1
|
Jang KB, Kim JH, Purvis JM, Chen J, Ren P, Vazquez-Anon M, Kim SW. Effects of mineral methionine hydroxy analog chelate in sow diets on epigenetic modification and growth of progeny. J Anim Sci 2020; 98:5897043. [PMID: 32841352 PMCID: PMC7507415 DOI: 10.1093/jas/skaa271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
The study was conducted to determine the effects of mineral methionine hydroxy analog chelate (MMHAC) partially replacing inorganic trace minerals in sow diets on epigenetic and transcriptional changes in the muscle and jejunum of progeny. The MMHAC is zinc (Zn), manganese (Mn), and copper (Cu) chelated with methionine hydroxy analog (Zn-, Mn-, and Cu-methionine hydroxy analog chelate [MHAC]). On day 35 of gestation, 60 pregnant sows were allotted to two dietary treatments in a randomized completed block design using parity as a block: 1) ITM: inorganic trace minerals with zinc sulfate (ZnSO4), manganese oxide (MnO), and copper sulfate (CuSO4) and 2) CTM: 50% of ITM was replaced with MMHAC (MINTREX trace minerals, Novus International Inc., St Charles, MO). Gestation and lactation diets were formulated to meet or exceed NRC requirements. On days 1 and 18 of lactation, milk samples from 16 sows per treatment were collected to measure immunoglobulins (immunoglobulin G, immunoglobulin A, and immunoglobulin M) and micromineral concentrations. Two pigs per litter were selected to collect blood to measure the concentration of immunoglobulins in the serum, and then euthanized to collect jejunal mucosa, jejunum tissues, and longissimus muscle to measure global deoxyribonucleic acid methylation, histone acetylation, cytokines, and jejunal histomorphology at birth and day 18 of lactation. Data were analyzed using Proc MIXED of SAS. Supplementation of MMHAC tended to decrease (P = 0.059) body weight (BW) loss of sows during lactation and tended to increase (P = 0.098) piglet BW on day 18 of lactation. Supplementation of MMHAC increased (P < 0.05) global histone acetylation and tended to decrease myogenic regulatory factor 4 messenger ribonucleic acid (mRNA; P = 0.068) and delta 4-desaturase sphingolipid1 (DEGS1) mRNA (P = 0.086) in longissimus muscle of piglets at birth. Supplementation of MMHAC decreased (P < 0.05) nuclear factor kappa B mRNA in the jejunum and DEGS1 mRNA in longissimus muscle and tended to decrease mucin-2 (MUC2) mRNA (P = 0.057) and transforming growth factor-beta 1 (TGF-β1) mRNA (P = 0.057) in the jejunum of piglets on day 18 of lactation. There were, however, no changes in the amounts of tumor necrosis factor-alpha, interleukin-8, TGF-β, MUC2, and myogenic factor 6 in the tissues by MMHAC. In conclusion, maternal supplementation of MMHAC could contribute to histone acetylation and programming in the fetus, which potentially regulates intestinal health and skeletal muscle development of piglets at birth and weaning, possibly leading to enhanced growth of their piglets.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Jong Hyuk Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | | | | | - Ping Ren
- Novus International, Inc., St. Charles, MO
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
2
|
The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun 2017; 8:1636. [PMID: 29158506 PMCID: PMC5696377 DOI: 10.1038/s41467-017-01829-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor involved in the regulation of multiple physiological and pathological cellular processes, including inflammation, cell survival, proliferation, and cancer cell metastasis. NF-κB is frequently hyperactivated in several cancers, including triple-negative breast cancer. Here we show that NF-κB activation in breast cancer cells depends on the presence of the CHORDC1 gene product Morgana, a previously unknown component of the IKK complex and essential for IκBα substrate recognition. Morgana silencing blocks metastasis formation in breast cancer mouse models and this phenotype is reverted by IκBα downregulation. High Morgana expression levels in cancer cells decrease recruitment of natural killer cells in the first phases of tumor growth and induce the expression of cytokines able to attract neutrophils in the primary tumor, as well as in the pre-metastatic lungs, fueling cancer metastasis. In accordance, high Morgana levels positively correlate with NF-κB target gene expression and poor prognosis in human patients. NF-κB regulates inflammation, cell survival, proliferation, and metastasis and is often hyperactivated in triple-negative breast cancer. Here the authors show that Morgana, a protein highly expressed in triple-negative breast cancers, drives NF-kB activation to promote metastasis and neutrophil recruitment.
Collapse
|
3
|
Maubach G, Schmädicke AC, Naumann M. NEMO Links Nuclear Factor-κB to Human Diseases. Trends Mol Med 2017; 23:1138-1155. [PMID: 29128367 DOI: 10.1016/j.molmed.2017.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
The nuclear factor (NF)-κB essential modulator (NEMO) is a key regulator in NF-κB-mediated signaling. By transmitting extracellular or intracellular signals, NEMO can control NF-κB-regulated genes. NEMO dysfunction is associated with inherited diseases such as incontinentia pigmenti (IP), ectodermal dysplasia, anhidrotic, with immunodeficiency (EDA-ID), and some cancers. We focus on molecular studies, human case reports, and mouse models emphasizing the significance of NEMO molecular interactions and modifications in health and diseases. This knowledge opens new opportunities to engineer suitable drugs that may putatively target precise NEMO functions attributable to various diseases, while leaving other functions intact, and eliminating cytotoxicity. Indeed, with the advent of novel gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9, treating some inherited diseases may in the long run, become a reality.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Ann-Christin Schmädicke
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
4
|
Jiang J, Luo Y, Qin W, Ma H, Li Q, Zhan J, Zhang Y. Electroacupuncture Suppresses the NF-κB Signaling Pathway by Upregulating Cylindromatosis to Alleviate Inflammatory Injury in Cerebral Ischemia/Reperfusion Rats. Front Mol Neurosci 2017; 10:363. [PMID: 29163038 PMCID: PMC5681846 DOI: 10.3389/fnmol.2017.00363] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Electroacupuncture (EA) may reduce inflammatory injury by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway activation after ischemic stroke. Thus, we explored temporal and spatial expression of cylindromatosis (CYLD), a negative feedback inhibitor of the NF-κB signaling pathway, to learn whether CYLD is essential for EA and reduction of inflammatory injury after focal cerebral ischemia/reperfusion. A middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in male Sprague-Dawley (SD) rats and CYLD gene interference was used to investigate a potential role of neuroprotection. Rats were treated with EA (1 mA, 20 Hz for 5 min, 2 Hz for 30 min) at Baihui (GV 20), Hegu (LI 4) and Taichong (LR 3) acupoints, once daily, beginning 2 h after focal cerebral ischemia. Microglial activation and co-expression of CYLD and NF-κB were measured with immunofluorescence. Neuronal CX3CL1 expression was assayed to investigate the role of EA in the interaction between neurons and microglia via upregulation of CYLD. Then, CYLD, NF-κB p65 and p-IκBα protein expression was measured with Western blot. CYLD was mainly expressed in neurons of the peri-ischemic area after MCAO/R in rats and EA upregulated CYLD mRNA and protein from 24 to 72 h after focal cerebral ischemia/reperfusion. In addition, CYLD overexpression was positively correlated to neurobehavior and negatively connected with infarct volume and pro-inflammatory cytokines (TNF-α and IL-1β). Upregulation of CYLD by EA prevented NF-κB nuclear translocation and inhibition of neuronal CX3CL1 expression, which repressed activation of microglia. Finally, CYLD silencing significantly weakened suppression of the NF-κB signaling pathway by EA. In conclusion, upregulation of CYLD may underlie how EA could alleviate inflammatory injury after focal cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| | - Wenyi Qin
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| | - Qiongli Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| | - Jian Zhan
- Department of Neurology, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Kim EK, Choi EJ. SMN1 functions as a novel inhibitor for TRAF6-mediated NF-κB signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:760-770. [DOI: 10.1016/j.bbamcr.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/30/2022]
|
6
|
Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, Verkman AS. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun 2015; 6:7454. [PMID: 26100668 DOI: 10.1038/ncomms8454] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/10/2015] [Indexed: 12/23/2022] Open
Abstract
Aquaporin 3 (AQP3), a water/glycerol channel protein, has been found to transport hydrogen peroxide (H2O2). Here, we show that H2O2, imported via AQP3, is involved in nuclear factor-κB (NF-κB) signalling in keratinocytes and in the pathogenesis of psoriasis. IL-23-mediated induction of psoriasis is reduced in AQP3 knockout mice (AQP3(-/-)), and is accompanied by impaired NF-κB activation and intracellular H2O2 accumulation. In primary keratinocyte cultures, cellular import of H2O2 produced by membrane NADPH oxidase 2 (Nox2) in response to TNF-α is facilitated by AQP3 and required for NF-κB activation by regulation of protein phosphatase 2A. As AQP3 associates with Nox2, we propose that this interplay constitutes H2O2-mediated signalling in response to TNF-α stimulation. Collectively, these data indicate that AQP3-facilitated H2O2 transport is required for NF-κB activation in keratinocytes in the development of psoriasis.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroki Satooka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sachiko Watanabe
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tetsuya Honda
- 1] Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan [2] Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiki Miyachi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takeshi Watanabe
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - A S Verkman
- Department of Medicine and Physiology, University of California, San Francisco, California 94143, USA
| |
Collapse
|
7
|
Zhou L, Yeo AT, Ballarano C, Weber U, Allen KN, Gilmore TD, Whitty A. Disulfide-mediated stabilization of the IκB kinase binding domain of NF-κB essential modulator (NEMO). Biochemistry 2014; 53:7929-44. [PMID: 25400026 PMCID: PMC4278678 DOI: 10.1021/bi500920n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Human NEMO (NF-κB
essential modulator) is a 419 residue scaffolding
protein that, together with catalytic subunits IKKα and IKKβ,
forms the IκB kinase (IKK) complex, a key regulator of NF-κB
pathway signaling. NEMO is an elongated homodimer comprising mostly
α-helix. It has been shown that a NEMO fragment spanning residues
44–111, which contains the IKKα/β binding site,
is structurally disordered in the absence of bound IKKβ. Herein
we show that enforcing dimerization of NEMO1–120 or NEMO44–111 constructs through introduction
of one or two interchain disulfide bonds, through oxidation of the
native Cys54 residue and/or at position 107 through a Leu107Cys mutation,
induces a stable α-helical coiled-coil structure that is preorganized
to bind IKKβ with high affinity. Chemical and thermal denaturation
studies showed that, in the context of a covalent dimer, the ordered
structure was stabilized relative to the denatured state by up to
3 kcal/mol. A full-length NEMO-L107C protein formed covalent dimers
upon treatment of mammalian cells with H2O2.
Furthermore, NEMO-L107C bound endogenous IKKβ in A293T cells,
reconstituted TNF-induced NF-κB signaling in NEMO-deficient
cells, and interacted with TRAF6. Our results indicate that the IKKβ
binding domain of NEMO possesses an ordered structure in the unbound
state, provided that it is constrained within a dimer as is the case
in the constitutively dimeric full-length NEMO protein. The stability
of the NEMO coiled coil is maintained by strong interhelix interactions
in the region centered on residue 54. The disulfide-linked constructs
we describe herein may be useful for crystallization of NEMO’s
IKKβ binding domain in the absence of bound IKKβ, thereby
facilitating the structural characterization of small-molecule inhibitors.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemistry and ‡Department of Biology, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | |
Collapse
|
8
|
Amaya M, Keck F, Bailey C, Narayanan A. The role of the IKK complex in viral infections. Pathog Dis 2014; 72:32-44. [PMID: 25082354 PMCID: PMC7108545 DOI: 10.1111/2049-632x.12210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023] Open
Abstract
The NF‐κB signal transduction pathway is a critical regulator of multiple cellular functions that ultimately shift the balance between cell survival and death. The cascade is activated by many intrinsic and extrinsic stimuli, which is transduced via adaptor proteins to phosphorylate the IκB kinase (IKK) complex, which in turn phosphorylates the inhibitory IκBα protein to undergo proteasomal degradation and sets in motion nuclear events in response to the initial stimulus. Viruses are important modulators of the NF‐κB cascade and have evolved multiple mechanisms to activate or inhibit this pathway in a manner conducive to viral multiplication and establishment of a productive infectious cycle. This is a subject of extensive research by multiple laboratories whereby unraveling the interactions between specific viral components and members of the NF‐κB signal transduction cascade can shed unique perspectives on infection associated pathogenesis and novel therapeutic targets. In this review, we highlight the interactions between components of the IKK complex and multiple RNA and DNA viruses with the emphasis on mechanisms by which the interaction feeds the infection. Understanding these interactions will shed light on the exploitative capabilities of viruses to maintain an environment favorable for a productive infection.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | | | | |
Collapse
|
9
|
Amaya M, Voss K, Sampey G, Senina S, de la Fuente C, Mueller C, Calvert V, Kehn-Hall K, Carpenter C, Kashanchi F, Bailey C, Mogelsvang S, Petricoin E, Narayanan A. The role of IKKβ in Venezuelan equine encephalitis virus infection. PLoS One 2014; 9:e86745. [PMID: 24586253 PMCID: PMC3929299 DOI: 10.1371/journal.pone.0086745] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/13/2013] [Indexed: 01/13/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) belongs to the genus Alphavirus, family Togaviridae. VEEV infection is characterized by extensive inflammation and studies from other laboratories implicated an involvement of the NF-κB cascade in the in vivo pathology. Initial studies indicated that at early time points of VEEV infection, the NF-κB complex was activated in cells infected with the TC-83 strain of VEEV. One upstream kinase that contributes to the phosphorylation of p65 is the IKKβ component of the IKK complex. Our previous studies with Rift valley fever virus, which exhibited early activation of the NF-κB cascade in infected cells, had indicated that the IKKβ component underwent macromolecular reorganization to form a novel low molecular weight form unique to infected cells. This prompted us to investigate if the IKK complex undergoes a comparable macromolecular reorganization in VEEV infection. Size-fractionated VEEV infected cell extracts indicated a macromolecular reorganization of IKKβ in VEEV infected cells that resulted in formation of lower molecular weight complexes. Well-documented inhibitors of IKKβ function, BAY-11-7082, BAY-11-7085 and IKK2 compound IV, were employed to determine whether IKKβ function was required for the production of infectious progeny virus. A decrease in infectious viral particles and viral RNA copies was observed with inhibitor treatment in the attenuated and virulent strains of VEEV infection. In order to further validate the requirement of IKKβ for VEEV replication, we over-expressed IKKβ in cells and observed an increase in viral titers. In contrast, studies carried out using IKKβ(-/-) cells demonstrated a decrease in VEEV replication. In vivo studies demonstrated that inhibitor treatment of TC-83 infected mice increased their survival. Finally, proteomics studies have revealed that IKKβ may interact with the viral protein nsP3. In conclusion, our studies have revealed that the host IKKβ protein may be critically involved in VEEV replication.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Kelsey Voss
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Gavin Sampey
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Svetlana Senina
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Claudius Mueller
- Center for Applied Proteomics and Personalized Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Valerie Calvert
- Center for Applied Proteomics and Personalized Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Calvin Carpenter
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Fatah Kashanchi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | | | - Emanuel Petricoin
- Center for Applied Proteomics and Personalized Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm 2012; 2012:979105. [PMID: 23304064 PMCID: PMC3523167 DOI: 10.1155/2012/979105] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/03/2012] [Accepted: 11/07/2012] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a complex biological response of tissues to harmful stimuli such as pathogens, cell damage, or irritants. Inflammation is considered to be a major cause of most chronic diseases, especially in more than 100 types of inflammatory diseases which include Alzheimer's disease, rheumatoid arthritis, asthma, atherosclerosis, Crohn's disease, colitis, dermatitis, hepatitis, and Parkinson's disease. Recently, an increasing number of studies have focused on inflammatory diseases. TBK1 is a serine/threonine-protein kinase which regulates antiviral defense, host-virus interaction, and immunity. It is ubiquitously expressed in mouse stomach, colon, thymus, and liver. Interestingly, high levels of active TBK1 have also been found to be associated with inflammatory diseases, indicating that TBK1 is closely related to inflammatory responses. Even though relatively few studies have addressed the functional roles of TBK1 relating to inflammation, this paper discusses some recent findings that support the critical role of TBK1 in inflammatory diseases and underlie the necessity of trials to develop useful remedies or therapeutics that target TBK1 for the treatment of inflammatory diseases.
Collapse
|
11
|
Abstract
Central to NF-κB signaling pathways is IKKγ/NEMO, a regulatory subunit of the cytoplasmic IκB kinase (IKK) complex, which undergoes various posttranslational modifications, specifically phosphorylation, to regulate its function. Furthermore, Kaposi’s sarcoma-associated herpesvirus (KSHV) FADD-like interleukin-1β (IL-1β) converting enzyme (FLICE) inhibitory protein (vFLIP) activates the NF-κB signaling pathway by directly interacting with IKKγ/NEMO. However, the exact functions of IKKγ/NEMO phosphorylation and its KvFLIP interaction in NF-κB activation remain elusive. Here, we report two novel phosphorylation sites of IKKγ/NEMO and their negative effect on the IKKγ/NEMO-mediated NF-κB signaling pathway. First, the Src family protein tyrosine kinases (SF-PTKs), including Src, Fyn, Lyn, and Fgr, interact with and phosphorylate tyrosine residue 374 (Y374) of IKKγ/NEMO. Mutation of the Y374 residue to phenylalanine (Y374F) specifically abolished SF-PTK-mediated tyrosine phosphorylation, leading to increased tumor necrosis factor alpha (TNF-α)-induced NF-κB activity. Moreover, our mass spectrometry analysis found that the serine 377 residue (S377) of IKKγ/NEMO underwent robust phosphorylation upon KvFLIP expression. Replacement of the IKKγ/NEMO S377 residue by alanine (S377A) or glutamic acid (S377E) resulted in a significant increase or decrease of NF-κB activity and TNF-α-mediated IL-6 cytokine production, respectively. Our study thus demonstrates that the Y374 or S377 residue located at the C-terminal proline-rich domain of human IKKγ/NEMO undergoes phosphorylation upon TNF-α treatment or KvFLIP expression, respectively, resulting in the suppression of IKKγ/NEMO activity to induce NF-κB activation. This study suggests the potential phosphorylation-mediated feedback negative regulation of IKKγ/NEMO activity in the NF-κB signaling pathway. Since unchecked regulation of NF-κB has been linked to uncontrolled proliferation and cell death, the downregulation of the NF-κB signaling pathway is as important as its activation. Specifically, the phosphorylation-mediated modification of IKKγ/NEMO is a critical regulatory mechanism of NF-κB activity. Here, we report two novel phosphorylations of IKKγ/NEMO and their negative effects on the NF-κB signaling pathway. First, the Src family protein tyrosine kinase interacts with and phosphorylates tyrosine residue 374 of IKKγ/NEMO, suppressing tumor necrosis factor alpha (TNF-α)-induced NF-κB activity. Additionally, Kaposi’s sarcoma-associated herpesvirus (KSHV) FADD-like interleukin-1β (IL-1β) converting enzyme (FLICE) inhibitory protein (KvFLIP) expression induces a robust phosphorylation of the serine 377 residue of IKKγ/NEMO, resulting in a significant decrease of NF-κB activity. Our study thus demonstrates that the Y374 or S377 residue of IKKγ/NEMO undergoes phosphorylation upon TNF-α treatment or KvFLIP expression, respectively, resulting in the suppression of IKKγ/NEMO activity to induce NF-κB activation. This also suggests the potential phosphorylation-mediated feedback negative regulation of IKKγ/NEMO activity in the NF-κB signaling pathway.
Collapse
|
12
|
Wang K, Diao LH, Gong Y, Liu X, Li Y. NEMO differentially regulates TCR and TNF-α induced NF-κB pathways and has an inhibitory role in TCR-induced NF-κB activation. Cell Signal 2012; 24:1556-64. [PMID: 22513115 DOI: 10.1016/j.cellsig.2012.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
Abstract
NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex, is an essential adaptor both for inflammation stimuli and TCR-induced NF-κB activation. However, the exact mechanism of its function has not been fully understood. Here, we report that knockdown of NEMO by RNA interference in Jurkat E6.1 cells enhanced TCR-induced NF-κB report gene activity and IL-2 production by promotion of IκBα degradation and p65 nuclear translocation, whereas inhibited TNF-α and LPS-induced IκBα degradation without influencing the phosphorylation of MAPKs. In human primary T and Jurkat E6.1 cells, both CD3/CD28 and PMA/Ionomycin induced NF-κB activation showed a para-curve correlation with the dosage of small interfering RNA targeting NEMO (siNEMO): the NF-κB report gene activity was increased along with ascending doses of transfected siNEMO and reached the highest activity when knockdown about 70% of NEMO, then turned to decline and gradually be blocked once almost thoroughly knockdown of NEMO. Meanwhile, TNF-α induced NF-κB was always inhibited no matter how much NEMO was knockdown. Subcellular fractionation results suggested that upon CD3/CD28 costimulation, NEMO and IKKβ may not cotranslocate to cytoskeleton fraction as a conventional NEMO/IKK complex with a static stoichiometric ratio, instead the ratio of NEMO: IKKβ continuously shift from high to low. Depletion of NEMO accelerated TCR-induced cytoskeleton translocation of IKKβ. Altogether, this study suggests that NEMO may function as a rheostat exerting a negative action on TCR-induced NF-κB activation and differentially regulates TNF-α and TCR-induced NF-κB pathways.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
13
|
Paimela T, Hyttinen JMT, Viiri J, Ryhänen T, Karjalainen RO, Salminen A, Kaarniranta K. Celastrol regulates innate immunity response via NF-κB and Hsp70 in human retinal pigment epithelial cells. Pharmacol Res 2011; 64:501-8. [PMID: 21683142 DOI: 10.1016/j.phrs.2011.05.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 12/22/2022]
Abstract
Elevated nuclear factor kappa B (NF-κB) activity and interleukin-6 (IL-6) secretion participates in the pathology of several age and inflammatory-related diseases, including age-related macular degeneration (AMD), in which retinal pigment epithelial cells are the key target. Recent findings reveal that heat shock protein 70 (Hsp70) may affect regulation of NF-κB. In the current study, effects of Hsp70 expression on NF-κB RelA/p65 activity were evaluated in human retinal pigment epithelial cells (ARPE-19) by using celastrol, a novel anti-inflammatory compound. Anti-inflammatory properties of celastrol were determined by measuring expression levels of IL-6 and endogenous NF-κB levels during lipopolysaccharide (LPS) exposure by using enzyme-linked immunosorbent assays (ELISA). Cell viability was measured by MTT and LDH assay, and Hsp70 expression levels were analyzed by Western blotting. ARPE-19 cells were transfected with hsp70 small interfering RNA (siRNA) in order to attenuate Hsp70 expression and activity of NF-κB RelA/p65 was measured using NF-κB consensus bound ELISA. Simultaneous exposures to LPS and celastrol reduced IL-6 expression levels as well as activity of phosphorylated NF-κB at serine 536 (Ser536) in ARPE-19 cells when compared to LPS exposure alone. In addition, inhibition of NF-κB RelA/p65 activity by celastrol was attenuated when Hsp70 response was silenced by siRNA. Favorable anti-inflammatory concentrations of celastrol showed no signs of cytotoxic response. Our findings reveal that celastrol is a novel plant compound which suppresses innate immunity response in human retinal pigment epithelial cells via NF-κB and Hsp70 regulation, and that Hsp70 is a critical regulator of NF-κB.
Collapse
Affiliation(s)
- Tuomas Paimela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
14
|
Romano S, Mallardo M, Romano MF. FKBP51 and the NF-κB regulatory pathway in cancer. Curr Opin Pharmacol 2011; 11:288-93. [PMID: 21565553 DOI: 10.1016/j.coph.2011.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/18/2011] [Indexed: 12/21/2022]
Abstract
Constitutive activation of NF-κB occurs in a significant percentage of human cancers. Genetic abnormalities of tumors often enhance normal NF-κB signaling. Chronic inflammation is also associated with constitutive NF-κB activation and increases the risk of cancer. Aberrant NF-κB activation favors cellular transformation, sustains cancer survival, and contributes to tumor invasion. Strategies to inhibit NF-κB represent a promising therapeutic option against cancer. In the last decade, several studies point to the large immunophilin FKBP51 as an important element for the control of NF-κB activation in human neoplasia. This article is an overview of the causes of aberrant NF-κB regulation in cancer and highlights recent papers that implicate FKBP51 in such deregulation.
Collapse
Affiliation(s)
- Simona Romano
- Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy.
| | | | | |
Collapse
|
15
|
Tsikitis M, Acosta-Alvear D, Blais A, Campos EI, Lane WS, Sánchez I, Dynlacht BD. Traf7, a MyoD1 transcriptional target, regulates nuclear factor-κB activity during myogenesis. EMBO Rep 2010; 11:969-76. [PMID: 20948544 DOI: 10.1038/embor.2010.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/27/2010] [Accepted: 09/02/2010] [Indexed: 11/09/2022] Open
Abstract
We have identified the E3 ligase Traf7 as a direct MyoD1 target and show that cell cycle exit-an early event in muscle differentiation-is linked to decreased Traf7 expression. Depletion of Traf7 accelerates myogenesis, in part through downregulation of nuclear factor-κB (NF-κB) activity. We used a proteomic screen to identify NEMO, the NF-κB essential modulator, as a Traf7-interacting protein. Finally, we show that ubiquitylation of NF-κB essential modulator is regulated exclusively by Traf7 activity in myoblasts. Our results suggest a new mechanism by which MyoD1 function is coupled to NF-κB activity through Traf7, regulating the balance between cell cycle progression and differentiation during myogenesis.
Collapse
Affiliation(s)
- Mary Tsikitis
- Department of Pathology, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Lee HJ, Joo M, Abdolrasulnia R, Young DG, Choi I, Ware LB, Blackwell TS, Christman BW. Peptidylarginine deiminase 2 suppresses inhibitory {kappa}B kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Biol Chem 2010; 285:39655-62. [PMID: 20937835 DOI: 10.1074/jbc.m110.170290] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Peptidylarginine deiminases (PADs) are enzymes that convert arginine to citrulline in proteins. In this study, we examined PAD-mediated citrullination and its effect on pro-inflammatory activity in the macrophage cell line RAW 264.7. Citrullination of 45-65-kDa proteins was induced when cells were treated with lipopolysaccharide (LPS; 1 μg/ml). Protein citrullination was suppressed by the intracellular calcium chelator BAPTA/AM (30 μM). LPS treatment up-regulated COX-2 levels in cells. Interestingly, overexpressing PAD2 reduced LPS-mediated COX-2 up-regulation by 50%. PAD2 overexpression also reduced NF-κB activity, determined by NF-κB-driven luciferase activity. The effect of PAD2 on NF-κB activity was further examined by using HEK 293 cells transfected with NF-κB luciferase, IκB β/γ kinase (IKKβ/γ) subunits, and PAD2. IKKβ increased NF-κB activity, but this increase was markedly suppressed when PAD2 was present in cells. IKKβ-mediated NF-κB activation was further enhanced by IKKγ in the presence of calcium ionophore A23187. However, this stimulatory effect of IKKβ/γ was abolished by PAD2. Coimmunoprecipitation of cell lysates showed that IKKγ and PAD2 can coimmunoprecipitate in the presence of the Ca(2+) ionophore. IKKγ coimmunoprecipitated truncation mutants, PAD2(1-385) and PAD2(355-672). The substitution of Gln-358 (a putative ligand for Ca(2+) binding) with an Ala abolished coimmunoprecipitation. Conversely, PAD2 coimmunoprecipitated truncation mutants IKKγ(1-196) and IKKγ(197-419). In other experiments, treating RAW 264.7 cells with LPS induced citrullination in the immunoprecipitates of IKKγ. In vitro citrullination assay showed that incubation of purified PAD2 and IKKγ proteins in the presence of Ca(2+) citrullinated IKKγ. These results demonstrate that PAD2 interacts with IKKγ and suppresses NF-κB activity.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|