1
|
Youssef WA, Feil R, Saint-Sorny M, Johnson X, Lunn JE, Grimm B, Brzezowski P. Singlet oxygen-induced signalling depends on the metabolic status of the Chlamydomonas reinhardtii cell. Commun Biol 2023; 6:529. [PMID: 37193883 DOI: 10.1038/s42003-023-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.
Collapse
Affiliation(s)
- Waeil Al Youssef
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Maureen Saint-Sorny
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Pawel Brzezowski
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
2
|
Arabidopsis PII Proteins Form Characteristic Foci in Chloroplasts Indicating Novel Properties in Protein Interaction and Degradation. Int J Mol Sci 2021; 22:ijms222312666. [PMID: 34884470 PMCID: PMC8657445 DOI: 10.3390/ijms222312666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
The PII protein is an evolutionary, highly conserved regulatory protein found in both bacteria and higher plants. In bacteria, it modulates the activity of several enzymes, transporters, and regulatory factors by interacting with them and thereby regulating important metabolic hubs, such as carbon/nitrogen homeostasis. More than two decades ago, the PII protein was characterized for the first time in plants, but its physiological role is still not sufficiently resolved. To gain more insights into the function of this protein, we investigated the interaction behavior of AtPII with candidate proteins by BiFC and FRET/FLIM in planta and with GFP/RFP traps in vitro. In the course of these studies, we found that AtPII interacts in chloroplasts with itself as well as with known interactors such as N-acetyl-L-glutamate kinase (NAGK) in dot-like aggregates, which we named PII foci. In these novel protein aggregates, AtPII also interacts with yet unknown partners, which are known to be involved in plastidic protein degradation. Further studies revealed that the C-terminal component of AtPII is crucial for the formation of PII foci. Altogether, the discovery and description of PII foci indicate a novel mode of interaction between PII proteins and other proteins in plants. These findings may represent a new starting point for the elucidation of physiological functions of PII proteins in plants.
Collapse
|
3
|
Condori-Apfata JA, Batista-Silva W, Medeiros DB, Vargas JR, Valente LML, Pérez-Díaz JL, Fernie AR, Araújo WL, Nunes-Nesi A. Downregulation of the E2 Subunit of 2-Oxoglutarate Dehydrogenase Modulates Plant Growth by Impacting Carbon-Nitrogen Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2021; 62:798-814. [PMID: 33693904 PMCID: PMC8484937 DOI: 10.1093/pcp/pcab036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 05/04/2023]
Abstract
In Arabidopsis thaliana, two genes encode the E2 subunit of the 2-oxoglutarate dehydrogenase (2-OGDH), a multimeric complex composed of three subunits. To functionally characterize the isoforms of E2 subunit, we isolated Arabidopsis mutant lines for each gene encoding the E2 subunit and performed a detailed molecular and physiological characterization of the plants under controlled growth conditions. The functional lack of expression of E2 subunit isoforms of 2-OGDH increased plant growth, reduced dark respiration and altered carbohydrate metabolism without changes in the photosynthetic rate. Interestingly, plants from e2-ogdh lines also exhibited reduced seed weight without alterations in total seed number. We additionally observed that downregulation of 2-OGDH activity led to minor changes in the levels of tricarboxylic acid cycle intermediates without clear correlation with the reduced expression of specific E2-OGDH isoforms. Furthermore, the e2-ogdh mutant lines exhibited a reduction by up to 25% in the leaf total amino acids without consistent changes in the amino acid profile. Taken together, our results indicate that the two isoforms of E2 subunit play a similar role in carbon-nitrogen metabolism, in plant growth and in seed weight.
Collapse
Affiliation(s)
- Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - David Barbosa Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam Golm 14476, Germany
| | - Jonas Rafael Vargas
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Luiz M Lopes Valente
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Jorge Luis Pérez-Díaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Alisdair R Fernie
- * Corresponding authors: Alisdair R. Fernie, E-mail, ; Adriano Nunes-Nesi, E-mail,
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- * Corresponding authors: Alisdair R. Fernie, E-mail, ; Adriano Nunes-Nesi, E-mail,
| |
Collapse
|
4
|
Shen ZJ, Qin YY, Luo MR, Li Z, Ma DN, Wang WH, Zheng HL. Proteome analysis reveals a systematic response of cold-acclimated seedlings of an exotic mangrove plant Sonneratia apetala to chilling stress. J Proteomics 2021; 248:104349. [PMID: 34411764 DOI: 10.1016/j.jprot.2021.104349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023]
Abstract
Low temperature in winter was the most crucial abiotic stress that limits the mangrove afforestation northward. Previous study demonstrated that Sonneratia apetala initially transplanted to high latitude area exhibited a stronger plasticity of cold tolerance. To clarify the underlying mechanism, the physiological and proteomic responses to chilling stress were investigated in S. apetala leaves. Our results found that cold-acclimated seedlings had lower relative electrolyte leakage and MDA content than non-acclimated seedlings. On the contrary, higher chlorophyll content and photosynthetic capacity were observed in cold-acclimated seedlings. With proteomic analyses, the differentially accumulated proteins (DAPs) involved in ROS scavenging, photosynthesis and energy metabolism, carbohydrate metabolism, cofactor biosynthesis, and protein folding were suggested to play important roles in enhancing the cold tolerance of S. apetala. However, the down-regulation DAPs were suggested as a tradeoff between plant growth and chilling response. By the protein-protein interaction analyses, translation elongation factor G, chlorophyll A-B binding protein and ascorbate peroxidase 1 were suggested as the important regulators in cold-acclimated S. apetala seedlings under chilling stress. Based on the above results, a schematic diagram describing the mechanism of cold tolerance of exotic mangrove species S. apetala that was achieved by cold acclimation was presented in this study. SIGNIFICANCE: The major environmental factor limits the mangrove afforestation northward is the low temperature in winter. Previous study reported that Sonneratia apetala grew in high latitude exhibited a higher cold tolerance than that in low latitude, which was suggested as a result of cold acclimation. To further understand "how cold acclimation enhance the cold tolerance in S. apetala", the response of S. apetala subjected to chilling stress with or without cold acclimation was investigated in this study at the physiological and proteomic aspects. Our physiological results showed that S. apetala seedlings treated with cold acclimation exhibited a higher tolerance under chilling stress than that without cold acclimation. By using the comparative proteomic approaches and bioinformatic analyses, various biological processes were suggested to play an important role in enhancing the cold tolerance of S. apetala under chilling stress, such as ROS scavenging, photosynthesis and energy metabolism, carbohydrate metabolism, cofactor biosynthesis, and protein folding. Among these differentially accumulated proteins, translation elongation factor G (eEF-G), chlorophyll A-B binding protein (CAB) and ascorbate peroxidase 1 (APX1) were identified as the hub proteins function in coordinated regulating ROS scavenging, photosynthesis and protein biosynthesis in chloroplast and subsequently enhanced the cold tolerance of S. apetala under chilling stress. Our results provided a further understanding of cold acclimation in improving the cold tolerance in exotic mangrove species S. apetala.
Collapse
Affiliation(s)
- Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ying-Ying Qin
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Mei-Rong Luo
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zan Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Dong-Na Ma
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wen-Hua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
5
|
Aslam A, Shengjie Z, Xuqiang L, Nan H, Wenge L. Rootstock mediates transcriptional regulation of citrulline metabolism in grafted watermelon. BRAZ J BIOL 2021; 81:125-136. [PMID: 32321067 DOI: 10.1590/1519-6984.223633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/17/2019] [Indexed: 11/21/2022] Open
Abstract
Citrulline is a non-essential amino acid, involved in key biological functions in plants and humans. Rootstocks have a major impact on citrulline accumulation in grafted watermelon. Information regarding rootstock induced changes in citrulline metabolism is elusive. To understand the regulatory mechanism, parallel changes in the expression profiles of citrulline metabolic genes and citrulline content of watermelon were monitored during the development of self-rooted watermelon and watermelon grafted onto pumpkin, wild and bottle gourd rootstocks. Results demonstrated that rootstocks regulated the expression profiles in different ways to influence the citrulline content. GAT, NAGPR, ASS3 ASS2 and Asl2 showed the negative correlation with citrulline content in pumpkin grafted watermelon. Pumpkin rootstock promoted the citrulline content by high down-regulation and synergistic effect of ASS2, ASS3, ASL1 and ASl2 genes. In wild grafted watermelon, citrulline was accumulated as a result of down regulation of GAT, NAGS and ASL2 genes, which showed an inverse correlation with citrulline. In gourd grafted watermelon, changes in citrulline content were observed to be linked with lower expressions of GAT, NAGK, ASS2, ASS3, ASL1 and ARG which were negatively correlated with citrulline content. Our study will provide the basis to understand the molecular mechanism of citrulline accumulation in various rootstocks.
Collapse
Affiliation(s)
- A Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Z Shengjie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - L Xuqiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - H Nan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - L Wenge
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| |
Collapse
|
6
|
Selim KA, Ermilova E, Forchhammer K. From cyanobacteria to Archaeplastida: new evolutionary insights into PII signalling in the plant kingdom. THE NEW PHYTOLOGIST 2020; 227:722-731. [PMID: 32077495 DOI: 10.1111/nph.16492] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 05/20/2023]
Abstract
The PII superfamily consists of signal transduction proteins found in all domains of life. Canonical PII proteins sense the cellular energy state through the competitive binding of ATP and ADP, and carbon/nitrogen balance through 2-oxoglutarate binding. The ancestor of Archaeplastida inherited its PII signal transduction protein from an ancestral cyanobacterial endosymbiont. Over the course of evolution, plant PII proteins acquired a glutamine-sensing C-terminal extension, subsequently present in all Chloroplastida PII proteins. The PII proteins of various algal strains (red, green and nonphotosynthetic algae) have been systematically investigated with respect to their sensory and regulatory properties. Comparisons of the PII proteins from different phyla of oxygenic phototrophs (cyanobacteria, red algae, Chlorophyta and higher plants) have yielded insights into their evolutionary conservation vs adaptive properties. The highly conserved role of the controlling enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK), as a main PII-interactor has been demonstrated across oxygenic phototrophs of cyanobacteria and Archaeplastida. In addition, the PII signalling system of red algae has been identified as an evolutionary intermediate between that of Cyanobacteria and Chloroplastida. In this review, we consider recent advances in understanding metabolic signalling by PII proteins of the plant kingdom.
Collapse
Affiliation(s)
- Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034, Russia
| | - Karl Forchhammer
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
7
|
PII Signal Transduction Protein GlnK Alleviates Feedback Inhibition of N-Acetyl-l-Glutamate Kinase by l-Arginine in Corynebacterium glutamicum. Appl Environ Microbiol 2020; 86:AEM.00039-20. [PMID: 32060028 DOI: 10.1128/aem.00039-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.
Collapse
|
8
|
Condori-Apfata JA, Batista-Silva W, Medeiros DB, Vargas JR, Valente LML, Heyneke E, Pérez-Diaz JL, Fernie AR, Araújo WL, Nunes-Nesi A. The Arabidopsis E 1 subunit of the 2-oxoglutarate dehydrogenase complex modulates plant growth and seed production. PLANT MOLECULAR BIOLOGY 2019; 101:183-202. [PMID: 31286324 DOI: 10.1007/s11103-019-00900-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/29/2019] [Indexed: 05/25/2023]
Abstract
Isoforms of 2-OGDH E1 subunit are not functionally redundant in plant growth and development of A. thaliana. The tricarboxylic acid cycle enzyme 2-oxoglutarate dehydrogenase (2-OGDH) converts 2-oxoglutarate (2-OG) to succinyl-CoA concomitant with the reduction of NAD+. 2-OGDH has an essential role in plant metabolism, being both a limiting step during mitochondrial respiration as well as a key player in carbon-nitrogen interactions. In Arabidopsis thaliana two genes encode for E1 subunit of 2-OGDH but the physiological roles of each isoform remain unknown. Thus, in the present study we isolated Arabidopsis T-DNA insertion knockout mutant lines for each of the genes encoding the E1 subunit of 2-OGDH enzyme. All mutant plants exhibited substantial reduction in both respiration and CO2 assimilation rates. Furthermore, mutant lines exhibited reduced levels of chlorophylls and nitrate, increased levels of sucrose, malate and fumarate and minor changes in total protein and starch levels in leaves. Despite the similar metabolic phenotypes for the two E1 isoforms the reduction in the expression of each gene culminated in different responses in terms of plant growth and seed production indicating distinct roles for each isoform. Collectively, our results demonstrated the importance of the E1 subunit of 2-OGDH in both autotrophic and heterotrophic tissues and suggest that the two E1 isoforms are not functionally redundant in terms of plant growth in A. thaliana.
Collapse
Affiliation(s)
- Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - David Barbosa Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jonas Rafael Vargas
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Luiz Mário Lopes Valente
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Elmien Heyneke
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Jorge Luis Pérez-Diaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
9
|
Blume C, Ost J, Mühlenbruch M, Peterhänsel C, Laxa M. Low CO2 induces urea cycle intermediate accumulation in Arabidopsis thaliana. PLoS One 2019; 14:e0210342. [PMID: 30650113 PMCID: PMC6334940 DOI: 10.1371/journal.pone.0210342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
The non-proteinogenic amino acid ornithine links several stress response pathways. From a previous study we know that ornithine accumulates in response to low CO2. To investigate ornithine accumulation in plants, we shifted plants to either low CO2 or low light. Both conditions increased carbon limitation, but only low CO2 also increased the rate of photorespiration. Changes in metabolite profiles of light- and CO2-limited plants were quite similar. Several amino acids that are known markers of senescence accumulated strongly under both conditions. However, urea cycle intermediates respond differently between the two treatments. While the levels of both ornithine and citrulline were much higher in plants shifted to 100 ppm CO2 compared to those kept in 400 ppm CO2, their metabolite abundance did not significantly change in response to a light limitation. Furthermore, both ornithine and citrulline accumulation is independent from sugar starvation. Exogenous supplied sugar did not significantly change the accumulation of the two metabolites in low CO2-stressed plants, while the accumulation of other amino acids was reduced by about 50%. Gene expression measurements showed a reduction of the entire arginine biosynthetic pathway in response to low CO2. Genes in both proline biosynthesis and degradation were induced. Hence, proline did not accumulate in response to low CO2 like observed for many other stresses. We propose that excess of nitrogen re-fixed during photorespiration can be alternatively stored in ornithine and citrulline under low CO2 conditions. Furthermore, ornithine is converted to pyrroline-5-carboxylate by the action of δOAT.
Collapse
Affiliation(s)
- Christian Blume
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| | - Julia Ost
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
| | | | | | - Miriam Laxa
- Institute of Botany, Leibniz University Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
10
|
Babst BA, Coleman GD. Seasonal nitrogen cycling in temperate trees: Transport and regulatory mechanisms are key missing links. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:268-277. [PMID: 29576080 DOI: 10.1016/j.plantsci.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 05/08/2023]
Abstract
Nutrient accumulation, one of the major ecosystem services provided by forests, is largely due to the accumulation and retention of nutrients in trees. This review focuses on seasonal cycling of nitrogen (N), often the most limiting nutrient in terrestrial ecosystems. When leaves are shed during autumn, much of the N may be resorbed and stored in the stem over winter, and then used for new stem and leaf growth in spring. A framework exists for understanding the metabolism and transport of N in leaves and stems during winter dormancy, but many of the underlying genes remain to be identified and/or verified. Transport of N during seasonal N cycling is a particularly weak link, since the physical pathways for loading and unloading of amino N to and from the phloem are poorly understood. Short-day photoperiod followed by decreasing temperatures are the environmental cues that stimulate dormancy induction, and nutrient remobilization and storage. However, beyond the involvement of phytochrome, very little is known about the signal transduction mechanisms that link environmental cues to nutrient remobilization and storage. We propose a model whereby nutrient transport and sensing plays a major role in source-sink transitions of leaves and stems during seasonal N cycling.
Collapse
Affiliation(s)
- Benjamin A Babst
- Arkansas Forest Resources Center, Division of Agriculture, University of Arkansas System, Monticello, AR 71656, USA; School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, AR 71656, USA.
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Li Y, Liu W, Sun LP, Zhou ZG. Evidence for PII with NAGK interaction that regulates Arg synthesis in the microalga Myrmecia incisa in response to nitrogen starvation. Sci Rep 2017; 7:16291. [PMID: 29176648 PMCID: PMC5701185 DOI: 10.1038/s41598-017-16644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 11/12/2022] Open
Abstract
To understand why most eukaryotic microalgae accumulate lipids during nitrogen starvation stress, a gene, MiglnB, encoding PII, a signal transduction protein, was cloned from the arachidonic acid-rich microalga Myrmecia incisa Reisigl. Similarly to its homologues, MiPII contains three conserved T-, B-, and C-loops. In the presence of abundant Mg2+, ATP, and Gln, MiPII upregulates Arg biosynthesis by interacting with the rate-limiting enzyme, MiNAGK, as evidenced by yeast two-hybrid, co-immunoprecipitation assays, and kinetics analysis of enzyme-catalyzed reactions. However, this interaction of MiPII with MiNAGK is reversed by addition of 2-oxoglutarate (2-OG). Moreover, this interaction is present in the chloroplasts of M. incisa, as illustrated cytologically by both immunoelectron microscopy and agroinfiltration of Nicotiana benthamiana leaves to determine the subcellular localization of MiPII with MiNAGK. During the process of nitrogen starvation, soluble Arg levels in M. incisa are modulated by a change in MiNAGK enzymatic activity, both of which are significantly correlated (r = 0.854). A model for the manipulation of Arg biosynthesis via MiPII in M. incisa chloroplasts in response to nitrogen starvation is proposed. The ATP and 2-OG saved from Arg biosynthesis is thus suggested to facilitate the accumulation of fatty acids and triacylglycerol in M. incisa during exposure to nitrogen starvation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. .,National Demonstration Center for the Experimental Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China. .,International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
12
|
Huang J, Chen D, Yan H, Xie F, Yu Y, Zhang L, Sun M, Peng X. Acetylglutamate kinase is required for both gametophyte function and embryo development in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:642-656. [PMID: 28294536 DOI: 10.1111/jipb.12536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
The specific functions of the genes encoding arginine biosynthesis enzymes in plants are not well characterized. We report the isolation and characterization of Arabidopsis thaliana N-acetylglutamate kinase (NAGK), which catalyzes the second step of arginine biosynthesis. NAGK is a plastid-localized protein and is expressed during most developmental processes in Arabidopsis. Heterologous expression of the Arabidopsis NAGK gene in a NAGK-deficient Escherichia coli strain fully restores bacterial growth on arginine-deficient medium. nagk mutant pollen tubes grow more slowly than wild type pollen tubes and the phenotype is restored by either specifically through complementation by NAGK in pollen, or exogenous supplementation of arginine. nagk female gametophytes are defective in micropylar pollen tube guidance due to the fact that female gametophyte cell fate specification was specifically affected. Expression of NAGK in synergid cells rescues the defect of nagk female gametophytes. Loss-of-function of NAGK results in Arabidopsis embryos not developing beyond the four-celled embryo stage. The embryo-defective phenotype in nagk/NAGK plants cannot be rescued by watering nagk/NAGK plants with arginine or ornithine supplementation. In conclusion, our results reveal a novel role of NAGK and arginine in regulating gametophyte function and embryo development, and provide valuable insights into arginine transport during embryo development.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hailong Yan
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Yu
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liyao Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Cañas RA, Li Z, Pascual MB, Castro-Rodríguez V, Ávila C, Sterck L, Van de Peer Y, Cánovas FM. The gene expression landscape of pine seedling tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1064-1087. [PMID: 28635135 DOI: 10.1111/tpj.13617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/13/2017] [Accepted: 05/31/2017] [Indexed: 05/20/2023]
Abstract
Conifers dominate vast regions of the Northern hemisphere. They are the main source of raw materials for timber industry as well as a wide range of biomaterials. Despite their inherent difficulties as experimental models for classical plant biology research, the technological advances in genomics research are enabling fundamental studies on these plants. The use of laser capture microdissection followed by transcriptomic analysis is a powerful tool for unravelling the molecular and functional organization of conifer tissues and specialized cells. In the present work, 14 different tissues from 1-month-old maritime pine (Pinus pinaster) seedlings have been isolated and their transcriptomes analysed. The results increased the sequence information and number of full-length transcripts from a previous reference transcriptome and added 39 841 new transcripts. In total, 2376 transcripts were ubiquitously expressed in all of the examined tissues. These transcripts could be considered the core 'housekeeping genes' in pine. The genes have been clustered in function to their expression profiles. This analysis reduced the number of profiles to 38, most of these defined by their expression in a unique tissue that is much higher than in the other tissues. The expression and localization data are accessible at ConGenIE.org (http://v22.popgenie.org/microdisection/). This study presents an overview of the gene expression distribution in different pine tissues, specifically highlighting the relationships between tissue gene expression and function. This transcriptome atlas is a valuable resource for functional genomics research in conifers.
Collapse
Affiliation(s)
- Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - M Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
14
|
Abstract
The metabolite 2-oxoglutarate (also known as α-ketoglutarate, 2-ketoglutaric acid, or oxoglutaric acid) lies at the intersection between the carbon and nitrogen metabolic pathways. This compound is a key intermediate of one of the most fundamental biochemical pathways in carbon metabolism, the tricarboxylic acid (TCA) cycle. In addition, 2-oxoglutarate also acts as the major carbon skeleton for nitrogen-assimilatory reactions. Experimental data support the conclusion that intracellular levels of 2-oxoglutarate fluctuate according to nitrogen and carbon availability. This review summarizes how nature has capitalized on the ability of 2-oxoglutarate to reflect cellular nutritional status through evolution of a variety of 2-oxoglutarate-sensing regulatory proteins. The number of metabolic pathways known to be regulated by 2-oxoglutarate levels has increased significantly in recent years. The signaling properties of 2-oxoglutarate are highlighted by the fact that this metabolite regulates the synthesis of the well-established master signaling molecule, cyclic AMP (cAMP), in Escherichia coli.
Collapse
|
15
|
Winter G, Todd CD, Trovato M, Forlani G, Funck D. Physiological implications of arginine metabolism in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:534. [PMID: 26284079 PMCID: PMC4520006 DOI: 10.3389/fpls.2015.00534] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.
Collapse
Affiliation(s)
- Gudrun Winter
- Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Forlani
- Laboratory of Plant Physiology and Biochemistry, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
- *Correspondence: Dietmar Funck, Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany,
| |
Collapse
|
16
|
Araújo WL, Martins AO, Fernie AR, Tohge T. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. FRONTIERS IN PLANT SCIENCE 2014; 5:552. [PMID: 25360142 PMCID: PMC4197682 DOI: 10.3389/fpls.2014.00552] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/26/2014] [Indexed: 05/18/2023]
Abstract
The tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate (2-OG) is used as an obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent dioxygenases. These enzymes are widespread in nature being involved in several important biochemical processes. We have recently demonstrated that tomato plants in which the TCA cycle enzyme 2-OG dehydrogenase (2-ODD) was antisense inhibited were characterized by early senescence and modified fruit ripening associated with differences in the levels of bioactive gibberellin (GA). Accordingly, there is now compelling evidence that the TCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid metabolism. Here we discuss recent advances in the biochemistry and molecular biology of 2-OG metabolism occurring in different biological systems indicating the importance of 2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid metabolism but also in GA and amino acid metabolism. We additionally summarize recent findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways involving 2-ODDs.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekular PflanzenphysiologiePotsdam-Golm, Germany
- *Correspondence: Alisdair R. Fernie, Max-Planck-Institut für Molekular Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Brandenburg, Germany e-mail:
| | - Takayuki Tohge
- Max-Planck-Institut für Molekular PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
17
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
18
|
Steinhauser D, Fernie AR, Araújo WL. Unusual cyanobacterial TCA cycles: not broken just different. TRENDS IN PLANT SCIENCE 2012; 17:503-9. [PMID: 22658681 DOI: 10.1016/j.tplants.2012.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 05/03/2023]
Abstract
As a fundamental energy-conserving process common to all living organisms, respiration is responsible for the oxidation of respiratory substrates to drive ATP synthesis. Accordingly, it has long been accepted that a complete tricarboxylic acid (TCA) cycle is necessary for respiratory energy production. Cyanobacteria, similar to some other prokaryotes, appeared to have an incomplete TCA cycle because they lack the enzyme 2-oxoglutarate dehydrogenase (OGDH). However, it has recently been reported that the cycle can be completed by the action of two alternative enzymes. In this opinion article, we discuss the progress being made to elucidate the nature of the TCA cycles in cyanobacteria and plants and outline open questions concerning the functional significance of this unusual metabolic feature in a broader evolutionary context.
Collapse
Affiliation(s)
- Dirk Steinhauser
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | |
Collapse
|
19
|
Araújo WL, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. PLANT, CELL & ENVIRONMENT 2012; 35:1-21. [PMID: 21477125 DOI: 10.1111/j.1365-3040.2011.02332.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given.
Collapse
Affiliation(s)
- Wagner L Araújo
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Germany
| | | | | | | | | |
Collapse
|
20
|
Araújo WL, Tohge T, Nunes-Nesi A, Daloso DM, Nimick M, Krahnert I, Bunik VI, Moorhead GBG, Fernie AR. Phosphonate analogs of 2-oxoglutarate perturb metabolism and gene expression in illuminated Arabidopsis leaves. FRONTIERS IN PLANT SCIENCE 2012; 3:114. [PMID: 22876250 PMCID: PMC3410613 DOI: 10.3389/fpls.2012.00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/14/2012] [Indexed: 05/19/2023]
Abstract
Although the role of the 2-oxoglutarate dehydrogenase complex (2-OGDHC) has previously been demonstrated in plant heterotrophic tissues its role in photosynthetically active tissues remains poorly understood. By using a combination of metabolite and transcript profiles we here investigated the function of 2-OGDHC in leaves of Arabidopsis thaliana via use of specific phosphonate inhibitors of the enzyme. Incubation of leaf disks with the inhibitors revealed that they produced the anticipated effects on the in situ enzyme activity. In vitro experiments revealed that succinyl phosphonate (SP) and a carboxy ethyl ester of SP are slow-binding inhibitors of the 2-OGDHC. Our results indicate that the reduced respiration rates are associated with changes in the regulation of metabolic and signaling pathways leading to an imbalance in carbon-nitrogen metabolism and cell homeostasis. The inducible alteration of primary metabolism was associated with altered expression of genes belonging to networks of amino acids, plant respiration, and sugar metabolism. In addition, by using isothermal titration calorimetry we excluded the possibility that the changes in gene expression resulted from an effect on 2-oxoglutarate (2OG) binding to the carbon/ATP sensing protein PII. We also demonstrated that the 2OG degradation by the 2-oxoglutarate dehydrogenase strongly influences the distribution of intermediates of the tricarboxylic acid (TCA) cycle and the GABA shunt. Our results indicate that the TCA cycle activity is clearly working in a non-cyclic manner upon 2-OGDHC inhibition during the light period.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Danilo M. Daloso
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Mhairi Nimick
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Victoria I. Bunik
- A.N. Belozersly Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- *Correspondence: Alisdair R. Fernie, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany. e-mail:
| |
Collapse
|
21
|
Schwarz D, Nodop A, Hüge J, Purfürst S, Forchhammer K, Michel KP, Bauwe H, Kopka J, Hagemann M. Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT PHYSIOLOGY 2011; 155:1640-55. [PMID: 21282404 PMCID: PMC3091134 DOI: 10.1104/pp.110.170225] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The amount of inorganic carbon is one of the main limiting environmental factors for photosynthetic organisms such as cyanobacteria. Using Synechococcus elongatus PCC 7942, we characterized metabolic and transcriptomic changes in cells that had been shifted from high to low CO(2) levels. Metabolic phenotyping indicated an activation of glycolysis, the oxidative pentose phosphate cycle, and glycolate metabolism at lowered CO(2) levels. The metabolic changes coincided with a general reprogramming of gene expression, which included not only increased transcription of inorganic carbon transporter genes but also genes for enzymes involved in glycolytic and photorespiratory metabolism. In contrast, the mRNA content for genes from nitrogen assimilatory pathways decreased. These observations indicated that cyanobacteria control the homeostasis of the carbon-nitrogen ratio. Therefore, results obtained from the wild type were compared with the MP2 mutant of Synechococcus 7942, which is defective for the carbon-nitrogen ratio-regulating PII protein. Metabolites and genes linked to nitrogen assimilation were differentially regulated, whereas the changes in metabolite concentrations and gene expression for processes related to central carbon metabolism were mostly similar in mutant and wild-type cells after shifts to low-CO(2) conditions. The PII signaling appears to down-regulate the nitrogen metabolism at lowered CO(2), whereas the specific shortage of inorganic carbon is recognized by different mechanisms.
Collapse
|
22
|
Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. MOLECULAR PLANT 2010; 3:973-96. [PMID: 20926550 DOI: 10.1093/mp/ssq049] [Citation(s) in RCA: 415] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In addition to light and water, CO(2) and mineral elements are required for plant growth and development. Among these factors, nitrogen is critical, since it is needed to synthesize amino acids, which are the building elements of protein, nucleotides, chlorophyll, and numerous other metabolites and cellular components. Therefore, nitrogen is required by plants in higher quantities and this investment in nitrogen supports the use of CO(2), water, and inorganic nitrogen to produce sugars, organic acids, and amino acids, the basic building blocks of biomass accumulation. This system is maintained by complex metabolic machinery, which is regulated at different levels according to environmental factors such as light, CO(2), and nutrient availability. Plants integrate these signals via a signaling network, which involves metabolites as well as nutrient-sensing proteins. Due to its importance, much research effort has been expended to understand how carbon and nitrogen metabolism are integrated and regulated according to the rates of photosynthesis, photorespiration, and respiration. Thus, in this article, we both discuss recent advances in carbon/nitrogen metabolisms as well as sensing and signaling systems in illuminated leaves of C3-plants and provide a perspective of the type of experiments that are now required in order to take our understanding to a higher level.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
23
|
Baud S, Feria Bourrellier AB, Azzopardi M, Berger A, Dechorgnat J, Daniel-Vedele F, Lepiniec L, Miquel M, Rochat C, Hodges M, Ferrario-Méry S. PII is induced by WRINKLED1 and fine-tunes fatty acid composition in seeds of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:291-303. [PMID: 21070409 DOI: 10.1111/j.1365-313x.2010.04332.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The PII protein is an integrator of central metabolism and energy levels. In Arabidopsis, allosteric sensing of cellular energy and carbon levels alters the ability of PII to interact with target enzymes such as N-acetyl-l-glutamate kinase and heteromeric acetyl-coenzyme A carboxylase, thereby modulating the biological activity of these plastidial ATP- and carbon-consuming enzymes. A quantitative reverse transcriptase-polymerase chain reaction approach revealed a threefold induction of the AtGLB1 gene (At4g01900) encoding PII during early seed maturation. The activity of the AtGLB1 promoter was consistent with this pattern. A complementary set of molecular and genetic analyses showed that WRINKLED1, a transcription factor known to induce glycolytic and fatty acid biosynthetic genes at the onset of seed maturation, directly controls AtGLB1 expression. Immunoblot analyses and immunolocalization experiments using anti-PII antibodies established that PII protein levels faithfully reflected AtGLB1 mRNA accumulation. At the subcellular level, PII was observed in plastids of maturing embryos. To further investigate the function of PII in seeds, comprehensive functional analyses of two pII mutant alleles were carried out. A transient increase in fatty acid production was observed in mutant seeds at a time when PII protein content was found to be maximal in wild-type seeds. Moreover, minor though statistically significant modifications of the fatty acid composition were measured in pII seeds, which exhibited decreased amounts of modified (elongated, desaturated) fatty acid species. The results obtained outline a role for PII in the fine tuning of fatty acid biosynthesis and partitioning in seeds.
Collapse
Affiliation(s)
- Sébastien Baud
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de Saint-Cyr (RD10), Versailles Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Olinares PDB, Ponnala L, van Wijk KJ. Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol Cell Proteomics 2010; 9:1594-615. [PMID: 20423899 DOI: 10.1074/mcp.m000038-mcp201] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To characterize MDa-sized macromolecular chloroplast stroma protein assemblies and to extend coverage of the chloroplast stroma proteome, we fractionated soluble chloroplast stroma in the non-denatured state by size exclusion chromatography with a size separation range up to approximately 5 MDa. To maximize protein complex stability and resolution of megadalton complexes, ionic strength and composition were optimized. Subsequent high accuracy tandem mass spectrometry analysis (LTQ-Orbitrap) identified 1081 proteins across the complete native mass range. Protein complexes and assembly states above 0.8 MDa were resolved using hierarchical clustering, and protein heat maps were generated from normalized protein spectral counts for each of the size exclusion chromatography fractions; this complemented previous analysis of stromal complexes up to 0.8 MDa (Peltier, J. B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A. J., Rutschow, H., and van Wijk, K. J. (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics 5, 114-133). This combined experimental and bioinformatics analyses resolved chloroplast ribosomes in different assembly and functional states (e.g. 30, 50, and 70 S), which enabled the identification of plastid homologues of prokaryotic ribosome assembly factors as well as proteins involved in co-translational modifications, targeting, and folding. The roles of these ribosome-associating proteins will be discussed. Known RNA splice factors (e.g. CAF1/WTF1/RNC1) as well as uncharacterized proteins with RNA-binding domains (pentatricopeptide repeat, RNA recognition motif, and chloroplast ribosome maturation), RNases, and DEAD box helicases were found in various sized complexes. Chloroplast DNA (>3 MDa) was found in association with the complete heteromeric plastid-encoded DNA polymerase complex, and a dozen other DNA-binding proteins, e.g. DNA gyrase, topoisomerase, and various DNA repair enzymes. The heteromeric >or=5-MDa pyruvate dehydrogenase complex and the 0.8-1-MDa acetyl-CoA carboxylase complex associated with uncharacterized biotin carboxyl carrier domain proteins constitute the entry point to fatty acid metabolism in leaves; we suggest that their large size relates to the need for metabolic channeling. Protein annotations and identification data are available through the Plant Proteomics Database, and mass spectrometry data are available through Proteomics Identifications database.
Collapse
|
25
|
Hannah MA, Caldana C, Steinhauser D, Balbo I, Fernie AR, Willmitzer L. Combined transcript and metabolite profiling of Arabidopsis grown under widely variant growth conditions facilitates the identification of novel metabolite-mediated regulation of gene expression. PLANT PHYSIOLOGY 2010; 152:2120-9. [PMID: 20190096 PMCID: PMC2850026 DOI: 10.1104/pp.109.147306] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 02/12/2010] [Indexed: 05/19/2023]
Abstract
Regulation of metabolism at the level of transcription and its corollary metabolite-mediated regulation of transcription are well-documented mechanisms by which plants adapt to circumstance. That said the function of only a minority of transcription factor networks are fully understood and it seems likely that we have only identified a subset of the metabolites that play a mediator function in the regulation of transcription. Here we describe an integrated genomics approach in which we perform combined transcript and metabolite profiling on Arabidopsis (Arabidopsis thaliana) plants challenged by various environmental extremes. We chose this approach to generate a large variance in the levels of all parameters recorded. The data was then statistically evaluated to identify metabolites whose level robustly correlated with those of a particularly large number of transcripts. Since correlation alone provides no proof of causality we subsequently attempted to validate these putative mediators of gene expression via a combination of statistical analysis of data available in publicly available databases and iterative experimental evaluation. Data presented here suggest that, on adoption of appropriate caution, the approach can be used for the identification of metabolite mediators of gene expression. As an exemplary case study we document that in plants, as in yeast (Saccharomyces cerevisiae) and mammals, leucine plays an important role as a regulator of gene expression and provide a leucine response gene regulatory network.
Collapse
Affiliation(s)
| | | | | | | | | | - Lothar Willmitzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
26
|
Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit. Proc Natl Acad Sci U S A 2009; 107:502-7. [PMID: 20018655 DOI: 10.1073/pnas.0910097107] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new PII target proteins, PII-affinity chromatography of soluble extracts from Arabidopsis leaf chloroplasts was performed. Several proteins were retained only when Mg-ATP was present in the binding medium and they were specifically released from the resin by application of a 2-oxoglutarate-containing elution buffer. Mass spectroscopy of SDS/PAGE-resolved protein bands identified the biotin carboxyl carrier protein subunits of the plastidial acetyl-CoA carboxylase (ACCase) and three other proteins containing a similar biotin/lipoyl-binding motif as putative PII targets. ACCase is a key enzyme initiating the synthesis of fatty acids in plastids. In in vitro reconstituted assays supplemented with exogenous ATP, recombinant Arabidopsis PII inhibited chloroplastic ACCase activity, and this was completely reversed in the presence of 2-oxoglutarate, pyruvate, or oxaloacetate. The inhibitory effect was PII-dose-dependent and appeared to be PII-specific because ACCase activity was not altered in the presence of other tested proteins. PII decreased the V(max) of the ACCase reaction without altering the K(m) for acetyl-CoA. These data show that PII function has evolved between bacterial and plant systems to control the carbon metabolism pathway of fatty acid synthesis in plastids.
Collapse
|