1
|
Mei JL, Wang SF, Zhao YY, Xu T, Luo Y, Xiong LL. Identification of immune infiltration and PANoptosis-related molecular clusters and predictive model in Alzheimer's disease based on transcriptome analysis. IBRAIN 2024; 10:323-344. [PMID: 39346794 PMCID: PMC11427814 DOI: 10.1002/ibra.12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
This study aims to explore the expression profile of PANoptosis-related genes (PRGs) and immune infiltration in Alzheimer's disease (AD). Based on the Gene Expression Omnibus database, this study investigated the differentially expressed PRGs and immune cell infiltration in AD and explored related molecular clusters. Gene set variation analysis (GSVA) was used to analyze the expression of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes in different clusters. Weighted gene co-expression network analysis was utilized to find co-expressed gene modules and core genes in the network. By analyzing the intersection genes in random forest, support vector machine, generalized linear model, and extreme gradient boosting (XGB), the XGB model was determined. Eventually, the first five genes (Signal Transducer and Activator of Transcription 3, Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1B, Interleukin 4 Receptor, Chloride Intracellular Channel 1, TNF Receptor Superfamily Member 10B) in XGB model were selected as predictive genes. This research explored the relationship between PANoptosis and AD and established an XGB learning model to evaluate and screen key genes. At the same time, immune infiltration analysis showed that there were different immune infiltration expression profiles in AD.
Collapse
Affiliation(s)
- Jin-Lin Mei
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Shi-Feng Wang
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Yang-Yang Zhao
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Ting Xu
- School of Anesthesiology Zunyi Medical University Zunyi China
| | - Yong Luo
- Department of Neurology Third Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Liu-Lin Xiong
- School of Anesthesiology Zunyi Medical University Zunyi China
- Clinical and Health Sciences University of South Australia Adelaide South Australia Australia
| |
Collapse
|
2
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
3
|
Zhou L, Shen H, Li X, Wang H. Endoplasmic reticulum stress in innate immune cells - a significant contribution to non-alcoholic fatty liver disease. Front Immunol 2022; 13:951406. [PMID: 35958574 PMCID: PMC9361020 DOI: 10.3389/fimmu.2022.951406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease and its complications affect millions of people worldwide. NAFLD (non-alcoholic fatty liver disease) is the liver disease associated with metabolic dysfunction and consists of four stages: steatosis with or without mild inflammation (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. With increased necroinflammation and progression of liver fibrosis, NAFLD may progress to cirrhosis or even hepatocellular carcinoma. Although the underlying mechanisms have not been clearly elucidated in detail, what is clear is that complex immune responses are involved in the pathogenesis of NASH, activation of the innate immune system is critically involved in triggering and amplifying hepatic inflammation and fibrosis in NAFLD/NASH. Additionally, disruption of endoplasmic reticulum (ER) homeostasis in cells, also known as ER stress, triggers the unfolded protein response (UPR) which has been shown to be involved to inflammation and apoptosis. To further develop the prevention and treatment of NAFLD/NASH, it is imperative to clarify the relationship between NAFLD/NASH and innate immune cells and ER stress. As such, this review focuses on innate immune cells and their ER stress in the occurrence of NAFLD and the progression of cirrhosis.
Collapse
Affiliation(s)
- Liangliang Zhou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- *Correspondence: Hua Wang,
| |
Collapse
|
4
|
Chukai Y, Ito G, Konno M, Sakata Y, Ozaki T. Mitochondrial calpain-5 truncates caspase-4 during endoplasmic reticulum stress. Biochem Biophys Res Commun 2022; 608:156-162. [DOI: 10.1016/j.bbrc.2022.03.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
|
5
|
Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:919567. [PMID: 35712726 PMCID: PMC9194562 DOI: 10.3389/fphar.2022.919567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the gastrointestinal tract, associated with high levels of inflammatory cytokine production. Human caspases-4 and -5, and their murine ortholog caspase-11, are essential components of the innate immune pathway, capable of sensing and responding to intracellular lipopolysaccharide (LPS), a component of Gram-negative bacteria. Following their activation by LPS, these caspases initiate potent inflammation by causing pyroptosis, a lytic form of cell death. While this pathway is essential for host defence against bacterial infection, it is also negatively associated with inflammatory pathologies. Caspases-4/-5/-11 display increased intestinal expression during IBD and have been implicated in chronic IBD inflammation. This review discusses the current literature in this area, identifying links between inflammatory caspase activity and IBD in both human and murine models. Differences in the expression and functions of caspases-4, -5 and -11 are discussed, in addition to mechanisms of their activation, function and regulation, and how these mechanisms may contribute to the pathogenesis of IBD.
Collapse
Affiliation(s)
| | - Emma M. Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, Pandian D, Gudjonsson JE, Kahlenberg JM, O'Riordan MX, Knight JS. Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus. J Clin Invest 2021; 131:137866. [PMID: 33561013 DOI: 10.1172/jci137866] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex-stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex-mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.
Collapse
Affiliation(s)
- Gautam Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | - Paul A Steffes
- Division of Rheumatology, Department of Internal Medicine
| | | | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine
| |
Collapse
|
7
|
Noseykina EM, Schepetkin IA, Atochin DN. Molecular Mechanisms for Regulation of Neutrophil Apoptosis under Normal and Pathological Conditions. J EVOL BIOCHEM PHYS+ 2021; 57:429-450. [PMID: 34226754 PMCID: PMC8245921 DOI: 10.1134/s0022093021030017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Neutrophils are one of the main cells of innate immunity that perform a key effector and regulatory function in the development of the human inflammatory response. Apoptotic forms of neutrophils are important for regulating the intensity of inflammation and restoring tissue homeostasis. This review summarizes current data on the molecular mechanisms of modulation of neutrophil apoptosis by the main regulatory factors of the inflammatory response-cytokines, integrins, and structural components of bacteria. Disturbances in neutrophil apoptosis under stress are also considered, molecular markers of changes in neutrophil lifespan associated with various diseases and pathological conditions are presented, and data on pharmacological agents for modulating apoptosis as potential therapeutics are also discussed.
Collapse
Affiliation(s)
| | - I. A. Schepetkin
- Tomsk Polytechnic University, Tomsk, Russia ,Department of Microbiology
and Immunology, Montana State University, Bozeman, MT, USA
| | - D. N. Atochin
- Tomsk Polytechnic University, Tomsk, Russia ,Cardiovascular Research Center,
Cardiology Division, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
8
|
Ye Y, Gaugler B, Mohty M, Malard F. Old dog, new trick: Trivalent arsenic as an immunomodulatory drug. Br J Pharmacol 2020; 177:2199-2214. [PMID: 32022256 DOI: 10.1111/bph.15011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Trivalent arsenic (As(III)) is recently found to be an immunomodulatory agent. As(III) has therapeutic potential in several autoimmune and inflammatory diseases in vivo. In vitro, it selectively induces apoptosis of immune cells due to different sensitivity. At a non-toxic level, As(III) shows its multifaceted nature by inducing either pro- or anti-inflammatory functions of immune subsets. These effects are exerted by either As(III)-protein interactions or as a consequence of As(III)-induced homeostasis imbalance. The immunomodulatory properties also show synergistic effects of As(III) with cancer immunotherapy. In this review, we summarize the immunomodulatory effects of As(III), focusing on the effects of As(III) on immune subsets in vitro, on mouse models of immune-related diseases, and the role of As(III) in cancer immunotherapy. Updates of the mechanisms of action, the pioneer clinical trials, dosing, and adverse events of therapeutic As(III) are also provided.
Collapse
Affiliation(s)
- Yishan Ye
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
da Silva DC, Valentão P, Andrade PB, Pereira DM. Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacol Res 2020; 155:104702. [PMID: 32068119 DOI: 10.1016/j.phrs.2020.104702] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) comprises a network of tubules and vesicles that constitutes the largest organelle of the eukaryotic cell. Being the location where most proteins are synthesized and folded, it is crucial for the upkeep of cellular homeostasis. Disturbed ER homeostasis triggers the activation of a conserved molecular machinery, termed the unfolded protein response (UPR), that comprises three major signaling branches, initiated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and the activating transcription factor 6 (ATF6). Given the impact of this intricate signaling network upon an extensive list of cellular processes, including protein turnover and autophagy, ER stress is involved in the onset and progression of multiple diseases, including cancer and neurodegenerative disorders. There is, for this reason, an increasing number of publications focused on characterizing and/or modulating ER stress, which have resulted in a wide array of techniques employed to study ER-related molecular events. This review aims to sum up the essentials on the current knowledge of the molecular biology of endoplasmic reticulum stress, while highlighting the available tools used in studies of this nature.
Collapse
Affiliation(s)
- Daniela Correia da Silva
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal.
| |
Collapse
|
10
|
Abstract
In 1992, arsenic trioxide (As2O3, ATO) was demonstrated to be an effective therapeutic agent against acute promyelocytic leukemia (APL), rekindling attention to ATO applications in U.S. Food and Drug Administration clinical trials for the treatment of cancers, such as leukemia, lymphomas, and solid tumors. ATO is a potent chemotherapeutic drug that can also be used to treat other diseases, such as autoimmune diseases, because it affects multiple pathways including apoptosis induction, differentiation stimulation, and proliferation inhibition. As inflammation is a critical component of disease progression, ATO is a feasible treatment option based on its ability to protect against inflammation. However, ATO is also a well-known carcinogen because of its pro-inflammatory effect. This review will focus on the double-sided effects of ATO on inflammation as well as the relevant mechanisms underlying these effects, aiming to provide a rational understanding of how ATO effects the immune system. We especially aim to provide a comprehensive overview of our current knowledge of how ATO influences inflammation.
Collapse
|
11
|
Yan M, Shu S, Chunyuan G, Tang C, Dong Z. Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Ann Med 2018; 50:381-390. [PMID: 29895209 PMCID: PMC6333465 DOI: 10.1080/07853890.2018.1489142] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a medical condition characterized by kidney damage with a rapid decline of renal function, which is associated with high mortality and morbidity. Recent research has further established an intimate relationship between AKI and chronic kidney disease. Perturbations of kidney cells in AKI result in the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER), leading to unfolded protein response (UPR) or ER stress. In this review, we analyze the role and regulation of ER stress in AKI triggered by renal ischemia-reperfusion and cisplatin nephrotoxicity. The balance between the two major components of UPR, the adaptive pathway and the apoptotic pathway, plays a critical role in determining the cell fate in ER stress. The adaptive pathway is evoked to attenuate translation, induce chaperones, maintain protein homeostasis and promote cell survival. Prolonged ER stress activates the apoptotic pathway, resulting in the elimination of dysfunctional cells. Therefore, regulating ER stress in kidney cells may provide a therapeutic target in AKI. KEY MESSAGES Perturbations of kidney cells in acute kidney injury result in the accumulation of unfolded and misfolded proteins in ER, leading to unfolded protein response (UPR) or ER stress. The balance between the adaptive pathway and the apoptotic pathway of UPR plays a critical role in determining the cell fate in ER stress. Modulation of ER stress in kidney cells may provide a therapeutic strategy for acute kidney injury.
Collapse
Affiliation(s)
- Mingjuan Yan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nephrology, The First people’s Hospital of Changde City, Changde, Hunan, China
| | - Shaoqun Shu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo Chunyuan
- Department of Nephrology, The First people’s Hospital of Changde City, Changde, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, U.S.A
| |
Collapse
|
12
|
Martens SL, Roth CC, Ibey BL. Nanosecond pulsed electric field exposure does not induce the unfolded protein response in adult human dermal fibroblasts. Bioelectromagnetics 2018; 39:491-499. [PMID: 29984845 DOI: 10.1002/bem.22131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/21/2018] [Indexed: 02/03/2023]
Abstract
Cell-circuit models have suggested that nanosecond pulsed electric fields (nsPEFs) can disrupt intracellular membranes including endoplasmic reticulum (ER), mitochondria, and/or nucleus thereby inducing intrinsic apoptotic pathways. Therefore, we hypothesized that the unfolded protein response (UPR) would be activated, due to the fluctuations of ionic concentrations, upon poration of the ER membrane. Quantitative real-time polymerase chain reaction was utilized to measure changes in messenger RNA (mRNA) expression of specific ER stress genes in adult human dermal fibroblast (HDFa) cells treated with tunicamycin (TM) (known ER stress inducer) and cells exposed to nsPEFs (100, 10-ns pulses at 150 kV/cm delivered at a repetition rate of 1 Hz). For HDFa cells, results showed time-dependent UPR activation to TM; however, when HDFa cells were exposed to nsPEFs, no significant changes in mRNA expression of ER stress genes, and/or caspase gene were observed. These results indicate that although cell death can be observed under these exposure parameters, it is most likely not initiated through activation of the UPR. Bioelectromagnetics. 2018;39:491-499, 2018. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Stacey L Martens
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas
| | - Caleb C Roth
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas
| | - Bennett L Ibey
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, Texas
| |
Collapse
|
13
|
Bacterial Pore-Forming Toxins Promote the Activation of Caspases in Parallel to Necroptosis to Enhance Alarmin Release and Inflammation During Pneumonia. Sci Rep 2018; 8:5846. [PMID: 29643440 PMCID: PMC5895757 DOI: 10.1038/s41598-018-24210-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
Pore-forming toxins are the most common virulence factor in pathogenic bacteria. They lead to membrane permeabilization and cell death. Herein, we show that respiratory epithelial cells (REC) undergoing bacterial pore-forming toxin (PFT)-induced necroptosis simultaneously experienced caspase activation independently of RIPK3. MLKL deficient REC treated with a pan-caspase inhibitor were protected in an additive manner against PFT-induced death. Subsequently, cleaved versions of caspases-2, -4 and -10 were detected within REC undergoing necroptosis by immunoblots and monoclonal antibody staining. Caspase activation was observed in lung samples from mice and non-human primates experiencing Gram-negative and Gram-positive bacterial pneumonia, respectively. During apoptosis, caspase activation normally leads to cell shrinkage, nuclear condensation, and immunoquiescent death. In contrast, caspase activity during PFT-induced necroptosis increased the release of alarmins to the extracellular milieu. Caspase-mediated alarmin release was found sufficient to activate resting macrophages, leading to Interleukin-6 production. In a mouse model of Gram-negative pneumonia, deletion of caspases -2 and -11, the mouse orthologue of caspase-4, reduced pulmonary inflammation, immune cell infiltration and lung damage. Thus, our study describes a previously unrecognized role for caspase activation in parallel to necroptosis, and indicates that their activity plays a critical pro-inflammatory role during bacterial pneumonia.
Collapse
|
14
|
Ariyasu D, Yoshida H, Hasegawa Y. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders. Int J Mol Sci 2017; 18:ijms18020382. [PMID: 28208663 PMCID: PMC5343917 DOI: 10.3390/ijms18020382] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article.
Collapse
Affiliation(s)
- Daisuke Ariyasu
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hiderou Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan.
| |
Collapse
|
15
|
Sui T, Ge DW, Yang L, Tang J, Cao XJ, Ge YB. Mitomycin C induces apoptosis in human epidural scar fibroblasts after surgical decompression for spinal cord injury. Neural Regen Res 2017; 12:644-653. [PMID: 28553347 PMCID: PMC5436365 DOI: 10.4103/1673-5374.205106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have shown that topical application of mitomycin C after surgical decompression effectively reduces scar adhesion. However, the underlying mechanisms remain unclear. In this study, we investigated the effect of mitomycin C on the proliferation and apoptosis of human epidural scar fibroblasts. Human epidural scar fibroblasts were treated with various concentrations of mitomycin C (1, 5, 10, 20, 40 μg/mL) for 12, 24 and 48 hours. Mitomycin C suppressed the growth of these cells in a dose- and time-dependent manner. Mitomycin C upregulated the expression levels of Fas, DR4, DR5, cleaved caspase-8/9, Bax, Bim and cleaved caspase-3 proteins, and it downregulated Bcl-2 and Bcl-xL expression. In addition, inhibitors of caspase-8 and caspase-9 (Z-IETD-FMK and Z-LEHD-FMK, respectively) did not fully inhibit mitomycin C-induced apoptosis. Furthermore, mitomycin C induced endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78, CAAT/enhancer-binding protein homologous protein (CHOP) and caspase-4 in a dose-dependent manner. Salubrinal significantly inhibited the mitomycin C-induced cell viability loss and apoptosis, and these effects were accompanied by a reduction in CHOP expression. Our results support the hypothesis that mitomycin C induces human epidural scar fibroblast apoptosis, at least in part, via the endoplasmic reticulum stress pathway.
Collapse
Affiliation(s)
- Tao Sui
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Da-Wei Ge
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Yang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jian Tang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Cao
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Bin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
16
|
Wang FF, Liu MZ, Sui Y, Cao Q, Yan B, Jin ML, Mo X. Deficiency of SUMO-specific protease 1 induces arsenic trioxide-mediated apoptosis by regulating XBP1 activity in human acute promyelocytic leukemia. Oncol Lett 2016; 12:3755-3762. [PMID: 27895727 PMCID: PMC5104160 DOI: 10.3892/ol.2016.5162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/22/2016] [Indexed: 01/08/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)/sentrin-specific protease 1 (SENP1), a member of the SENP family, is highly expressed in several neoplastic tissues. However, the effect of SENP1 in acute promyelocytic leukemia (APL) has not been elucidated. In the present study, it was observed that SENP1 deficiency had no effect on the spontaneous apoptosis or differentiation of NB4 cells. Arsenic trioxide (As2O3) could induce the upregulation of endoplasmic reticulum (ER) stress, resulting in the apoptosis of NB4 cells. Additionally, knockdown of SENP1 significantly increased As2O3-induced apoptosis in NB4 cells transfected with small interfering RNA targeting SENP1. SENP1 deficiency also increased the accumulation of SUMOylated X-box binding protein 1 (XBP1), which was accompanied by the downregulation of the messenger RNA expression and transcriptional activity of the XBP1 target genes endoplasmic reticulum-localized DnaJ 4 and Sec61a, which were involved in ER stress and closely linked to the apoptosis of NB4 cells. Taken together, these results revealed that the specific de-SUMOylation activity of SENP1 for XBP1 was involved in the ER stress-mediated apoptosis caused by As2O3 treatment in NB4 cells, thus providing insight into potential therapeutic targets for APL treatment via manipulating XBP1 signaling during ER stress by targeting SENP1.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China; Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Ming-Zhu Liu
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Yi Sui
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Bo Yan
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Mei-Ling Jin
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Xi Mo
- Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
17
|
García de la Cadena S, Massieu L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis 2016; 21:763-77. [DOI: 10.1007/s10495-016-1247-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils. Toxicol In Vitro 2016; 31:12-22. [DOI: 10.1016/j.tiv.2015.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/09/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022]
|
19
|
Yang F, Tang XY, Liu H, Jiang ZW. Inhibition of mitogen-activated protein kinase signaling pathway sensitizes breast cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncol Rep 2016; 35:2113-20. [PMID: 26796921 DOI: 10.3892/or.2016.4580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) induces ER stress which is observed in many human diseases, including breast cancer. Cellular adaptation to ER stress is mediated by the unfolded protein response (UPR), which aims at restoring ER homeostasis. Higher levels of GRP78 expression indicates constitutive activation of the UPR in breast cancer leading to breast cancer cells that are relatively resistant to ER stress-induced apoptosis. Tunicamycin (TM), an ER stress inducer, constitutively activates the mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK), and (MEK)/ERK pathway which plays a role in upregulation of GRP78 by ER stress in that inhibition of MEK by U0126 reduces the levels of GRP78 and blocks its upregulation by TM. Inhibition of the MEK/ERK pathway by U0126 sensitizes breast cancer cells to TM-induced apoptosis. Inhibition of GRP78 by siRNA knockdown enhances TM- and U0126-induced apoptosis in breast cancer cells. This sensitization of breast cancer cells to TM-induced apoptosis by inhibition of MEK/ERK and GRP78 is caspase-dependent, at least in part, by activation of caspase-4. These results seem to indicate that GRP78 has potential as a chemotherapeutical target and have important implications for new treatment strategies in breast cancer by combination with agents that induce ER stress with inhibitors of the MEK/ERK pathway.
Collapse
Affiliation(s)
- Fen Yang
- Department of Tumor Radiotherapy, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Xiao Yan Tang
- Department of Clinical Laboratory, Nanjing Chest Hospital, Nanjing, Jiangsu, P.R. China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Zhi Wen Jiang
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui, P.R. China
| |
Collapse
|
20
|
Liz R, Simard JC, Leonardi LBA, Girard D. Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion. Int Immunopharmacol 2015; 28:616-25. [PMID: 26241783 DOI: 10.1016/j.intimp.2015.06.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 01/19/2023]
Abstract
Inflammation is one of the major toxic effects reported in response to in vitro or in vivo nanoparticle (NP) exposure. Among engineered NPs, silver nanoparticles (AgNPs) are very attractive for the development of therapeutic strategies, especially because of their antimicrobial properties. In humans, neutrophils, key players in inflammation, are the most abundant blood leukocytes that spontaneously undergo apoptosis, a central cell death mechanism regulating inflammation. The aim of this study was to evaluate the effect of AgNPs on neutrophil apoptosis. Transmission electronic microscopy reveals that AgNPs rapidly penetrate inside neutrophils. AgNPs induced atypical cell death where the cell volume increased and the cell surface expression of CD16 remained unaltered unlike apoptotic neutrophils where cell shrinkage and loss of CD16 are typically observed. The AgNP-induced atypical cell death is distinct from necrosis and reversed by a pancaspase inhibitor or by inhibitors of the inflammatory caspase-1 and caspase-4. In addition, AgNPs induced IL-1β production inhibited by caspase-1 and caspase-4 inhibitors and also induced caspase-1 activity. Reactive oxygen species (ROS) production was increased by AgNPs and the atypical cell death was inhibited by the antioxidant n-acetylcysteine. Under similar experimental conditions, adhesion of neutrophils leads to neutrophil extracellular trap (NET) release induced by AgNPs. However, this process was not reversed by caspase inhibitors. We conclude that AgNPs rapidly induced an atypical cell death in neutrophils by a mechanism involving caspase-1, -4 and ROS. However, in adherent neutrophils, AgNPs induced NET release and, therefore, are novel agents able to trigger NET release.
Collapse
Affiliation(s)
- Rafael Liz
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Jean-Christophe Simard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Laurien Bruna Araújo Leonardi
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
21
|
Abstract
Over the past few decades, understandings and evidences concerning the role of endoplasmic reticulum (ER) stress in deciding the cell fate have been constantly growing. Generally, during ER stress, the signal transductions are mainly conducted by three ER stress transducers: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring kinase 1 (IRE1) and activating transcription factor 6 (ATF6). Consequently, the harmful stimuli from the ER stress transducers induce apoptosis and autophagy, which share several crosstalks and eventually decide the cell fate. The dominance of apoptosis or autophagy induced by ER stress depends on the type and degree of the stimuli. When ER stress is too severe and prolonged, apoptosis is induced to eliminate the damaged cells; however, when stimuli are mild, cell survival is promoted to maintain normal physiological functions by inducing autophagy. Although all the three pathways participate in ER stress-induced apoptosis and autophagy, PERK shows several unique characteristics by interacting with some specific downstream effectors. Notably, there are some preliminary findings on PERK-dependent mechanisms switching autophagy and apoptosis. In this review, we particularly focused on the novel, intriguing and complicated role of PERK in ER stress-decided cell fate, and also discussed more roles of PERK in restoring cellular homeostasis. However, more in-depth knowledge of PERK in the future would facilitate our understanding about many human diseases and benefit in searching for new molecular therapeutic targets.
Collapse
|
22
|
Pereira RB, Andrade PB, Valentão P. A Comprehensive View of the Neurotoxicity Mechanisms of Cocaine and Ethanol. Neurotox Res 2015; 28:253-67. [PMID: 26105693 DOI: 10.1007/s12640-015-9536-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
Substance use disorder is an emerging problem concerning to human health, causing severe side effects, including neurotoxicity. The use of illegal drugs and the misuse of prescription or over-the-counter drugs are growing in this century, being one of the major public health problems. Ethanol and cocaine are one of the most frequently used drugs and, according to the National Institute on Drug Abuse, their concurrent consumption is one of the major causes for emergency hospital room visits. These molecules act in the brain through different mechanisms, altering the nervous system function. Researchers have focused the attention not just in the mechanism of action of these drugs, but also in the mechanism by which they damage the nervous tissue (neurotoxicity). Therefore, the goal of the present review is to provide a global perspective about the mechanisms of the neurotoxicity of cocaine and ethanol.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | | | | |
Collapse
|
23
|
Wang T, Li X, Yang D, Zhang H, Zhao P, Fu J, Yao B, Zhou Z. ER stress and ER stress-mediated apoptosis are involved in manganese-induced neurotoxicity in the rat striatum in vivo. Neurotoxicology 2015; 48:109-19. [PMID: 25732873 DOI: 10.1016/j.neuro.2015.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 01/14/2015] [Accepted: 02/20/2015] [Indexed: 11/28/2022]
Abstract
Manganese (Mn) is an essential trace element found in many enzymes, however, excessive Mn-exposure can result in manganism which is similar to Parkinson's movement disorder. The mechanisms of manganism are not well-known. The present in vivo study was carried out to determine whether endoplasmic reticulum stress (ER stress) and ER stress-mediated apoptosis are involved in manganese-induced neurotoxicity. Sixty-four SD rats were randomly divided into four groups and were administered intraperitoneally with normal saline (NS, as control) or MnCl₂ (7.5, 15 and 30 mg/kg body weight, respectively) for 4 weeks. We found that MnCl₂ dose-dependently accumulate in striatal. HE staining and TUNEL assay results indicated that MnCl₂ induced striatal neurocytes apoptosis in both male and female rats. The alterations of ultrastructures showed that MnCl₂ resulted in chromatin condensation, mitochondria and ER tumefaction in rat striatal neurocytes. Furthermore, MnCl₂ increased the expressions of p-IRE-1, ATF-6α, PERK, GRP78, Sigma-1R, CHOP, Bim, Bax, caspase-12 and caspase-3, and decreased the expression of Bcl-2 in rat striatal neurocytes. In conclusion, MnCl₂ could induce ER stress and ER stress-mediated apoptosis in rat striatal neurocytes, which might be one of the important mechanisms of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Ting Wang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; The seventh people hospital of Zhengzhou, Zhengzhou Henan 450000, China
| | - Xuehui Li
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Dongxu Yang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Hongtao Zhang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Peng Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Juanling Fu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Biyun Yao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| | - Zongcan Zhou
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
24
|
Simard JC, Vallieres F, de Liz R, Lavastre V, Girard D. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem 2015; 290:5926-39. [PMID: 25593314 DOI: 10.1074/jbc.m114.610899] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the past decade, the increasing amount of nanoparticles (NP) and nanomaterials used in multiple applications led the scientific community to investigate the potential toxicity of NP. Many studies highlighted the cytotoxic effects of various NP, including titanium dioxide, zinc oxide, and silver nanoparticles (AgNP). In a few studies, endoplasmic reticulum (ER) stress was found to be associated with NP cytotoxicity leading to apoptosis in different cell types. In this study, we report for the first time that silver nanoparticles of 15 nm (AgNP15), depending on the concentration, induced different signature ER stress markers in human THP-1 monocytes leading to a rapid ER stress response with degradation of the ATF-6 sensor. Also, AgNP15 induced pyroptosis and activation of the NLRP-3 inflammasome as demonstrated by the processing and increased activity of caspase-1 and secretion of IL-1β and ASC (apoptosis-associated speck-like protein containing a CARD domain) pyroptosome formation. Transfection of THP-1 cells with siRNA targeting NLRP-3 decreased the AgNP15-induced IL-1β production. The absence of caspase-4 expression resulted in a significant reduction of pro-IL-1β. However, caspase-1 activity was significantly higher in caspase-4-deficient cells when compared with WT cells. Inhibition of AgNP15-induced ATF-6 degradation with Site-2 protease inhibitors completely blocked the effect of AgNP15 on pyroptosis and secretion of IL-1β, indicating that ATF-6 is crucial for the induction of this type of cell death. We conclude that AgNP15 induce degradation of the ER stress sensor ATF-6, leading to activation of the NLRP-3 inflammasome regulated by caspase-4 in human monocytes.
Collapse
Affiliation(s)
- Jean-Christophe Simard
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Francis Vallieres
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Rafael de Liz
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Valerie Lavastre
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| | - Denis Girard
- From the Laboratoire de recherche en inflammation et physiologie des granulocytes, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Québec H7V1B7, Canada
| |
Collapse
|
25
|
Nishizaki T, Kanno T, Tsuchiya A, Kaku Y, Shimizu T, Tanaka A. 1-[2-(2-Methoxyphenylamino)ethylamino]-3-(naphthalene-1- yloxy)propan-2-ol may be a promising anticancer drug. Molecules 2014; 19:21462-72. [PMID: 25532843 PMCID: PMC6271752 DOI: 10.3390/molecules191221462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylamino)ethylamino]-3-(naphthalene-1-yloxy)propan-2-ol (HUHS 1015) as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis) and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy.
Collapse
Affiliation(s)
- Tomoyuki Nishizaki
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Takeshi Kanno
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Ayako Tsuchiya
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Yoshiko Kaku
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Tadashi Shimizu
- Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan.
| | - Akito Tanaka
- Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan.
| |
Collapse
|
26
|
Paniagua Soriano G, De Bruin G, Overkleeft HS, Florea BI. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors. Antioxid Redox Signal 2014; 21:2419-43. [PMID: 24437477 DOI: 10.1089/ars.2013.5794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Proteasome inhibitors (PIs) are used in the clinic for the treatment of hematopoietic malignancies. PI inhibitors induce endoplasmatic reticulum (ER) stress and oxidative stress, disruption of signaling pathways, mitochondrial dysfunction, and, eventually, cell death by apoptosis. PIs designated as clinical candidates include natural product derivatives and compounds developed by rational design and feature a wide diversity of structural elements. The vast amount of literature on this topic underscores PIs significance in driving basic research alongside therapeutic benefit. RECENT ADVANCES Research in recent years has brought an in-depth insight into the molecular mechanisms of PI-induced apoptosis. However, there are some paradoxes and controversies in the literature. In this review, the advances and uncertainties, in particular on the time course events that make cells commit to apoptosis, are discussed. In addition, some mechanisms of evolved PI resistance are presented, and speculations on the difference in sensitivity between cell or tumor types are brought forward. The review concludes by giving an outlook of recent methods that may be employed to describe the system biology of how PIs impact cell survival decisions. CRITICAL ISSUES The biology of ER stress, reactive oxygen species (ROS) production, and apoptosis as induced by PIs is not well understood. Absorbed by the strong focus on PIs, one might overlook the importance of proteasome activity activators or modulators and the study of enzymatic pathways that lie up- or downstream from the proteasome function. FUTURE DIRECTIONS An increased understanding of the systems biology at mRNA and protein levels and the kinetics behind the interaction between PIs and cells is imperative. The design and synthesis of subunit specific inhibitors for each of the seven known proteasome activities and for the enzymes associated to proteasomes will aid in unraveling biology of the ubiquitin-proteasome system in relation to ER stress, ROS production, and apoptosis and will generate leads for therapeutic intervention.
Collapse
Affiliation(s)
- Guillem Paniagua Soriano
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre , Leiden, The Netherlands
| | | | | | | |
Collapse
|
27
|
Yang HL, Huang PJ, Chen SC, Cho HJ, Kumar KJS, Lu FJ, Chen CS, Chang CT, Hseu YC. Induction of macrophage cell-cycle arrest and apoptosis by humic acid. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:741-750. [PMID: 25179584 DOI: 10.1002/em.21897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Humic acid (HA) in well water is associated with Blackfoot disease and various cancers. Previously, we reported that acute humic acid exposure (25-200 µg/mL for 24 hr) induces inflammation in RAW264.7 macrophages. In this study, we observed that prolonged (72 hr) HA exposure (25-200 µg/mL) induces cell-cycle arrest and apoptosis in cultured RAW264.7 cells. We also observed that exposing macrophages to HA arrests cells in the G2 /M phase of the cell cycle by reducing cyclin A/B1 , Cdc2, and Cdc25C levels. Treating macrophages with HA triggers a sequence of events characteristic of apoptotic cell death including loss of cell viability, morphological changes, internucleosomal DNA fragmentation, sub-G1 accumulation. Molecular markers of apoptosis associated with mitochondrial dysfunction were similarly observed, including cytochrome c release, caspase-3 or caspase-9 activation, and Bcl-2/Bax dysregulation. In addition to the mitochondrial pathway, HA-induced apoptosis may also be mediated through the death receptor and ER stress pathways, as evidence by induction of Fas, caspase-8, caspase-4, and caspase-12 activity. HA also upregulates p53 expression and causes DNA damage as assessed by the comet assay. These findings yield new insight into the mechanisms by which HA exposure may trigger atherosclerosis through modulation of the macrophage-mediated immune system.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hurley K, Lacey N, O’Dwyer CA, Bergin DA, McElvaney OJ, O’Brien ME, McElvaney OF, Reeves EP, McElvaney NG. Alpha-1 Antitrypsin Augmentation Therapy Corrects Accelerated Neutrophil Apoptosis in Deficient Individuals. THE JOURNAL OF IMMUNOLOGY 2014; 193:3978-91. [DOI: 10.4049/jimmunol.1400132] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Homocysteine-Induced Caspase-3 Activation by Endoplasmic Reticulum Stress in Endothelial Progenitor Cells from Patients with Coronary Heart Disease and Healthy Donors. Biosci Biotechnol Biochem 2014; 75:1300-5. [DOI: 10.1271/bbb.110074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Cao A, Li Q, Yin P, Dong Y, Shi H, Wang L, Ji G, Xie J, Wu D. Curcumin induces apoptosis in human gastric carcinoma AGS cells and colon carcinoma HT-29 cells through mitochondrial dysfunction and endoplasmic reticulum stress. Apoptosis 2014; 18:1391-1402. [PMID: 23881281 DOI: 10.1007/s10495-013-0871-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, we investigate the effect of curcumin, a major active component isolated from rhizomes of Curcuma longa, on the cytotoxicity of three human carcinoma cell lines (AGS, HT-29 and MGC803) in gastrointestinal tract and a normal gastric epithelial cell line GES-1, and the mechanism of curcumin-induced apoptosis. The results indicated that curcumin inhibited the gastrointestinal carcinoma cell growth in a dose-dependent manner and cytotoxicity was more towards the gastric carcinoma cell AGS and colon carcinoma cell HT-29 compared to normal gastric cell GES-1, and increased externalization of phosphatidylserine residue was observed by Annexin V/PI staining in the two cell lines. Treatment of AGS and HT-29 cells with curcumin enhanced the cleavage of procaspase-3, -7, -8 and -9. Meanwhile, curcumin induced endoplasmic reticulum (ER) stress and mitochondrial dysfunction as evidenced by up-regulation of CCAAT/enhancer binding protein homologous protein (CHOP), phosphorylation of JNK and down-regulation of SERCA2ATPase, release of cytochrome c, decrease of Bcl-2 and reduction of mitochondrial membrane potential in both AGS and HT-29 cells. Overexpression of bax, total JNK, phospho-FADD and total FADD were also observed in curcumin-treated HT-29 cells. Moreover, curcumin decreased cytosolic and ER Ca(2+), but increased mitochondrial Ca(2+) in the two cell lines. 2-Aminoethoxydiphenyl borate, an antagonist of inositol 1, 4, 5-triphosphate receptor, partly blocked curcumin-induced cytosolic Ca(2+) decrease in AGS and HT-29 cells. Additionally, carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca(2+) uptake, reversed curcumin-triggered AGS and HT-29 cells growth inhibition. siRNA to CHOP markedly reduced curcumin-induced apoptosis. These results suggest that curcumin can impact on ER stress and mitochondria functional pathways in AGS and HT-29 cells, death receptor pathway was also involved in curcumin-treated HT-29 cells, thus identifying specific well-defined molecular mechanisms that may be targeted by therapeutic strategies.
Collapse
Affiliation(s)
- Aili Cao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Peihao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yang Dong
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hailian Shi
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Guang Ji
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jianqun Xie
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Dazheng Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
31
|
Poirier M, Simard JC, Antoine F, Girard D. Interaction between silver nanoparticles of 20 nm (AgNP20) and human neutrophils: induction of apoptosis and inhibition ofde novoprotein synthesis by AgNP20aggregates. J Appl Toxicol 2013; 34:404-12. [DOI: 10.1002/jat.2956] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/26/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Michelle Poirier
- Laboratoire de recherche en inflammation et physiologie des granulocytes; Université du Québec, INRS-Institut Armand-Frappier; Laval QC Canada
| | - Jean-Christophe Simard
- Laboratoire de recherche en inflammation et physiologie des granulocytes; Université du Québec, INRS-Institut Armand-Frappier; Laval QC Canada
| | - Francis Antoine
- Laboratoire de recherche en inflammation et physiologie des granulocytes; Université du Québec, INRS-Institut Armand-Frappier; Laval QC Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes; Université du Québec, INRS-Institut Armand-Frappier; Laval QC Canada
| |
Collapse
|
32
|
Liu N, Xu Y, Sun JT, Su J, Xiang XY, Yi HW, Zhang ZC, Sun LK. The BH3 mimetic S1 induces endoplasmic reticulum stress-associated apoptosis in cisplatin-resistant human ovarian cancer cells although it activates autophagy. Oncol Rep 2013; 30:2677-84. [PMID: 24100381 DOI: 10.3892/or.2013.2771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/20/2013] [Indexed: 11/06/2022] Open
Abstract
SKOV3/DDP human ovarian cancer cells have been shown to be resistant to cisplatin. Although the BH3 mimetic S1 induces cell death in several types of tumor cells, it is unclear whether it induces death in drug-resistant cells. Herein, we found that S1 induced endoplasmic reticulum (ER) stress-associated apoptosis in both SKOV3 and SKOV3/DDP cells. S1 activated autophagy at early time points in SKOV3/DDP cells, and inhibition of autophagy increased ER stress-associated apoptosis. Collectively, our data indicate that autophagy plays a protective role, but it cannot protect against S1-induced cell death in cisplatin-resistant SKOV3/DDP cells.
Collapse
Affiliation(s)
- Ning Liu
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Suresh A, Subedi K, Kyathanahalli C, Jeyasuria P, Condon JC. Uterine endoplasmic reticulum stress and its unfolded protein response may regulate caspase 3 activation in the pregnant mouse uterus. PLoS One 2013; 8:e75152. [PMID: 24058658 PMCID: PMC3772854 DOI: 10.1371/journal.pone.0075152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/11/2013] [Indexed: 01/22/2023] Open
Abstract
We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine caspase-3 at the transcriptional and translational level. Our study revealed robust activation of the uterine myocyte endoplasmic reticulum stress response and its adaptive unfolded protein response during pregnancy coinciding respectively with increased uterine caspase-3 activity and its withdrawal to term. In contrast the intrinsic and extrinsic apoptotic signaling pathways remained inactive across gestation. We speculate that physiological stimuli experienced by the pregnant uterus likely potentiates the uterine myocyte endoplasmic reticulum stress response resulting in elevated caspase-3 activation, which is isolated to the pregnant mouse myometrium. However as term approaches, activation of an elevated adaptive unfolded protein response acts to limit the endoplasmic reticulum stress response inhibiting caspase-3 resulting in its decline towards term. We speculate that these events have the capacity to regulate gestational length in a caspase-3 dependent manner.
Collapse
Affiliation(s)
- Arvind Suresh
- Department of Obstetrics and Gynecology, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kalpana Subedi
- Department of Obstetrics and Gynecology, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Pancharatnam Jeyasuria
- Department of Obstetrics and Gynecology, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer C. Condon
- Department of Obstetrics and Gynecology, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
34
|
Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3507-3517. [PMID: 23988738 DOI: 10.1016/j.bbamcr.2013.07.024] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress is a common feature of several physiological and pathological conditions affecting the function of the secretory pathway. To restore ER homeostasis, an orchestrated signaling pathway is engaged that is known as the unfolded protein response (UPR). The UPR has a primary function in stress adaptation and cell survival; however, under irreversible ER stress a switch to pro-apoptotic signaling events induces apoptosis of damaged cells. The mechanisms that initiate ER stress-dependent apoptosis are not fully understood. Several pathways have been described where we highlight the participation of the BCL-2 family of proteins and ER calcium release. In addition, recent findings also suggest that microRNAs and oxidative stress are relevant players on the transition from adaptive to cell death programs. Here we provide a global and integrated overview of the signaling networks that may determine the elimination of a cell under chronic ER stress. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Hery Urra
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Estefanie Dufey
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernanda Lisbona
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Neurounion Biomedical Foundation, Santiago, Chile.
| |
Collapse
|
35
|
Weng CY, Chiou SY, Wang L, Kou MC, Wang YJ, Wu MJ. Arsenic trioxide induces unfolded protein response in vascular endothelial cells. Arch Toxicol 2013; 88:213-26. [PMID: 23892647 DOI: 10.1007/s00204-013-1101-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Abstract
Chronic arsenic exposure has been linked to endothelial dysfunction and apoptosis. We investigate the involvement of unfolded protein response (UPR) signaling in the arsenic-mediated cytotoxicity of the SVEC4-10 mouse endothelial cells. The SVEC4-10 cells underwent apoptosis in response to As2O3 dose- and time-dependently, accompanied by increased accumulation of calcium, and activation of caspase-3. These phenomena were completely inhibited by α-lipoic acid (LA), which did not scavenge ROS over-production, but were only partially or not ameliorated by tiron, a potent superoxide scavenger. Moreover, arsenic activated UPR, leading to phosphorylation of eukaryotic translation initiation factor 2 subunit α (eIF2α), induction of ATF4, and processing of ATF6. Treatment with arsenic also triggered the expression of endoplasmic reticulum (ER) stress markers, GRP78 (glucose-regulated protein), and CHOP (C/EBP homologous protein). The activation of eIF2α, ATF4 and ATF6 and expression of GRP78 and CHOP are repressed by both LA and tiron, indicating arsenic-induced UPR is mediated through ROS-dependent and ROS-independent pathways. Arsenic also induced ER stress-inducible genes, BAX, PUMA (p53 upregulated modulator of apoptosis), TRB3 (tribbles-related protein 3), and SNAT2 (sodium-dependent neutral amino acid transporter 2). Consistent with intracellular calcium and cell viability data, ROS may not be important in arsenic-induced death, because tiron did not affect the expression of these pro-apoptotic genes. In addition, pretreatment with salubrinal, a selective inhibitor of eIF2α dephosphorylation, enhanced arsenic-induced GRP78 and CHOP expression and partially prevented arsenic cytotoxicity in SVEC4-10 cells. Taken together, these results suggest that arsenic-induced endothelial cytotoxicity is associated with ER stress, which is mediated by ROS-dependent and ROS-independent signaling.
Collapse
Affiliation(s)
- Ching-Yi Weng
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Kanno T, Tanaka A, Shimizu T, Nakano T, Nishizaki T. 1-[2-(2-Methoxyphenylamino)ethylamino]-3-(naphthalene-1-yloxy)propan-2-ol as a potential anticancer drug. Pharmacology 2013; 91:339-45. [PMID: 23817168 DOI: 10.1159/000351747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/22/2013] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to assess the anticancer effect of several naftopidil analogues on human malignant mesothelioma cell lines NCI-H28, NCI-H2052, NCI-H2452, and MSTO-211H, human lung cancer cell lines A549, SBC-3, and Lu-65, human hepatoma cell lines HepG2 and HuH-7, human gastric cancer cell lines MKN-28 and MKN-45, and human bladder cancer cell lines 253J, 5637, KK-47, TCCSUP, T24, and UM-UC-3, human prostate cancer cell lines DU145, LNCap, and PC-3, and human renal cancer cell lines ACHN, RCC4-VHL, and 786-O. We newly synthesized 21 naftopidil analogues, and of them 1-[2-(2-methoxyphenylamino)ethylamino]-3-(naphthalene-1-yloxy)propan-2-ol (HUHS1015) most efficiently reduced cell viability for all the investigated malignant mesothelioma cell lines in a concentration (1-100 μmol/l)-dependent manner. HUHS1015 reduced cell viability for all other investigated cancer cell lines, to an extent similar to that for malignant mesothelioma cell lines. HUHS1015 activated caspase-3 and -4, without activating caspase-8 and -9, in malignant mesothelioma cell lines. The results of the present study, thus, indicate that HUHS1015 induces apoptosis in a variety of cancer cells, possibly by activating caspase-4 and the effector caspase-3.
Collapse
Affiliation(s)
- Takeshi Kanno
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | |
Collapse
|
37
|
Antoine F, Girard D. Mechanisms involved in curcumin-induced human neutrophil apoptosis: Evidence that curcumin activates the endoplasmic reticulum stress-induced cell apoptosis pathway. SAGE Open Med 2013; 1:2050312113488104. [PMID: 26770672 PMCID: PMC4687759 DOI: 10.1177/2050312113488104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Curcumin was previously reported to accelerate neutrophil apoptosis, but the
mechanism is unclear. Herein, we confirmed that curcumin induces human
neutrophil apoptosis as assessed by cytology and by increase in the cell surface
expression of annexin-V and CD16 shedding. Curcumin activated caspase-3 and the
cleavage of the two cytoskeletal proteins lamin B1 and vimentin. In
addition, curcumin activated protein kinase RNA-like endoplasmic reticulum
kinase and eukaryotic initiation factor 2 alpha and reduced de novo protein
synthesis and the protein expression of the two chaperone proteins, HSP70 and
HSP90. We conclude that curcumin acts as an endoplasmic reticulum stressor in
human neutrophils. The ability of curcumin to activate the endoplasmic reticulum
stress-induced cell apoptotic pathway is part of its mode of action in primary
cells like mature neutrophils.
Collapse
Affiliation(s)
- Francis Antoine
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| |
Collapse
|
38
|
Seth-Pasricha M, Bidle KA, Bidle KD. Specificity of archaeal caspase activity in the extreme halophile Haloferax volcanii. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:263-71. [PMID: 23565123 PMCID: PMC3615174 DOI: 10.1111/1758-2229.12010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 10/23/2012] [Indexed: 05/30/2023]
Abstract
Caspase-like proteases are key initiators and executioners of programmed cell death (PCD), which is initiated by environmental stimuli and manifests in organisms ranging from unicellular microbes to higher eukaryotes. Archaea had been absent from the caspase inheritance discussion due to a lack of gene homologues. We recently demonstrated extremely high, basal caspase-like catalytic activity in the model haloarcheon, Haloferax volcanii, which was linked to the cellular stress response and was widespread among diverse Archaea. Here, we rigorously tested the catalytic specificity of the observed archaeal caspase-like activities using hydrolytic assays with a diverse suite of protease substrates and inhibitors compared with known model serine and cysteine proteases (trypsin, cathepsin, papain, and human caspase-8). Our experiments demonstrate that exponentially growing H. volcanii possesses a highly specific caspase-like activity that most closely resembles caspase-4, is preferentially inhibited by the pancaspase inhibitor, zVAD-FMK, and has no crossreactivity with other known protease families. Our findings firmly root the extremely high levels of caspase-like activity as the dominant proteolytic activity in this extreme haloarcheaon, thereby providing further support for housekeeping functions in Haloarchaea. Given the deep archaeal roots of eukaryotes, we suggest that this activity served as a foundation for stress pathways in higher organisms.
Collapse
Affiliation(s)
- Mansha Seth-Pasricha
- Institute for Marine and Coastal Sciences, Rutgers UniversityNew Brunswick, NJ, USA
| | - Kelly A Bidle
- Department of Biology, Rider UniversityLawrenceville, NJ, USA
| | - Kay D Bidle
- Institute for Marine and Coastal Sciences, Rutgers UniversityNew Brunswick, NJ, USA
| |
Collapse
|
39
|
Li K, Zhang L, Xiang X, Gong S, Ma L, Xu L, Wang G, Liu Y, Ji X, Liu S, Chen P, Zeng H, Li J. Arsenic trioxide alleviates airway hyperresponsiveness and promotes apoptosis of CD4+ T lymphocytes: evidence for involvement of the ER stress-CHOP pathway. Ir J Med Sci 2013; 182:573-83. [PMID: 23494705 DOI: 10.1007/s11845-013-0928-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 02/15/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is a chronic inflammatory disorder of the airway. Arsenic trioxide (ATO) is an ancient Chinese medicine, which is used to treat psoriasis, asthma, and acute promyelocytic leukemia. AIM We wanted to research the effect of arsenic trioxide on asthma. METHODS Using a murine model of asthma, the airway hyperresponsiveness was conducted by the Buxco pulmonary function apparatus. Total cell counts of BALF were counted with a counting chamber. Histopathological analysis of lung tissues was conducted by hematoxylin-eosin or periodic acid-schiff stain. CD4+T cells were purified from the spleen by positive selection, using immunomagnetic beads. Apoptosis measurements were done with Annexin-V/PI staining. Western blot analysis and real time-PCR were performed to assess the expression of C/EBP-homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), respectively. RNA interference was conducted to inhibit the expression of CHOP. RESULTS We found that arsenic trioxide treatment alleviated airway hyperresponsiveness and reduced inflammation of the lung in asthmatic mice. Furthermore, arsenic trioxide treatment promoted apoptosis of CD4+T cells in vivo and in vitro. When CD4+T cells were cultured with arsenic trioxide for 5 h at a concentration of 5 μM, the expression of GRP78 and CHOP was increased. Treatment of CD4+T cells with CHOP siRNA, provided partial resistance to arsenic trioxide-induced apoptosis of CD4+T cells CONCLUSIONS These data demonstrated that arsenic trioxide can reduce the severity of asthma attacks and induce the apoptosis of CD4+ T cell which the ER stress-CHOP pathway involved.
Collapse
Affiliation(s)
- K Li
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
A genome-wide RNA interference screen identifies caspase 4 as a factor required for tumor necrosis factor alpha signaling. Mol Cell Biol 2012; 32:3372-81. [PMID: 22733992 DOI: 10.1128/mcb.06739-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-α pathway activity has been realized in several diseases, and antagonists of TNF-α have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-α receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-α, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-α signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-κB activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-α-induced NF-κB signaling that is required for the activation of IκB kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE).
Collapse
|
41
|
Ghavami S, Yeganeh B, Stelmack GL, Kashani HH, Sharma P, Cunnington R, Rattan S, Bathe K, Klonisch T, Dixon IMC, Freed DH, Halayko AJ. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis 2012; 3:e330. [PMID: 22717585 PMCID: PMC3388233 DOI: 10.1038/cddis.2012.61] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
Abstract
3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) are cholesterol-lowering drugs that exert other cellular effects and underlie their beneficial health effects, including those associated with myocardial remodeling. We recently demonstrated that statins induces apoptosis and autophagy in human lung mesenchymal cells. Here, we extend our knowledge showing that statins simultaneously induces activation of the apoptosis, autophagy and the unfolded protein response (UPR) in primary human atrial fibroblasts (hATF). Thus we tested the degree to which coordination exists between signaling from mitochondria, endoplasmic reticulum and lysosomes during response to simvastatin exposure. Pharmacologic blockade of the activation of ER-dependent cysteine-dependent aspartate-directed protease (caspase)-4 and lysosomal cathepsin-B and -L significantly decreased simvastatin-induced cell death. Simvastatin altered total abundance and the mitochondrial fraction of proapoptotic and antiapoptotic proteins, while c-Jun N-terminal kinase/stress-activated protein kinase mediated effects on B-cell lymphoma 2 expression. Chemical inhibition of autophagy flux with bafilomycin-A1 augmented simvastatin-induced caspase activation, UPR and cell death. In mouse embryonic fibroblasts that are deficient in autophagy protein 5 and refractory to autophagy induction, caspase-7 and UPR were hyper-induced upon treatment with simvastatin. These data demonstrate that mevalonate cascade inhibition-induced death of hATF manifests from a complex mechanism involving co-regulation of apoptosis, autophagy and UPR. Furthermore, autophagy has a crucial role in determining the extent of ER stress, UPR and permissiveness of hATF to cell death induced by statins.
Collapse
Affiliation(s)
- S Ghavami
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - B Yeganeh
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - G L Stelmack
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - H H Kashani
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - P Sharma
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - R Cunnington
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Rattan
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - K Bathe
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - T Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - I M C Dixon
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - D H Freed
- Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - A J Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Permenter MG, Lewis JA, Jackson DA. Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line. PLoS One 2011; 6:e27730. [PMID: 22110744 PMCID: PMC3218028 DOI: 10.1371/journal.pone.0027730] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/22/2011] [Indexed: 12/28/2022] Open
Abstract
Many heavy metals, including nickel (Ni), cadmium (Cd), and chromium (Cr) are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells.
Collapse
|
43
|
Costa CZF, da Rosa SEA, de Camargo MM. The Unfolded Protein Response: How Protein Folding Became a Restrictive Aspect for Innate Immunity and B Lymphocytes1. Scand J Immunol 2011; 73:436-48. [DOI: 10.1111/j.1365-3083.2010.02504.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Bolt AM, Douglas RM, Klimecki WT. Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes. Toxicol Lett 2010; 199:153-9. [PMID: 20816728 DOI: 10.1016/j.toxlet.2010.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 01/05/2023]
Abstract
Chronic exposure to inorganic arsenic is associated with diverse, complex diseases, making the identification of the mechanism underlying arsenic-induced toxicity a challenge. An increasing body of literature from epidemiological and in vitro studies has demonstrated that arsenic is an immunotoxicant, but the mechanism driving arsenic-induced immunotoxicity is not well established. We have previously demonstrated that in human lymphoblastoid cell lines (LCLs), arsenic-induced cell death is strongly associated with the induction of autophagy. In this study we utilized genome-wide gene expression analysis and functional assays to characterize arsenic-induced effects in seven LCLs that were exposed to an environmentally relevant, minimally cytotoxic, concentration of arsenite (0.75 μM) over an eight-day time course. Arsenic exposure resulted in inhibition of cellular growth and induction of autophagy (measured by expansion of acidic vesicles) over the eight-day exposure duration. Gene expression analysis revealed that arsenic exposure increased global lysosomal gene expression, which was associated with increased functional activity of the lysosome protease, cathepsin D. The arsenic-induced expansion of the lysosomal compartment in LCL represents a novel target that may offer insight into the immunotoxic effects of arsenic.
Collapse
Affiliation(s)
- Alicia M Bolt
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
45
|
Binet F, Chiasson S, Girard D. Interaction between arsenic trioxide (ATO) and human neutrophils. Hum Exp Toxicol 2010; 30:416-24. [DOI: 10.1177/0960327110372645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cytotoxic effect of arsenic trioxide (ATO) is known to be mediated by its ability to induce cell apoptosis in a variety of cells, including neutrophils. More recently, we demonstrated that ATO induced several parameters involved in endoplasmic reticulum (ER) stress-induced neutrophil apoptosis but that caspase-4 was not involved. The aim of this study was to better understand how neutrophils are activated by ATO and to further demonstrate that ATO is an ER stressor. Human neutrophils were isolated from healthy blood donors and incubated in vitro in the presence or absence of ATO and several parameters were investigated. We found that ATO induced the expression of the proapoptotic GADD153 protein, a key player involved in ER stress-induced apoptosis, activated nuclear nuclear factor κB (NF-κB) DNA binding activities, and increased prostaglandine E2 (PGE2) production. Using an antibody array approach, we found that ATO increased the production of several cytokines, with interleukin 8 (IL-8) being the predominant one. We confirmed that ATO increased the production of IL-8 by enzyme-linked-immunosorbent assay (ELISA). Treatment with a caspase-4 inhibitor did not inhibit IL-8 production. The results of the present study further support the notion that ATO is an ER stressor and that, although its toxic effect is mediated by induction of apoptosis, this chemical also induced, in parallel, NF-κB activation, the production of PGE2 and several cytokines probably involved in other cell functions. Also, we conclude that the production of IL-8 is not induced by a caspase-4-dependent mechanism, suggesting that ATO-induced caspase-4 activation is involved in other as yet unidentified functions in human neutrophils.
Collapse
Affiliation(s)
- François Binet
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Sonia Chiasson
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, Canada,
| |
Collapse
|
46
|
Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils. Int Immunopharmacol 2010; 10:508-12. [PMID: 20138156 DOI: 10.1016/j.intimp.2010.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 11/20/2022]
Abstract
We recently reported that the endoplasmic reticulum (ER)-induced cell pathway of apoptosis is operational in human neutrophils and that some ER stressors can accelerate this process. Recent data suggest that arsenic trioxide (As(2)O(3) or ATO), may also act as an ER stressor. The aims of the present study were to elucidate if other ER stress-related events occur in ATO-induced neutrophils, and to determine the role of caspase-4 in the proapoptotic activity of ATO. We found that ATO induced ubiquitination of proteins, and increased calcium concentration and gene expression of calcineurin in neutrophils. In addition to caspase-4, activities of caspase-3, -8 and -9 were increased by ATO. The processing of caspase-4 was reversed by a caspase-8 inhibitor, indicating that caspase-4 activation requires the action of upstream initiator components, questioning on the role of caspase-4 in ATO-induced ER stress-mediated cell apoptosis. Using caspase-4 deficient THP-1 cells, we demonstrated that the proapoptotic effect of ATO was similar to that of control caspase-4-positive cells. We conclude that ATO is an ER stressor that can induce cell apoptosis by a mechanism which does not require caspase-4. In addition, we conclude that caspase-4 activation in ATO-induced neutrophils could be involved in functions other than apoptosis.
Collapse
|