of PLA, Beijing 100125, P.R. China
| | - Xu-Xi An
- Department of Dermatology, General Hospital of Beijing Military Region of PLA, Beijing 100125, P.R. China
| | - Rong-Ya Yang
- Department of Dermatology, General Hospital of Beijing Military Region of PLA, Beijing 100125, P.R. China
| |
Collapse
|
10
|
Lim KM, Kwon JH, Kim K, Noh JY, Kang S, Park JM, Lee MY, Bae ON, Chung JH. Emodin inhibits tonic tension through suppressing PKCδ-mediated inhibition of myosin phosphatase in rat isolated thoracic aorta. Br J Pharmacol 2015; 171:4300-10. [PMID: 24909118 DOI: 10.1111/bph.12804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Dysregulated tonic tension and calcium sensitization in blood vessels has frequently been observed in many cardiovascular diseases. Despite a huge therapeutic potential, little is known about natural products targeting tonic tension and calcium sensitization. EXPERIMENTAL APPROACH We screened natural products for inhibitory effects on vasoconstriction using the rat isolated thoracic aorta and found that an anthraquinone derivative, emodin, attenuated tonic tension. Organ bath system, primary vascular smooth muscle cells, confocal microscopy and Western blot analysis were employed to demonstrate the suppressive effects of emodin on PKCδ-mediated myosin phosphatase inhibition. KEY RESULTS Emodin, an active ingredient of Polygonum multiflorum extract, inhibited phenylephrine-induced vasoconstriction in rat isolated thoracic aorta, and inhibited vasoconstriction induced by 5-HT and endothelin-1. It also generally suppressed vasoconstrictions mediated by voltage-operated, store-operated calcium channels and intracellular calcium store. However, emodin did not affect agonist-induced calcium increases in primary smooth muscle cells. In contrast, post-treatment with emodin following phenylephrine stimulation potently suppressed tonic tension in rat aortic rings. Western blot analysis revealed that emodin inhibited phenylephrine-induced phospho-myosin light chain (pMLC) and the phosphorylation of myosin-targeting subunit and C-kinase-activated protein phosphatase-1 inhibitor (CPI-17). This was mediated by selective inhibition of PKCδ, whereas PKCα was not involved. CONCLUSION AND IMPLICATIONS Emodin attenuates tonic tension through the blockade of PKCδ and CPI-17-mediated MLC-phosphatase inhibition. This new mode of action for the suppression of tonic tension and structural insights into PKCδ inhibition revealed by emodin may provide new information for the development of modulators of tonic tension and for the treatment of hypertension.
Collapse
Affiliation(s)
- Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lin CY, Zu CH, Yang CC, Tsai PJ, Shyu JF, Chen CP, Weng ZC, Chen TH, Wang HS. IL-1β-Induced Mesenchymal Stem Cell Migration Involves MLCK Activation via PKC Signaling. Cell Transplant 2014; 24:2011-28. [PMID: 25333338 DOI: 10.3727/096368914x685258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury, possibly attracted by inflammatory cytokines. Although many cytokines can induce stem cell migration, the underlying mechanism is not fully understood. We found that tail vein-injected MSCs migrate to the pancreas in nonobese diabetic (NOD) mice. An ELISA assay revealed that hyperglycemic NOD mice have higher pancreatic levels of interleukin-1β (IL-1β) than normal NOD mice and that IL-1β stimulates MSC migration in a Transwell assay and electric cell-substrate impedance sensing system. Microarray analysis showed that myosin light chain kinase (MLCK) is involved in IL-1β-induced MSC migration, while Western blots showed that IL-1β stimulates MLCK expression and activation and that MLCK-siRNA transfection reduces MSC migration. Kinase inhibitors, chromatin immunoprecipitation, and a knockdown study revealed that IL-1β-induced MLCK expression is regulated by the PKCδ/NF-κB signaling pathway, and a kinase inhibitor study revealed that IL-1β-induced MLCK activation occurs via the PKCα/MEK/ERK signaling pathway. These results show that IL-1β released from the pancreas of hyperglycemic NOD mice induces MSC migration and that this is dependent on MLCK expression via the PKCδ/NF-κB pathway and on MLCK activation via the PKCα/MEK/ERK signaling cascade. This study increases our understanding of the mechanisms by which MSCs home to injury sites.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Differential and conditional activation of PKC-isoforms dictates cardiac adaptation during physiological to pathological hypertrophy. PLoS One 2014; 9:e104711. [PMID: 25116170 PMCID: PMC4130596 DOI: 10.1371/journal.pone.0104711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/11/2014] [Indexed: 02/02/2023] Open
Abstract
A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation.
Collapse
|
13
|
Patel BM, Desai VJ. Beneficial role of tamoxifen in experimentally induced cardiac hypertrophy. Pharmacol Rep 2014; 66:264-72. [DOI: 10.1016/j.pharep.2014.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/22/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
|
14
|
Wang S, Sun A, Li L, Zhao G, Jia J, Wang K, Ge J, Zou Y. Up-regulation of BMP-2 antagonizes TGF-β1/ROCK-enhanced cardiac fibrotic signalling through activation of Smurf1/Smad6 complex. J Cell Mol Med 2013; 16:2301-10. [PMID: 22283839 PMCID: PMC3823423 DOI: 10.1111/j.1582-4934.2012.01538.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho-associated kinase (ROCK) plays a critical role in pressure overload-induced left ventricular remodelling. However, the underlying mechanism remains unclear. Here, we reported that TGF-β1-induced ROCK elevation suppressed BMP-2 level and strengthened fibrotic response. Exogenous BMP-2 supply effectively attenuated TGF-β1 signalling pathway through Smad6-Smurf-1 complex activation. In vitro cultured cardiomyocytes, mechanical stretch up-regulated cardiac TGF-β1, TGF-β1-dependent ROCK and down-regulated BMP-2, but BMP-2 level could be reversed through blocking TGF-β1 receptor by SB-431542 or inhibition of ROCK by Y-27632. TGF-β1 could also activate ROCK and suppress endogenous BMP-2 level in a dose-dependent manner. Knock-down BMP-2 enhanced TGF-β1-mediated PKC-δ and Smad3 signalling cascades. In contrast, treatment with Y-27632 or SB-431542, respectively suppressed ROCK-dependent PKC-δ and Smad3 activation, but BMP-2 was only up-regulated by Y-27632. In addition, BMP-2 silencing abolished the effect of Y-27632, but not SB-431542 on suppression of TGF-β1 pathway. Further experiments showed that Smad6 Smurf1 interaction were required for BMP-2-evoked antagonizing effects. Smad6 overexpression attenuated TGF-β1-induced activation of PKC-δ and Smad3, promoted TGF-β RI degradation in BMP-2 knock-down cardiomyocytes, and could be abolished after knocking-down Smurf-1, in which Smad6/Smurf1 complex formation was critically involved. In vivo data showed that pressure overload-induced collagen deposition was attenuated, cardiac function was improved and TGF-β1-dependent activation of PKC-δ and Smad3 was reduced after 2 weeks treatment with rhBMP-2(0.5 mg/kg) or Y-27632 (10 mg/kg) in mice that underwent surgical transverse aortic constriction. In conclusion, we propose that BMP-2, as a novel fibrosis antagonizing cytokine, may have potential beneficial effect in attenuating pressure overload-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang L, Li H, Yang S. Role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2012.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy. Life Sci 2012; 91:651-7. [DOI: 10.1016/j.lfs.2012.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
|
17
|
Flores-Munoz M, Work LM, Douglas K, Denby L, Dominiczak AF, Graham D, Nicklin SA. Angiotensin-(1-9) Attenuates Cardiac Fibrosis in the Stroke-Prone Spontaneously Hypertensive Rat via the Angiotensin Type 2 Receptor. Hypertension 2012; 59:300-7. [DOI: 10.1161/hypertensionaha.111.177485] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The renin-angiotensin system regulates cardiovascular physiology via angiotensin II engaging the angiotensin type 1 or type 2 receptors. Classic actions are type 1 receptor mediated, whereas the type 2 receptor may counteract type 1 receptor activity. Angiotensin-converting enzyme 2 metabolizes angiotensin II to angiotensin-(1-7) and angiotensin I to angiotensin-(1-9). Angiotensin-(1-7) antagonizes angiotensin II actions via the receptor Mas. Angiotensin-(1-9) was shown recently to block cardiomyocyte hypertrophy via the angiotensin type 2 receptor. Here, we investigated in vivo effects of angiotensin-(1-9) via the angiotensin type 2 receptor. Angiotensin-(1-9) (100 ng/kg per minute) with or without the angiotensin type 2 receptor antagonist PD123 319 (100 ng/kg per minute) or PD123 319 alone was infused via osmotic minipump for 4 weeks into stroke-prone spontaneously hypertensive rats. We measured blood pressure by radiotelemetry and cardiac structure and function by echocardiography. Angiotensin-(1-9) did not affect blood pressure or left ventricular mass index but reduced cardiac fibrosis by 50% (
P
<0.01) through modulating collagen I expression, reversed by PD123 319 coinfusion. In addition, angiotensin-(1-9) inhibited fibroblast proliferation in vitro in a PD123 319-sensitive manner. Aortic myography revealed that angiotensin-(1-9) significantly increased contraction to phenylephrine compared with controls after
N
-nitro-
l
-arginine methyl ester treatment, an effect abolished by PD123 319 coinfusion (area under the curve: angiotensin-(1-9)
N
-nitro-
l
-arginine methyl ester=98.9±11.8%; control+
N
-nitro-
l
-arginine methyl ester=74.0±10.4%;
P
<0.01), suggesting that angiotensin-(1-9) improved basal NO bioavailability in an angiotensin type 2 receptor–sensitive manner. In summary, angiotensin-(1-9) reduced cardiac fibrosis and altered aortic contraction via the angiotensin type 2 receptor supporting a direct role for angiotensin-(1-9) in the renin-angiotensin system.
Collapse
Affiliation(s)
- Monica Flores-Munoz
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Lorraine M. Work
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Kirsten Douglas
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Laura Denby
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Delyth Graham
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Stuart A. Nicklin
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Dhingra R, Kirshenbaum LA. Negative inotropy by angiotensin II is mediated via phosphoinositide 3-kinase alpha-protein kinase C-coupled signaling pathway. Hypertension 2010; 56:349-50. [PMID: 20696991 DOI: 10.1161/hypertensionaha.110.156158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|