1
|
Qu HQ, Wang JF, Rosa-Campos A, Hakonarson H, Feldman AM. The Role of BAG3 Protein Interactions in Cardiomyopathies. Int J Mol Sci 2024; 25:11308. [PMID: 39457090 DOI: 10.3390/ijms252011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford-Burnham-Presby Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| | - Arthur M Feldman
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Pattoo TS, Kim SA, Khanday FA. BAG3 Mediated Down-regulation in Expression of p66shc has Ramifications on Cellular Proliferation, Apoptosis and Metastasis. Cell Biochem Biophys 2024:10.1007/s12013-024-01460-0. [PMID: 39127862 DOI: 10.1007/s12013-024-01460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Redundancy of cancer cells towards ROS-mediated apoptosis despite expressing proline-rich p66shc abundantly needs to be investigated properly. P66shc, an adapter protein, is indispensable both for initiating ROS-mediated apoptosis and subsequent ROS generation through Rac-1 activation. P66shc gets phosphorylated at Ser-36 that triggers its translocation to the mitochondria and subsequent release of Cytochrome c in response to oxidative stress. It also aids in Rac-1 dependent NADPH oxidase activation, leading to the generation of cytosolic ROS that can perform diverse functions depending on its concentration. This study has identified the multi-faceted anti-apoptotic protein BAG3 as an interacting partner of p66shc. BAG3 utilizes its WW domain to bind to the proline-rich motifs of p66shc. BAG3, through its WW domain, antagonizes p66shc mediated apoptosis, by inhibiting both the expression and phosphorylation of p66shc under normal and oxidative stress conditions. This results in significant protection against ROS-mediated apoptosis. BAG3-mediated reduction in p66shc expression increases cell proliferation and metastasis. The increase in cell proliferation is attributed to the impact of BAG3 on Rac-1 activation and ROS production under normal conditions. This study has unraveled an interactor of p66shc that enhances pro-survival role while simultaneously suppressing its apoptotic role.
Collapse
Affiliation(s)
| | - Soo-A Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju, Republic of Korea
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu & Kashmir, India.
| |
Collapse
|
3
|
Pattoo TS, Khanday FA. Corelating the molecular structure of BAG3 to its oncogenic role. Cell Biol Int 2024; 48:1080-1096. [PMID: 38924608 DOI: 10.1002/cbin.12199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BAG3 is a multifaceted protein characterised by having WW domain, PXXP motif and BAG domain. This protein gets upregulated during malignant transformation of cells and has been associated with poorer survival of patients. Procancerous activity of BAG domain of BAG3 is well documented. BAG domain interacts with ATPase domain of Hsp-70 preventing protein delivery to proteasome. This impediment results in enhanced cell survival, proliferation, resistance to apoptosis and chemoresistance. Besides BAG domain other two domains/motifs of BAG3 are under research vigilance to explore its further oncogenic role. This review summarises the role of different structural determinants of BAG3 in elevating oncogenesis. Based on the already existing findings, more interacting partners of BAG3 are anticipated. The anticipated partners of BAG3 can shed a wealth of information into the mechanistic insights of its proproliferative role. Proper insights into the mechanistic details adopted by BAG3 to curtail/elaborate activity of anticipated interacting partners can serve as a potent target for development of therapeutic interventions.
Collapse
Affiliation(s)
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
4
|
Gong B, Huang Y, Wang Z, Wan B, Zeng Y, Lv C. BAG3 as a novel prognostic biomarker in kidney renal clear cell carcinoma correlating with immune infiltrates. Eur J Med Res 2024; 29:93. [PMID: 38297320 PMCID: PMC10832118 DOI: 10.1186/s40001-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
PURPOSE BCL-2-associated athanogene 3 (BAG3) is an anti-apoptotic protein that plays an essential role in the onset and progression of multiple cancer types. However, the clinical significance of BAG3 in kidney renal clear cell carcinoma (KIRC) remains unclear. METHODS Using Tumor IMmune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) database, we explored the expression, prognostic value, and clinical correlations of BAG3 in KIRC. In addition, immunohistochemistry (IHC) of HKH cohort further validated the expression of BAG3 in KIRC and its impact on prognosis. Gene Set Cancer Analysis (GSCA) was utilized to scrutinize the prognostic value of BAG3 methylation. Gene Ontology (GO) term analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA) were used to identify potential biological functions of BAG3 in KIRC. Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between BAG3 expression and immune cell infiltration. RESULTS BAG3 mRNA expression and protein expression were significantly downregulated in KIRC tissues compared to normal kidney tissues, associated with adverse clinical-pathological factors and poor clinical prognosis. Multivariate Cox regression analysis indicated that low expression of BAG3 was an independent prognostic factor in KIRC patients. GSEA analysis showed that BAG3 is mainly involved in DNA methylation and the immune-related pathways in KIRC. In addition, the expression of BAG3 is closely related to immune cell infiltration and immune cell marker set. CONCLUSION BAG3 might be a potential therapeutic target and valuable prognostic biomarker of KIRC and is closely related to immune cell infiltration.
Collapse
Affiliation(s)
- Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yuan Huang
- Department of Neurology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Zhenting Wang
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China.
| |
Collapse
|
5
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
6
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
7
|
Qu H, Feldman AM, Hakonarson H. Genetics of BAG3: A Paradigm for Developing Precision Therapies for Dilated Cardiomyopathies. J Am Heart Assoc 2022; 11:e027373. [PMID: 36382946 PMCID: PMC9851466 DOI: 10.1161/jaha.122.027373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
Nonischemic dilated cardiomyopathy is a common form of heart muscle disease in which genetic factors play a critical etiological role. In this regard, both rare disease-causing mutations and common disease-susceptible variants, in the Bcl-2-associated athanogene 3 (BAG3) gene have been reported, highlighting the critical role of BAG3 in cardiomyocytes and in the development of dilated cardiomyopathy. The phenotypic effects of the BAG3 mutations help investigators understand the structure and function of the BAG3 gene. Indeed, we report herein that all of the known pathogenic/likely pathogenic variants affect at least 1 of 3 protein functional domains, ie, the WW domain, the second IPV (Ile-Pro-Val) domain, or the BAG domain, whereas none of the missense nontruncating pathogenic/likely pathogenic variants affect the proline-rich repeat (PXXP) domain. A common variant, p.Cys151Arg, associated with reduced susceptibility to dilated cardiomyopathy demonstrated a significant difference in allele frequencies among diverse human populations, suggesting evolutionary selective pressure. As BAG3-related therapies for heart failure move from the laboratory to the clinic, the ability to provide precision medicine will depend in large part on having a thorough understanding of the potential effects of both common and uncommon genetic variants on these target proteins. The current review article provides a roadmap that investigators can utilize to determine the potential interactions between a patient's genotype, their phenotype, and their response to therapeutic interventions with both gene delivery and small molecules.
Collapse
Affiliation(s)
- Hui‐Qi Qu
- The Center for Applied Genomics, Children’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Arthur M. Feldman
- Department of Medicine, Division of CardiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
- The Center for Neurovirology and Gene EditingThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of PhiladelphiaPhiladelphiaPA
- Department of Pediatrics, The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
- Division of Human GeneticsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
- Division of Pulmonary MedicineChildren’s Hospital of PhiladelphiaPhiladelphiaPA
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| |
Collapse
|
8
|
Hsp70–Bag3 Module Regulates Macrophage Motility and Tumor Infiltration via Transcription Factor LITAF and CSF1. Cancers (Basel) 2022; 14:cancers14174168. [PMID: 36077705 PMCID: PMC9454964 DOI: 10.3390/cancers14174168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Patients’ normal cells, such as lymphocytes, fibroblasts, or macrophages, can either suppress or facilitate tumor growth. Macrophages can infiltrate tumors and secrete molecules that enhance the proliferation of cancer cells and their invasion into neighboring tissues and blood. Here, we investigated the mechanism of action of a novel small molecule that suppresses the infiltration of macrophages into tumors and demonstrates potent anticancer activity. We identified the entire pathway that links the intracellular protein Hsp70, which is inhibited by this small molecule, with the macrophage motility system. This study will lay the basis for a novel approach to cancer treatment via targeting tumor-associated macrophages. Abstract The molecular chaperone Hsp70 has been implicated in multiple stages of cancer development. In these processes, a co-chaperone Bag3 links Hsp70 with signaling pathways that control cancer development. Recently, we showed that besides affecting cancer cells, Hsp70 can also regulate the motility of macrophages and their tumor infiltration. However, the mechanisms of these effects have not been explored. Here, we demonstrated that the Hsp70-bound co-chaperone Bag3 associates with a transcription factor LITAF that can regulate the expression of inflammatory cytokines and chemokines in macrophages. Via this interaction, the Hsp70–Bag3 complex regulates expression levels of LITAF by controlling its proteasome-dependent and chaperone-mediated autophagy-dependent degradation. In turn, LITAF regulates the expression of the major chemokine CSF1, and adding this chemokine to the culture medium reversed the effects of Bag3 or LITAF silencing on the macrophage motility. Together, these findings uncover the Hsp70–Bag3–LITAF–CSF1 pathway that controls macrophage motility and tumor infiltration.
Collapse
|
9
|
Damiani V, Cufaro MC, Fucito M, Dufrusine B, Rossi C, Del Boccio P, Federici L, Turco MC, Sallese M, Pieragostino D, De Laurenzi V. Proteomics Approach Highlights Early Changes in Human Fibroblasts-Pancreatic Ductal Adenocarcinoma Cells Crosstalk. Cells 2022; 11:1160. [PMID: 35406724 PMCID: PMC8997741 DOI: 10.3390/cells11071160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality worldwide. Non-specific symptoms, lack of biomarkers in the early stages, and drug resistance due to the presence of a dense fibrous stroma all contribute to the poor outcome of this disease. The extracellular matrix secreted by activated fibroblasts contributes to the desmoplastic tumor microenvironment formation. Given the importance of fibroblast activation in PDAC pathology, it is critical to recognize the mechanisms involved in the transformation of normal fibroblasts in the early stages of tumorigenesis. To this aim, we first identified the proteins released from the pancreatic cancer cell line MIA-PaCa2 by proteomic analysis of their conditioned medium (CM). Second, normal fibroblasts were treated with MIA-PaCa2 CM for 24 h and 48 h and their proteostatic changes were detected by proteomics. Pathway analysis indicated that treated fibroblasts undergo changes compatible with the activation of migration, vasculogenesis, cellular homeostasis and metabolism of amino acids and reduced apoptosis. These biological activities are possibly regulated by ITGB3 and TGFB1/2 followed by SMAD3, STAT3 and BAG3 activation. In conclusion, this study sheds light on the crosstalk between PDAC cells and associated fibroblasts. Data are available via ProteomeXchange with identifier PXD030974.
Collapse
Affiliation(s)
- Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurine Fucito
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Claudia Rossi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy;
- R&D Division, BIOUNIVERSA s.r.l., 84081 Baronissi, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| |
Collapse
|
10
|
Liang Z, Zhang S, Zou Z, Li J, Wu R, Xia L, Shi G, Cai J, Tang J, Jian J. Functional characterization of BAG3 in orange-spotted grouper (Epinephelus coioides) during viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:465-475. [PMID: 35218970 DOI: 10.1016/j.fsi.2022.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Bcl-2-associated athanogene 3 (BAG3) is a cochaperone protein that interacts with Bcl-2 and mediate cell death. However, little is known about the roles of fish BAG3 during viral infection. In this study, we characterized a BAG3 homolog from orange-spotted grouper (Epinephelus coioides) (EcBAG3) and investigated its roles during viral infection. The EcBAG3 protein encoded 579 amino acids with typical WW, PXXP and BAG domains, which shared high identities with reported fish BAG3. Quantitative real-time PCR (qRT-PCR) analysis revealed that EcBAG3 was highly expressed in brain and heart. And the expression of EcBAG3 was significantly up-regulated after red-spotted grouper nervous necrosis virus (RGNNV) stimulation in vitro. EcBAG3 overexpression could promoted the expression of viral genes (coat protein (CP) and RNA-dependent RNA polymerase (RdRp)), which was enhanced by co-transfection with Hsp70 and Hsp22. Also, EcBAG3 overexpression up-regulated the expression of LC3-Ⅱ and down-regulated the expression of Bax and BNIP3, the IFN- (IRF1, IRF3, IRF7, IFP35, Mx1) or inflammation-related (IL-1β and TNFα) factors, as well as decreased the activities of NF-κB, ISRE and IFN-3. While knockdown of EcBAG3 decreased the transcripts of RGNNV CP gene and RdRp gene. Further studies showed that EcBAG3 knockdown impaired the expression level of autophagy factor LC3-Ⅱ, and promoted the expression level of Bax and BNIP3, inflammatory factors and interferon factors. These data indicate that EcBAG3 can affect viral infection through modulating virus-induced cell death, regulating the expression of IFN- and inflammation-related factors, which will be helpful to further explore the immune response of fish during viral infection.
Collapse
Affiliation(s)
- Zhenyu Liang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Shuping Zhang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Zihong Zou
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Jinze Li
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Rimin Wu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China
| | - Liqun Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Gang Shi
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Guangxi Key Lab for Marine Natural Products and Combinational Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Centre, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
11
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
12
|
Günay KA, Silver JS, Chang TL, Bednarski OJ, Bannister KL, Rogowski CJ, Olwin BB, Anseth KS. Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials 2021; 277:121097. [PMID: 34481290 DOI: 10.1016/j.biomaterials.2021.121097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Skeletal muscle tissue is mechanically dynamic with changes in stiffness influencing function, maintenance, and regeneration. We modeled skeletal muscle mechanical changes in culture with dynamically stiffening hydrogels demonstrating that the chaperone protein BAG3 transduces matrix stiffness by redistributing YAP and TAZ subcellular localization in muscle progenitor cells. BAG3 depletion increases cytoplasmic retention of YAP and TAZ, desensitizing myoblasts to changes in hydrogel elastic moduli. Upon differentiation, muscle progenitors depleted of BAG3 formed enlarged, round myotubes lacking the typical cylindrical morphology. The aberrant morphology is dependent on YAP/TAZ signaling, which was sequestered in the cytoplasm in BAG3-depleted myotubes but predominately nuclear in cylindrical myotubes of control cells. Control progenitor cells induced to differentiate on soft (E' = 4 and 12 kPa) hydrogels formed circular myotubes similar to those observed in BAG3-depleted cells. Inhibition of the Hippo pathway partially restored myotube morphologies, permitting nuclear translocation of YAP and TAZ in BAG3-depleted myogenic progenitors. Thus, BAG3 is a critical mediator of dynamic stiffness changes in muscle tissue, coupling mechanical alterations to intracellular signals and inducing changes in gene expression that influence muscle progenitor cell morphology and differentiation.
Collapse
Affiliation(s)
- K Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Jason S Silver
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tze-Ling Chang
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Olivia J Bednarski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Kendra L Bannister
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Cameron J Rogowski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Bradley B Olwin
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
13
|
Kirk JA, Cheung JY, Feldman AM. Therapeutic targeting of BAG3: considering its complexity in cancer and heart disease. J Clin Invest 2021; 131:e149415. [PMID: 34396980 DOI: 10.1172/jci149415] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bcl2-associated athanogene-3 (BAG3) is expressed ubiquitously in humans, but its levels are highest in the heart, the skeletal muscle, and the central nervous system; it is also elevated in many cancers. BAG3's diverse functions are supported by its multiple protein-protein binding domains, which couple with small and large heat shock proteins, members of the Bcl2 family, other antiapoptotic proteins, and various sarcomere proteins. In the heart, BAG3 inhibits apoptosis, promotes autophagy, couples the β-adrenergic receptor with the L-type Ca2+ channel, and maintains the structure of the sarcomere. In cancer cells, BAG3 binds to and supports an identical array of prosurvival proteins, and it may represent a therapeutic target. However, the development of strategies to block BAG3 function in cancer cells may be challenging, as they are likely to interfere with the essential roles of BAG3 in the heart. In this Review, we present the current knowledge regarding the biology of this complex protein in the heart and in cancer and suggest several therapeutic options.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Joseph Y Cheung
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep 2021; 11:13295. [PMID: 34168237 PMCID: PMC8225821 DOI: 10.1038/s41598-021-92675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Desmosomes have a central role in mediating extracellular adhesion between cells, but they also coordinate other biological processes such as proliferation, differentiation, apoptosis and migration. In particular, several lines of evidence have implicated desmosomal proteins in regulating the actin cytoskeleton and attachment to the extracellular matrix, indicating signaling crosstalk between cell–cell junctions and cell–matrix adhesions. In our study, we found that cells lacking the desmosomal cadherin Desmoglein-2 (Dsg2) displayed a significant increase in spreading area on both fibronectin and collagen, compared to control A431 cells. Intriguingly, this effect was observed in single spreading cells, indicating that Dsg2 can exert its effects on cell spreading independent of cell–cell adhesion. We hypothesized that Dsg2 may mediate cell–matrix adhesion via control of Rap1 GTPase, which is well known as a central regulator of cell spreading dynamics. We show that Rap1 activity is elevated in Dsg2 knockout cells, and that Dsg2 harnesses Rap1 and downstream TGFβ signaling to influence both cell spreading and focal adhesion protein phosphorylation. Further analysis implicated the Rap GEF PDZ-GEF2 in mediating Dsg2-dependent cell spreading. These data have identified a novel role for Dsg2 in controlling cell spreading, providing insight into the mechanisms via which cadherins exert non-canonical junction-independent effects.
Collapse
|
15
|
De Marco M, Falco A, Iaccarino R, Raffone A, Mollo A, Guida M, Rosati A, Chetta M, Genovese G, De Caro F, Capunzo M, Turco MC, Uversky VN, Marzullo L. An emerging role for BAG3 in gynaecological malignancies. Br J Cancer 2021; 125:789-797. [PMID: 34099896 DOI: 10.1038/s41416-021-01446-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
BAG3, a member of the BAG family of co-chaperones, is a multidomain protein with a role in several cellular processes, including the control of apoptosis, autophagy and cytoskeletal dynamics. The expression of bag3 is negligible in most cells but can be induced by stress stimuli or malignant transformation. In some tumours, BAG3 has been reported to promote cell survival and resistance to therapy. The expression of BAG3 has been documented in ovarian, endometrial and cervical cancers, and studies have revealed biochemical and functional connections of BAG3 with proteins involved in the survival, invasion and resistance to therapy of these malignancies. BAG3 expression has also been shown to correlate with the grade of dysplasia in squamous intraepithelial lesions of the uterine cervix. Some aspects of BAG3 activity, such as its biochemical and functional interaction with the human papillomavirus proteins, could help in our understanding of the mechanisms of oncogenesis induced by the virus. This review aims to highlight the potential value of BAG3 studies in the field of gynaecological tumours.
Collapse
Affiliation(s)
- Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy
| | - Roberta Iaccarino
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Antonio Raffone
- Gynaecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonio Mollo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maurizio Guida
- Gynaecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy
| | | | - Giovanni Genovese
- University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Salerno, Italy
| | - Francesco De Caro
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy. .,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center, Moscow region, Russia
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy
| |
Collapse
|
16
|
Baeken MW, Behl C. On the origin of BAG(3) and its consequences for an expansion of BAG3's role in protein homeostasis. J Cell Biochem 2021; 123:102-114. [PMID: 33942360 DOI: 10.1002/jcb.29925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 11/07/2022]
Abstract
The B-cell CLL 2-associated athanogene (BAG) protein family in general and BAG3, in particular, are pivotal elements of cellular protein homeostasis, with BAG3 playing a major role in macroautophagy. In particular, in the contexts of senescence and degeneration, BAG3 has exhibited an essential role often related to its capabilities to organize and remove aggregated proteins. Exciting studies in different species ranging from human, murine, zebrafish, and plant samples have delivered vital insights into BAG3s' (and other BAG proteins') functions and their regulations. However, so far no studies have addressed neither BAG3's evolution nor its phylogenetic position in the BAG family.
Collapse
Affiliation(s)
- Marius W Baeken
- The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Behl
- The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
17
|
BAG3 Proteomic Signature under Proteostasis Stress. Cells 2020; 9:cells9112416. [PMID: 33158300 PMCID: PMC7694386 DOI: 10.3390/cells9112416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidate the dynamic and multifunctional action of BAG3 in response to stress, we established BAG3 interactomes under basal and proteostasis stress conditions by employing affinity purification combined with quantitative mass spectrometry. In addition to the identification of novel potential BAG3 interactors, we defined proteins whose interaction with BAG3 was altered upon stress. By functional annotation and protein-protein interaction enrichment analysis of the identified potential BAG3 interactors, we confirmed the multifunctionality of BAG3 and highlighted its crucial role in diverse cellular signaling pathways and processes, ensuring cellular proteostasis and cell viability. These include protein folding and degradation, gene expression, cytoskeleton dynamics (including cell cycle and transport), as well as granulostasis, in particular.
Collapse
|
18
|
Liu HQ, Shu X, Ma Q, Wang R, Huang MY, Gao X, Liu YN. Identifying specific miRNAs and associated mRNAs in CD44 and CD90 cancer stem cell subtypes in gastric cancer cell line SNU-5. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1313-1323. [PMID: 32661467 PMCID: PMC7344010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Cancer stem cells (CSCs) are capable of generating multiple types of cells and play a vital role in promoting gastric cancer (GC) progression. Our previous research indicated that gastric CSCs with surface markers of CD44+ were more invasive compared to CD44- CD90+ CSCs (CD90+ CSCs), whereas CD90+ CSCs exhibited higher levels of proliferation than CD44+ CSCs. However, the mechanism and characteristics of marker-positive gastric CSCs are poorly understood. In this study, we profiled expression of miRNAs and mRNAs in CD44+ CSCs, CD90+ CSCs, and CD44- CD90- cell subtype (control) from SNU-5 cells by microarray analysis. Our results suggested some specially expressed miRNA-mRNA pairs in CD44+ and CD90+ CSCs. We performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to analyze the correlation and function of those pairs. We also validated the pairs that may play roles in metastasis by qRT-PCR. In CD44+ CSCs, we observed hsa-miR-15b-5p was up-regulated and its target genes AMOT, USP31, KALRN, EPB41L4B, ATP2B2, and EMC4 were down-regulated, which may relate to invasion and migration. In CD90+ CSCs, we observed hsa-miR-3631-3p is up-regulated, while its target genes QKI, TRIM67 and HMGA2 are down-regulated, which is associated with proliferation. We also found that hsa-miR-1910-5p is up-regulated while its target gene QKI and HMGA2 are down-regulated in CD90+ CSCs. The screened miRNA-mRNA pairs give us new insight into the mechanism of different phenotypes and biomarkers capable of identifying and isolating metastatic and tumorigenic CSCs. Those miRNA-mRNA pairs may also act as treatment for GC.
Collapse
Affiliation(s)
- Hui-Qi Liu
- Medical College of Qinghai UniversityXining, Qinghai, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan HospitalBeijing, China
| | - Qiang Ma
- Medical College of Qinghai UniversityXining, Qinghai, China
| | - Rong Wang
- Medical College of Qinghai UniversityXining, Qinghai, China
| | - Ming-Yu Huang
- Medical College of Qinghai UniversityXining, Qinghai, China
| | - Xiang Gao
- Medical College of Qinghai UniversityXining, Qinghai, China
| | - Yong-Nian Liu
- Medical College of Qinghai UniversityXining, Qinghai, China
| |
Collapse
|
19
|
Ji C, Tang M, Zeidler C, Höhfeld J, Johnson GV. BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes. Autophagy 2019; 15:1199-1213. [PMID: 30744518 DOI: 10.1080/15548627.2019.1580096] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A major cellular catabolic pathway in neurons is macroautophagy/autophagy, through which misfolded or aggregation-prone proteins are sequestered into autophagosomes that fuse with lysosomes, and are degraded. MAPT (microtubule-associated protein tau) is one of the protein clients of autophagy. Given that accumulation of hyperphosphorylated MAPT contributes to the pathogenesis of Alzheimer disease and other tauopathies, decreasing endogenous MAPT levels has been shown to be beneficial to neuronal health in models of these diseases. A previous study demonstrated that the HSPA/HSP70 co-chaperone BAG3 (BCL2-associated athanogene 3) facilitates endogenous MAPT clearance through autophagy. These findings prompted us to further investigate the mechanisms underlying BAG3-mediated autophagy in the degradation of endogenous MAPT. Here we demonstrate for the first time that BAG3 plays an important role in autophagic flux in the neurites of mature neurons (20-24 days in vitro [DIV]) through interaction with the post-synaptic cytoskeleton protein SYNPO (synaptopodin). Loss of either BAG3 or SYNPO impeded the fusion of autophagosomes and lysosomes predominantly in the post-synaptic compartment. A block of autophagy leads to accumulation of the autophagic receptor protein SQSTM1/p62 (sequestosome 1) as well as MAPT phosphorylated at Ser262 (p-Ser262). Furthermore, p-Ser262 appears to accumulate in autophagosomes at post-synaptic densities. Overall these data provide evidence of a novel role for the co-chaperone BAG3 in synapses. In cooperation with SYNPO, it functions as part of a surveillance complex that facilitates the autophagic clearance of MAPT p-Ser262, and possibly other MAPT species at the post-synapse. This appears to be crucial for the maintenance of a healthy, functional synapse.Abbreviations: aa: amino acids; ACTB: actin beta; BafA1: bafilomycin A1; BAG3: BCL2 associated athanogene 3; CQ chloroquine; CTSL: cathepsin L; DIV: days in vitro; DLG4/PSD95: discs large MAGUK scaffold protein 4; HSPA/HSP70: heat shock protein family A (Hsp70); MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP2: microtubule associated protein 2; MAPT: microtubule associated protein tau; p-Ser262: MAPT phosphorylated at serine 262; p-Ser396/404: MAPT phosphorylated at serines 396 and 404; p-Thr231: MAPT phosphorylated at threonine 231; PBS: phosphate buffered saline; PK: proteinase K; scr: scrambled; shRNA: short hairpin RNA; SQSTM1/p62 sequestosome 1; SYN1: synapsin I; SYNPO synaptopodin; SYNPO2/myopodin: synaptopodin 2; VPS: vacuolar protein sorting.
Collapse
Affiliation(s)
- Changyi Ji
- a Department of Anesthesiology , University of Rochester , Rochester , NY , USA
| | - Maoping Tang
- a Department of Anesthesiology , University of Rochester , Rochester , NY , USA
| | - Claudia Zeidler
- b Institute for Cell Biology , University of Bonn , Bonn , Germany
| | - Jörg Höhfeld
- b Institute for Cell Biology , University of Bonn , Bonn , Germany
| | - Gail Vw Johnson
- a Department of Anesthesiology , University of Rochester , Rochester , NY , USA
| |
Collapse
|
20
|
BAG3 regulates stability of IL-8 mRNA via interplay between HuR and miR-4312 in PDACs. Cell Death Dis 2018; 9:863. [PMID: 30154469 PMCID: PMC6113235 DOI: 10.1038/s41419-018-0874-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Bcl-2 associated athanogene 3 (BAG3) is highly expressed in pancreatic ductal adenocarcinoma (PDAC), and its high expression appears to be a poor prognostic factor for patients with PDAC. In this study, we show that BAG3 knockdown significantly decreases migration and invasion of PDACs via reduction of interleukine-8 (IL-8) production. BAG3 knockdown regulates IL-8 expression at the posttranscriptional levels via interplay between recruitment of RNA-binding protein HuR and miR-4312. HuR binds to the cis-elements located in the 3'-untranslational region (UTR) of the IL-8 transcript to stabilize it, whereas miR-4312-containing miRNA-induced silencing complex (miRISC) is recruited to the adjacent seed element to destabilize it. The binding of HuR prevents the recruitment of Argonaute (Ago2), overriding miR-4312-mediated translation inhibition of IL-8. BAG3 knockdown decreases cytoplasmic distribution of HuR via increasing its phosphorylation at Ser202, therefore compromising its recruitment while promoting recruitment of miR-4312 containing miRISC to IL-8 transcript. Furthermore, our data indicate that only phosphorylated Ago2 at Ser387 interacts with IL-8 transcript. BAG3 knockdown increases phosphorylation of Ago2 at Ser387, thereby further promoting loading of miR-4312 containing miRISC to IL-8 transcript. Taken together, we propose that BAG3 promotes invasion by stabilizing IL-8 transcript via HuR recruitment, and subsequently suppressing the loading of miR-4312 containing miRISC in PDACs. Our results reveal a novel pathway linking BAG3 expression to enhanced PDAC metastasis, thus making BAG3 a potential target for intervention in pancreatic cancer.
Collapse
|
21
|
Das CK, Linder B, Bonn F, Rothweiler F, Dikic I, Michaelis M, Cinatl J, Mandal M, Kögel D. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells. Neoplasia 2018; 20:263-279. [PMID: 29462756 PMCID: PMC5852393 DOI: 10.1016/j.neo.2018.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/07/2023] Open
Abstract
Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549rDOX20) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468r5-FU2000) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549rDOX20 and MDA-MB-468r5-FU2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer.
Collapse
Affiliation(s)
- Chandan Kanta Das
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Benedikt Linder
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany
| | - Florian Rothweiler
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Martin Michaelis
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany; School of Biosciences, The University of Kent, Canterbury, Kent, UK
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Germany.
| |
Collapse
|
22
|
Fu Y, Chang Y, Chen S, Li Y, Chen Y, Sun G, Yu S, Ye N, Li C, Sun Y. BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL. Int J Mol Med 2018; 41:2917-2926. [PMID: 29484366 DOI: 10.3892/ijmm.2018.3493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/08/2018] [Indexed: 11/05/2022] Open
Abstract
Under normal physiological condition, the mature vascular smooth muscle cells (VSMCs) show differentiated phenotype. In response to various environmental stimuluses, VSMCs convert from the differentiated phenotype to dedifferentiated phenotype characterized by the increased ability of proliferation/migration and the reduction of contractile ability. The phenotypic transformation of VSMCs played an important role in atherosclerosis. Both Bcl-2-associated athanogene 3 (BAG3) and tumor necrosis factor-related apopt-osis inducing ligand (TRAIL) involved in apoptosis. The relationship between BAG3 and TRAIL and their effects the proliferation and migration in VSMCs are rarely reported. This study investigated the effects of BAG3 on the phenotypic modulation and the potential underlying mechanisms in primary rat VSMCs. Primary rat VSMCs were extracted and cultured in vitro. Cell proliferation was detected by cell counting, real-time cell analyzer (RTCA) and EdU incorporation. Cell migration was detected by wound healing, Transwell and RTCA. BAG3 and TRAIL were detected using real-time PCR and western blotting and the secreted proteins in the cultured media by dot blot. The expression of BAG3 increased with continued passages in cultured primary VSMCs. BAG3 promoted the proliferation and migration of primary rat VSMC in a time-dependent manner. BAG3 significantly increased the expression of TRAIL while had no effects on its receptors. TRAIL knockdown or blocking by neutralizing antibody inhibited the proliferation of VSMCs induced by BAG3. TRAIL knockdown exerted no obvious influence on the migration of VSMCs. Based on this study, we report for the first time that BAG3 was expressed in cultured primary rat VSMCs and the expression of BAG3 increased with continued passages. Furthermore, BAG3 promoted the proliferation of VSMCs via increasing the expression of TRAIL. In addition, we also demonstrated that BAG3 promoted the migration of VSMCs independent of TRAIL upregulation.
Collapse
Affiliation(s)
- Yao Fu
- Department of Cardiology, Shenjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ye Chang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yintao Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shasha Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
23
|
Jung HC, Kim SH, Lee JH, Kim JH, Han SW. Gene Regulatory Network Analysis for Triple-Negative Breast Neoplasms by Using Gene Expression Data. J Breast Cancer 2017; 20:240-245. [PMID: 28970849 PMCID: PMC5620438 DOI: 10.4048/jbc.2017.20.3.240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Purpose To better identify the physiology of triple-negative breast neoplasm (TNBN), we analyzed the TNBN gene regulatory network using gene expression data. Methods We collected TNBN gene expression data from The Cancer Genome Atlas to construct a TNBN gene regulatory network using least absolute shrinkage and selection operator regression. In addition, we constructed a triple-positive breast neoplasm (TPBN) network for comparison. Furthermore, survival analysis based on gene expression levels and differentially expressed gene (DEG) analysis were carried out to support and compare the network analysis results, respectively. Results The TNBN gene regulatory network, which followed a power-law distribution, had 10,237 vertices and 17,773 edges, with an average vertex-to-vertex distance of 8.6. The genes ZDHHC20 and RAPGEF6 were identified by centrality analysis to be important vertices. However, in the DEG analysis, we could not find meaningful fold changes in ZDHHC20 and RAPGEF6 between the TPBN and TNBN gene expression data. In the multivariate survival analysis, the hazard ratio for ZDHHC20 and RAPGEF6 was 1.677 (1.192–2.357) and 1.676 (1.222–2.299), respectively. Conclusion Our TNBN gene regulatory network was a scale-free one, which means that the network would be easily destroyed if the hub vertices were attacked. Thus, it is important to identify the hub vertices in the network analysis. In the TNBN gene regulatory network, ZDHHC20 and RAPGEF6 were found to be oncogenes. Further study of these genes could help to reveal a novel method for treating TNBN in the future.
Collapse
Affiliation(s)
- Hee Chan Jung
- Department of Internal Medicine, Eulji University College of Medicine, Seoul, Korea
| | - Sung Hwan Kim
- Department of Statistics, Keimyung University, Daegu, Korea
| | - Jeong Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Han Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Won Han
- Division of Fusion Data Analytics Laboratory, School of Industrial Management Engineering, Korea University, Seoul, Korea
| |
Collapse
|
24
|
Role of BAG3 in cancer progression: A therapeutic opportunity. Semin Cell Dev Biol 2017; 78:85-92. [PMID: 28864347 DOI: 10.1016/j.semcdb.2017.08.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
BAG3 is a multifunctional protein that can bind to heat shock proteins (Hsp) 70 through its BAG domain and to other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val) motifs. Its intracellular expression can be induced by stressful stimuli, while is constitutive in skeletal muscle, cardiac myocytes and several tumour types. BAG3 can modulate the levels, localisation or activity of its partner proteins, thereby regulating major cell pathways and functions, including apoptosis, autophagy, mechanotransduction, cytoskeleton organisation, motility. A secreted form of BAG3 has been identified in studies on pancreatic ductal adenocarcinoma (PDAC). Secreted BAG3 can bind to a specific receptor, IFITM2, expressed on macrophages, and induce the release of factors that sustain tumour growth and the metastatic process. BAG3 neutralisation therefore appears to constitute a novel potential strategy in the therapy of PDAC and, possibly, other tumours.
Collapse
|
25
|
Evaluation of BAG3 levels in healthy subjects, hypertensive patients, and hypertensive diabetic patients. J Cell Physiol 2017; 233:1791-1795. [DOI: 10.1002/jcp.26093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
|
26
|
Varlet AA, Fuchs M, Luthold C, Lambert H, Landry J, Lavoie JN. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 2017; 22:553-567. [PMID: 28275944 PMCID: PMC5465032 DOI: 10.1007/s12192-017-0780-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.
Collapse
Affiliation(s)
- Alice Anaïs Varlet
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Margit Fuchs
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Carole Luthold
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Herman Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Jacques Landry
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada
| | - Josée N Lavoie
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada.
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada.
| |
Collapse
|
27
|
Stürner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci 2017; 10:177. [PMID: 28680391 PMCID: PMC5478690 DOI: 10.3389/fnmol.2017.00177] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023] Open
Abstract
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.
Collapse
Affiliation(s)
- Elisabeth Stürner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| |
Collapse
|
28
|
Rap1GAP inhibits tumor progression in endometrial cancer. Biochem Biophys Res Commun 2017; 485:476-483. [PMID: 28196746 DOI: 10.1016/j.bbrc.2017.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Endometrioid adenocarcinoma (EAC) is a common endometrial cancer with recent dramatic increases in incidence. Previous findings indicate that Rap1GAP acts as a tumor suppressor inhibiting Ras superfamily protein Rap1 in multiple aggressive carcinomas; however, Rap1GAP expression in EAC has not been investigated. In this study, the tumor suppressing activity of Rap1GAP in EAC was explored. METHODS EAC cell lines were used to examine Rap1GAP levels by real-time RT-PCR and western blotting and the effects of Rap1GAP on cancer cell invasion and migration. Rap1GAP expression was analyzed by immunohistochemical staining for Rap1GAP, E-cadherin in surgically resected tumors of 114 EAC patients scored according to EAC differentiation grade. Prognostic variables such as age, stage, grade, tumor size, and immunostaining for Rap1GAP, E-cadherin were evaluated using Cox regression multivariate analysis. RESULTS Low Rap1GAP expression was detected in poorly differentiated EAC cells. Rap1GAP deficiency significantly accelerated while Rap1 deficiency decreased cancer cell migration and invasion. Patients with higher Rap1GAP, E-cadherin, and especially combined Rap1GAP/E-cadherin levels had better overall survival than EAC patients with no or weak expression. In addition, Rap1GAP expression was an independent prognostic factor in EAC. CONCLUSIONS Inhibition of Rap1GAP expression increases EAC cell migration and invasion through upregulation of Rap1. Low expression of Rap1GAP correlates with poor EAC differentiation. Our findings suggest that Rap1GAP is an important tumor suppressor with high prognostic value in EAC.
Collapse
|
29
|
Klimek C, Kathage B, Wördehoff J, Höhfeld J. BAG3-mediated proteostasis at a glance. J Cell Sci 2017; 130:2781-2788. [DOI: 10.1242/jcs.203679] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Cellular and organismal survival depend on the ability to maintain the proteome, even under conditions that threaten protein integrity. BCL2-associated athanogene 3 (BAG3) is essential for protein homeostasis (proteostasis) in stressed cells. Owing to its multi-domain structure, it engages in diverse processes that are crucial for proteome maintenance. BAG3 promotes the activity of molecular chaperones, sequesters and concentrates misfolded proteins, initiates autophagic disposal, and balances transcription, translation and degradation. In this Cell Science at a Glance article and the accompanying poster, we discuss the functions of this multi-functional proteostasis tool with a focus on mechanical stress protection and describe the importance of BAG3 for human physiology and pathophysiology.
Collapse
Affiliation(s)
- Christina Klimek
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| | - Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| | - Judith Wördehoff
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| |
Collapse
|
30
|
Rauch JN, Tse E, Freilich R, Mok SA, Makley LN, Southworth DR, Gestwicki JE. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins. J Mol Biol 2016; 429:128-141. [PMID: 27884606 DOI: 10.1016/j.jmb.2016.11.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022]
Abstract
Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps.
Collapse
Affiliation(s)
- Jennifer N Rauch
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Eric Tse
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca Freilich
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Sue-Ann Mok
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Leah N Makley
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Daniel R Southworth
- Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Kathage B, Gehlert S, Ulbricht A, Lüdecke L, Tapia VE, Orfanos Z, Wenzel D, Bloch W, Volkmer R, Fleischmann BK, Fürst DO, Höhfeld J. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:62-75. [PMID: 27756573 DOI: 10.1016/j.bbamcr.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain.
Collapse
Affiliation(s)
- Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Sebastian Gehlert
- German Sport University Cologne, Department of Molecular and Cellular Sport Medicine, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Anna Ulbricht
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Laura Lüdecke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Victor E Tapia
- Department of Medicinal Immunology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Zacharias Orfanos
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Wilhelm Bloch
- German Sport University Cologne, Department of Molecular and Cellular Sport Medicine, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Rudolf Volkmer
- Department of Medicinal Immunology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
32
|
Behl C. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease. Trends Pharmacol Sci 2016; 37:672-688. [PMID: 27162137 DOI: 10.1016/j.tips.2016.04.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Human BAG (Bcl-2-associated athanogene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1-6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including cancer, myopathies, and neurodegeneration. The discovery of its role in selective autophagy and the description of BAG3-mediated selective macroautophagy as an adaptive mechanism to maintain cellular homeostasis, under stress as well as during aging, make BAG3 a highly interesting target for future pharmacological interventions.
Collapse
Affiliation(s)
- Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
33
|
Fuchs M, Luthold C, Guilbert SM, Varlet AA, Lambert H, Jetté A, Elowe S, Landry J, Lavoie JN. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet 2015; 11:e1005582. [PMID: 26496431 PMCID: PMC4619738 DOI: 10.1371/journal.pgen.1005582] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023] Open
Abstract
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation. Small heat shock proteins (sHSP/HSPB) form a diverse family of ATP-independent chaperones. Some of them protect the proteome against aggregation during stress and others regulate normal biological processes through ill-defined mechanisms. Interactions between HSPB proteins and elements of the cytoskeleton are increasingly linked to their implication in human degenerative diseases and cancer. For instance, a multichaperone complex containing HSPB8 and its co-chaperone BAG3 would maintain muscle cell integrity by promoting the autophagic clearance of damaged components within F-actin structures. Selective autophagy is a targeted protein degradation mechanism for elimination of damaged organelles and proteins. It may also regulate removal of signaling proteins from their functionally relevant sites during intense remodeling of the cytoskeleton, as it occurs during mitosis. Here, we report a novel role for HSPB8 and BAG3 during mitosis in mammalian cells that involves the autophagic receptor p62/SQSTM1. We show that a reduction of any protein within the HSPB8-BAG3-p62/SQSTM signaling axis similarly impairs mitotic progression and chromosome segregation by affecting orientation of the mitotic spindle and assembly of mitotic-specific actin structures. Our findings establish a unique role for HSPB8 in a novel function of BAG3 in mitotic cell division and genome stability, through effect on remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Margit Fuchs
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Carole Luthold
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Solenn M. Guilbert
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Alice Anaïs Varlet
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Alexandra Jetté
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Sabine Elowe
- Reproduction, Perinatal Health and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Pédiatrie, Université Laval, Quebec, Canada
| | - Jacques Landry
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
34
|
Jin YH, Ahn SG, Kim SA. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress. Biochem Biophys Res Commun 2015; 464:561-7. [DOI: 10.1016/j.bbrc.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
|
35
|
Deletion of Rapgef6, a candidate schizophrenia susceptibility gene, disrupts amygdala function in mice. Transl Psychiatry 2015; 5:e577. [PMID: 26057047 PMCID: PMC4490285 DOI: 10.1038/tp.2015.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/22/2015] [Accepted: 04/23/2015] [Indexed: 02/01/2023] Open
Abstract
In human genetic studies of schizophrenia, we uncovered copy-number variants in RAPGEF6 and RAPGEF2 genes. To discern the effects of RAPGEF6 deletion in humans, we investigated the behavior and neural functions of a mouse lacking Rapgef6. Rapgef6 deletion resulted in impaired amygdala function measured as reduced fear conditioning and anxiolysis. Hippocampal-dependent spatial memory and prefrontal cortex-dependent working memory tasks were intact. Neural activation measured by cFOS phosphorylation demonstrated a reduction in hippocampal and amygdala activation after fear conditioning, while neural morphology assessment uncovered reduced spine density and primary dendrite number in pyramidal neurons of the CA3 hippocampal region of knockout mice. Electrophysiological analysis showed enhanced long-term potentiation at cortico-amygdala synapses. Rapgef6 deletion mice were most impaired in hippocampal and amygdalar function, brain regions implicated in schizophrenia pathophysiology. The results provide a deeper understanding of the role of the amygdala in schizophrenia and suggest that RAPGEF6 may be a novel therapeutic target in schizophrenia.
Collapse
|
36
|
Yeo CD, Park GS, Kang N, Choi SY, Kim HY, Lee DS, Kim YS, Kim YK, Park JG, Sung SW, Lee KY, Park MS, Yim HW, Kim SJ, Lee JH. Bis Expression in Patients with Surgically Resected Lung Cancer and its Clinical Significance. Ann Surg Oncol 2015; 22 Suppl 3:S1365-70. [DOI: 10.1245/s10434-015-4576-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Indexed: 11/18/2022]
|
37
|
Bracher A, Verghese J. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones. Subcell Biochem 2015; 78:1-33. [PMID: 25487014 DOI: 10.1007/978-3-319-11731-7_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEF) facilitate its conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. Beginning with the discovery of the prototypical bacterial NEF GrpE, a large diversity of Hsp70 nucleotide exchange factors has been identified, connecting Hsp70 to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances towards structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families and discuss how these cochaperones connect protein folding with quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Dept. of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany,
| | | |
Collapse
|
38
|
Bracher A, Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2015; 2:10. [PMID: 26913285 PMCID: PMC4753570 DOI: 10.3389/fmolb.2015.00010] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones of the Hsp70 family form an important hub in the cellular protein folding networks in bacteria and eukaryotes, connecting translation with the downstream machineries of protein folding and degradation. The Hsp70 folding cycle is driven by two types of cochaperones: J-domain proteins stimulate ATP hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) promote replacement of Hsp70-bound ADP with ATP. Bacteria and organelles of bacterial origin have only one known NEF type for Hsp70, GrpE. In contrast, a large diversity of Hsp70 NEFs has been discovered in the eukaryotic cell. These NEFs belong to the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families. In this short review we compare the structures and molecular mechanisms of nucleotide exchange factors for Hsp70 and discuss how these cochaperones contribute to protein folding and quality control in the cell.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry Martinsried, Germany
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry Martinsried, Germany
| |
Collapse
|
39
|
Iorio V, Festa M, Rosati A, Hahne M, Tiberti C, Capunzo M, De Laurenzi V, Turco MC. BAG3 regulates formation of the SNARE complex and insulin secretion. Cell Death Dis 2015; 6:e1684. [PMID: 25766323 PMCID: PMC4385931 DOI: 10.1038/cddis.2015.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 01/07/2023]
Abstract
Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release.
Collapse
Affiliation(s)
- V Iorio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - M Festa
- 1] Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - A Rosati
- 1] Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - M Hahne
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - C Tiberti
- Department of Clinical Sciences, University of Rome Sapienza, Rome, Italy
| | - M Capunzo
- Department of Medicine and Surgery, University of Salerno, Via S. Allende, Baronissi, SA, Italy
| | - V De Laurenzi
- 1] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] Department of Experimental and Clinical Sciences, University G. D'Annunzio and Fondazione G. D'Annunzio, Ce.S.I., Chieti, Italy
| | - M C Turco
- 1] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] Department of Medicine and Surgery, University of Salerno, Via S. Allende, Baronissi, SA, Italy
| |
Collapse
|
40
|
Guilbert SM, Varlet AA, Fuchs M, Lambert H, Landry J, Lavoie JN. Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Yoo HJ, Im CN, Youn DY, Yun HH, Lee JH. Bis is Induced by Oxidative Stress via Activation of HSF1. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:403-9. [PMID: 25352760 PMCID: PMC4211124 DOI: 10.4196/kjpp.2014.18.5.403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 12/15/2022]
Abstract
The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as H2O2 treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by H2O2, accompaniedby increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined.
Collapse
Affiliation(s)
- Hyung Jae Yoo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea. ; Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea. ; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Dong-Ye Youn
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea. ; Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea. ; Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea. ; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
42
|
Lee YD, Cui MN, Yoon HH, Kim HY, Oh IH, Lee JH. Down-modulation of Bis reduces the invasive ability of glioma cells induced by TPA, through NF-κB mediated activation of MMP-9. BMB Rep 2014; 47:262-7. [PMID: 24286317 PMCID: PMC4163862 DOI: 10.5483/bmbrep.2014.47.5.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 11/20/2022] Open
Abstract
Bcl-2 interacting cell death suppressor (Bis) has been shown to have anti-apoptotic and anti-stress functions. Recently, increased Bis expression was reported to correlate with glioma aggressiveness. Here, we investigated the effect of Bis knockdown on the acquisition of the invasive phenotype of A172 glioma cells, induced by 12-O-Tetradecanoylphorbol-3-acetate (TPA), using a Transwell assay. Bis knockdown resulted in a significant decrease in the migration and invasion of A172 cells. Furthermore, Bis knockdown notably decreased TPA-induced matrix metalloproteinase-9 (MMP-9) activity and mRNA expression, as measured by zymography and quantitative real time PCR, respectively. A luciferase reporter assay indicated that Bis suppression significantly down-regulated NF-κB-driven transcription. Finally, we demonstrated that the rapid phosphorylation and subsequent degradation of IκB-α induced by TPA was remarkably delayed by Bis knockdown. These results suggest that Bis regulates the invasive ability of glioma cells elicited by TPA, by modulating NF-κB activation, and subsequent induction of MMP-9 mRNA.
Collapse
Affiliation(s)
- Young Dae Lee
- Department of Biochemistry, Cancer Research Institute, Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Mei Nu Cui
- Department of Biochemistry, Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Hye Hyeon Yoon
- Department of Biochemistry, Cancer Research Institute, Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Hye Yun Kim
- Department of Biochemistry, Cancer Research Institute, Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Il-Hoan Oh
- Cancer Evolution Research Center, Catholic High-Performance Cell Therapy Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, Cancer Research Institute, Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
43
|
Knockdown of BAG3 induces epithelial-mesenchymal transition in thyroid cancer cells through ZEB1 activation. Cell Death Dis 2014; 5:e1092. [PMID: 24577090 PMCID: PMC3944249 DOI: 10.1038/cddis.2014.32] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/15/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
Abstract
The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial–mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis.
Collapse
|
44
|
Kong DH, Zhang Q, Meng X, Zong ZH, Li C, Liu BQ, Guan Y, Wang HQ. BAG3 sensitizes cancer cells exposed to DNA damaging agents via direct interaction with GRP78. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3245-3253. [DOI: 10.1016/j.bbamcr.2013.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 12/17/2022]
|
45
|
Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia. Ann Hematol 2013; 93:425-35. [DOI: 10.1007/s00277-013-1883-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/14/2013] [Indexed: 01/20/2023]
|
46
|
Cotugno R, Gallotta D, d'Avenia M, Corteggio A, Altamura G, Roperto F, Belisario MA, Borzacchiello G. BAG3 protects bovine papillomavirus type 1-transformed equine fibroblasts against pro-death signals. Vet Res 2013; 44:61. [PMID: 23876161 PMCID: PMC3729419 DOI: 10.1186/1297-9716-44-61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/08/2013] [Indexed: 01/19/2023] Open
Abstract
In human cancer cells, BAG3 protein is known to sustain cell survival. Here, for the first time, we demonstrate the expression of BAG3 protein both in equine sarcoids in vivo and in EqS04b cells, a sarcoid-derived fully transformed cell line harbouring bovine papilloma virus (BPV)-1 genome. Evidence of a possible involvement of BAG3 in equine sarcoid carcinogenesis was obtained by immunohistochemistry analysis of tumour samples. We found that most tumour samples stained positive for BAG3, even though to a different grade, while normal dermal fibroblasts from healthy horses displayed very weak staining pattern for BAG3 expression. By siRNA technology, we demonstrate in EqS04b the role of BAG3 in counteracting basal as well as chemical-triggered pro-death signals. BAG3 down-modulation was indeed shown to promote cell death and cell cycle arrest in G0/G1. In addition, we found that BAG3 silencing sensitized EqS04b cells to phenethylisothiocyanate (PEITC), a promising cancer chemopreventive/chemotherapeutic agent present in edible cruciferous vegetables. Notably, such a pro-survival role of BAG3 was less marked in E. Derm cells, an equine BPV-negative fibroblast cell line taken as a normal counterpart. Altogether our findings might suggest a mutual cooperation between BAG3 and viral oncoproteins to sustain cell survival.
Collapse
Affiliation(s)
- Roberta Cotugno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II n,132, 84084, Fisciano, Salerno, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ulbricht A, Arndt V, Höhfeld J. Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells. Commun Integr Biol 2013; 6:e24925. [PMID: 23986815 PMCID: PMC3737759 DOI: 10.4161/cib.24925] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 12/28/2022] Open
Abstract
Maintaining the dynamic proteome of a living cell in the face of an ever-changing environment depends on a fine-tuned balance of protein synthesis and protein degradation. Molecular chaperones exert key functions during protein homeostasis (proteostasis). They associate with nonnative client proteins following synthesis or damage and facilitate client sorting and folding. When client proteins are terminally misfolded, chaperones cooperate with protein degradation systems to dispose of such clients. This dual proteostasis activity of chaperones is essential for maintaining cell function under normal growth conditions and becomes even more important under stress conditions such as heat and oxidative stress. The recent identification of chaperone-assisted selective autophagy (CASA) as a tension-induced autophagy pathway highlights the critical role of molecular chaperones in mechanically strained cells and tissues. The CASA complex, assembled by the cochaperone BAG3, coordinates protein degradation and protein synthesis in response to mechanical force. Here we describe the composition and function of this chaperone complex in mammals and discuss its relevance for tissue homeostasis and the regulation of cell adhesion, migration and proliferation. We provide a unifying concept for the function of BAG3, which integrates its involvement in muscle maintenance, tumor formation and virus infection.
Collapse
Affiliation(s)
- Anna Ulbricht
- Institute for Cell Biology; University of Bonn; Bonn, Germany
| | | | | |
Collapse
|
48
|
Ulbricht A, Eppler FJ, Tapia VE, van der Ven PFM, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, Behrends C, Fürst DO, Volkmer R, Hoffmann B, Kolanus W, Höhfeld J. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 2013; 23:430-5. [PMID: 23434281 DOI: 10.1016/j.cub.2013.01.064] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/06/2012] [Accepted: 01/29/2013] [Indexed: 11/25/2022]
Abstract
Mechanical tension is an ever-present physiological stimulus essential for the development and homeostasis of locomotory, cardiovascular, respiratory, and urogenital systems. Tension sensing contributes to stem cell differentiation, immune cell recruitment, and tumorigenesis. Yet, how mechanical signals are transduced inside cells remains poorly understood. Here, we identify chaperone-assisted selective autophagy (CASA) as a tension-induced autophagy pathway essential for mechanotransduction in muscle and immune cells. The CASA complex, comprised of the molecular chaperones Hsc70 and HspB8 and the cochaperone BAG3, senses the mechanical unfolding of the actin-crosslinking protein filamin. Together with the chaperone-associated ubiquitin ligase CHIP, the complex initiates the ubiquitin-dependent autophagic sorting of damaged filamin to lysosomes for degradation. Autophagosome formation during CASA depends on an interaction of BAG3 with synaptopodin-2 (SYNPO2). This interaction is mediated by the BAG3 WW domain and facilitates cooperation with an autophagosome membrane fusion complex. BAG3 also utilizes its WW domain to engage in YAP/TAZ signaling. Via this pathway, BAG3 stimulates filamin transcription to maintain actin anchoring and crosslinking under mechanical tension. By integrating tension sensing, autophagosome formation, and transcription regulation during mechanotransduction, the CASA machinery ensures tissue homeostasis and regulates fundamental cellular processes such as adhesion, migration, and proliferation.
Collapse
Affiliation(s)
- Anna Ulbricht
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gomez-Cambronero J. Biochemical and cellular implications of a dual lipase-GEF function of phospholipase D2 (PLD2). J Leukoc Biol 2012; 92:461-7. [PMID: 22750546 DOI: 10.1189/jlb.0212073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PLD2 plays a key role in cell membrane lipid reorganization and as a key cell signaling protein in leukocyte chemotaxis and phagocytosis. Adding to the large role for a lipase in cellular functions, recently, our lab has identified a PLD2-Rac2 binding through two CRIB domains in PLD2 and has defined PLD2 as having a new function, that of a GEF for Rac2. PLD2 joins other major GEFs, such as P-Rex1 and Vav, which operate mainly in leukocytes. We explain the biochemical and cellular implications of a lipase-GEF duality. Under normal conditions, GEFs are not constitutively active; instead, their activation is highly regulated. Activation of PLD2 leads to its localization at the plasma membrane, where it can access its substrate GTPases. We propose that PLD2 can act as a "scaffold" protein to increase efficiency of signaling and compartmentalization at a phagocytic cup or the leading edge of a leukocyte lamellipodium. This new concept will help our understanding of leukocyte crucial functions, such as cell migration and adhesion, and how their deregulation impacts chronic inflammation.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, OH, USA.
| |
Collapse
|
50
|
Role of BAG3 protein in leukemia cell survival and response to therapy. Biochim Biophys Acta Rev Cancer 2012; 1826:365-9. [PMID: 22710027 DOI: 10.1016/j.bbcan.2012.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 01/19/2023]
Abstract
The ability of BAG3, a member of the BAG family of heat shock protein (Hsp) 70 - cochaperones, to sustain the survival of human primary B-CLL and ALL cells was recognized about nine years ago. Since then, the anti-apoptotic activity of BAG3 has been confirmed in other tumor types, where it has been shown to regulate the intracellular concentration and localization of apoptosis-regulating factors, including NF-κB-activating (IKKγ) and Bcl2-family (Bax) proteins. Furthermore, growing evidences support its role in lymphoid and myeloid leukemia response to therapy. Moreover in the last years, the contribution of BAG3 to autophagy, a process known to be involved in the pathogenesis and response to therapy of leukemia cells, has been disclosed, opening a new avenue for the interpretation of the role of this protein in leukemias' biology.
Collapse
|