1
|
Li M, Chang J, Ren H, Song D, Guo J, Peng L, Zhou X, Zhao K, Lu S, Liu Z, Hu P. Downregulation of CCKBR Expression Inhibits the Proliferation of Gastric Cancer Cells, Revealing a Potential Target for Immunotoxin Therapy. Curr Cancer Drug Targets 2022; 22:257-268. [PMID: 34994328 DOI: 10.2174/1568009622666220106113616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
Background Increased CCKBR expression density or frequency has been reported in many neoplasms. Objective We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. Methods A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Wound-healing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. Results Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. Conclusion The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Jiang Chang
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Honglin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Defeng Song
- China-Japan Union Hospital, Jilin University; Changchun 130062, China
| | - Jian Guo
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Lixiong Peng
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Xiaoshi Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Ke Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Shiying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Zengshan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis/College of Veterinary Medicine, Double-First Class Discipline of Human-Animal Medicine, Jilin University; Changchun 130062, China
| |
Collapse
|
2
|
Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel) 2021; 13:cancers13205067. [PMID: 34680216 PMCID: PMC8534007 DOI: 10.3390/cancers13205067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Obesity is recognized as a chronic progressive disease and risk factor for many human diseases. The high and increasing number of obese people may underlie the expected increase in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an important role. This review discusses selected mechanisms that may accelerate pancreatic cancer development in obesity. Abstract The prevalence of obesity in adults and children has dramatically increased over the past decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue inflammation play a central role. The current review discusses selected topics and mechanisms that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue, intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development. Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore, the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in obese patients.
Collapse
|
3
|
Abstract
Ion channels and transporters (ICT) play important roles in almost all basic cellular processes. During last decades, abundant evidences have been provided that ICT (e.g., Ca2+ and K+ channels) are notable for regulating physiological pancreatic duct cellular function and deregulation of ICT is closely associated with the widely accepted hallmarks of pancreatic ductal adenocarcinoma (PDAC) such as proliferation, apoptosis resistance, invasion, and metastasis. Hence this review focuses on the role of ICT malfunctions in context with the hallmarks of PDAC. After briefly introducing epidemiology and history of molecular oncology of PDAC and summarizing the recent studies on molecular classification systems, we focus then on the exocrine pancreas as a very active secretory gland which considerably impacts the changes in the ion transport system (the transportome) upon malignant transformation. We highlight multiplicity of ICT members (H+ transporters, Ca2+, K+, Na+ and Cl- channels) and their functional impact in PDAC. We also present some selective therapeutic options to interfere with transportome functions and thereby with key mechanisms of malignant progression. This will hopefully contribute to a better clinical outcome based on improved therapeutic strategies for this still extremely deadly disease.
Collapse
|
4
|
Hao F, Xu Q, Wang J, Yu S, Chang HH, Sinnett-Smith J, Eibl G, Rozengurt E. Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice. PLoS One 2019; 14:e0216603. [PMID: 31100067 PMCID: PMC6524808 DOI: 10.1371/journal.pone.0216603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
We examined the impact of statins on Yes-associated Protein (YAP) localization, phosphorylation and transcriptional activity in human and mouse pancreatic ductal adenocarcinoma (PDAC) cells. Exposure of sparse cultures of PANC-1 and MiaPaCa-2 cells to cerivastatin or simvastatin induced a striking re-localization of YAP from the nucleus to the cytoplasm and inhibited the expression of the YAP/TEAD-regulated genes Connective Tissue Growth Factor (CTGF) and Cysteine-rich angiogenic inducer 61 (CYR61). Statins also prevented YAP nuclear import and expression of CTGF and CYR61 stimulated by the mitogenic combination of insulin and neurotensin in dense culture of these PDAC cells. Cerivastatin, simvastatin, atorvastatin and fluvastatin also inhibited colony formation by PANC-1 and MiaPaCa-2 cells in a dose-dependent manner. In contrast, the hydrophilic statin pravastatin did not exert any inhibitory effect even at a high concentration (10 μM). Mechanistically, cerivastatin did not alter the phosphorylation of YAP at Ser127 in either PANC-1 or MiaPaCa-2 cells incubated without or with neurotensin and insulin but blunted the assembly of actin stress fiber in these cells. We extended these findings with human PDAC cells using primary KC and KPC cells, (expressing KrasG12D or both KrasG12D and mutant p53, respectively) isolated from KC or KPC mice. Using cultures of these murine cells, we show that lipophilic statins induced striking YAP translocation from the nucleus to the cytoplasm, inhibited the expression of Ctgf, Cyr61 and Birc5 and profoundly inhibited colony formation of these cells. Administration of simvastatin to KC mice subjected to diet-induced obesity prevented early pancreatic acini depletion and PanIN formation. Collectively, our results show that lipophilic statins restrain YAP activity and proliferation in pancreatic cancer cell models in vitro and attenuates early lesions leading to PDAC in vivo.
Collapse
Affiliation(s)
- Fang Hao
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Tianjin Medical University, Tianjin, China
| | - Qinhong Xu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Shuo Yu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Hui-Hua Chang
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Biased G protein-coupled receptor agonism mediates Neu1 sialidase and matrix metalloproteinase-9 crosstalk to induce transactivation of insulin receptor signaling. Cell Signal 2018; 43:71-84. [DOI: 10.1016/j.cellsig.2017.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/26/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022]
|
6
|
The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Receptor and the Metabolic Syndrome. Int J Mol Sci 2018; 19:ijms19020575. [PMID: 29462993 PMCID: PMC5855797 DOI: 10.3390/ijms19020575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin signaling, as mediated through the insulin receptor (IR), plays a critical role in metabolism. Aberrations in this signaling cascade lead to several pathologies, the majority of which are classified under the umbrella term "metabolic syndrome". Although many of these pathologies are associated with insulin resistance, the exact mechanisms are not well understood. One area of current interest is the possibility of G-protein-coupled receptors (GPCRs) influencing or regulating IR signaling. This concept is particularly significant, because GPCRs have been shown to participate in cross-talk with the IR. More importantly, GPCR signaling has also been shown to preferentially regulate specific downstream signaling targets through GPCR agonist bias. A novel study recently demonstrated that this GPCR-biased agonism influences the activity of the IR without the presence of insulin. Although GPCR-IR cross-talk has previously been established, the notion that GPCRs can regulate the activation of the IR is particularly significant in relation to metabolic syndrome and other pathologies that develop as a result of alterations in IR signaling. As such, we aim to provide an overview of the physiological and pathophysiological roles of the IR within metabolic syndrome and its related pathologies, including cardiovascular health, gut microflora composition, gastrointestinal tract functioning, polycystic ovarian syndrome, pancreatic cancer, and neurodegenerative disorders. Furthermore, we propose that the GPCR-biased agonism may perhaps mediate some of the downstream signaling effects that further exacerbate these diseases for which the mechanisms are currently not well understood.
Collapse
|
7
|
Hao F, Xu Q, Zhao Y, Stevens JV, Young SH, Sinnett-Smith J, Rozengurt E. Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells. Mol Cancer Res 2017; 15:929-941. [PMID: 28360038 DOI: 10.1158/1541-7786.mcr-17-0023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
We examined the impact of crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways on the regulation of Yes-associated protein (YAP) localization, phosphorylation, and transcriptional activity in the context of human pancreatic ductal adenocarcinoma (PDAC). Stimulation of PANC-1 or MiaPaCa-2 cells with insulin and neurotensin, a potent mitogenic combination of agonists for these cells, promoted striking YAP nuclear localization and decreased YAP phosphorylation at Ser127 and Ser397 Challenging PDAC cells with either insulin or neurotensin alone modestly induced the expression of YAP/TEAD-regulated genes, including connective tissue growth factor (CTGF), cysteine-rich angiogenic inducer 61 (CYR61), and CXCL5, whereas the combination of neurotensin and insulin induced a marked increase in the level of expression of these genes. In addition, siRNA-mediated knockdown of YAP/TAZ prevented the increase in the expression of these genes. A small-molecule inhibitor (A66), selective for the p110α subunit of PI3K, abrogated the increase in phosphatidylinositol 3,4,5-trisphosphate production and the expression of CTGF, CYR61, and CXCL5 induced by neurotensin and insulin. Furthermore, treatment of PDAC cells with protein kinase D (PKD) family inhibitors (CRT0066101 or kb NB 142-70) or with siRNAs targeting the PKD family prevented the increase of CTGF, CYR61, and CXCL5 mRNA levels in response to insulin and neurotensin stimulation. Thus, PI3K and PKD mediate YAP activation in response to insulin and neurotensin in pancreatic cancer cells.Implications: Inhibitors of PI3K or PKD disrupt crosstalk between insulin receptor and GPCR signaling systems by blocking YAP/TEAD-regulated gene expression in pancreatic cancer cells. Mol Cancer Res; 15(7); 929-41. ©2017 AACR.
Collapse
Affiliation(s)
- Fang Hao
- Tianjin Medical University, Tianjin, China.,Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Qinhong Xu
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,Xi'an Jiaotong University, Xi'an, China
| | - Yinglan Zhao
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,Sichuan University, Chengdu, China
| | - Jan V Stevens
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Steven H Young
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - James Sinnett-Smith
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Enrique Rozengurt
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California. .,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
8
|
Cui X, Liu Y, Wang B, Xian G, Liu X, Tian X, Qin C. Knockdown of GPR137 by RNAi inhibits pancreatic cancer cell growth and induces apoptosis. Biotechnol Appl Biochem 2015; 62:861-7. [PMID: 25471990 DOI: 10.1002/bab.1326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of cell-surface molecules involved in a number of biological and pathological processes, have recently emerged as key players in carcinogenesis and cancer progression. Orphan G protein-coupled receptors (oGPCRs) are a group of proteins lacking endogenous ligands. GPR137, one of the novel oGPCR genes, was discovered by homology screening. However, the biological role of GPR137 in cancers has not yet been discussed and is of great therapeutic interest. In this study, we knocked down GPR137 via a lentivirus system in two human pancreatic cancer cell lines BXPC-3 and PANC-1. Knockdown of GPR137 strongly inhibited cell proliferation and colony formation. Flow cytometry showed that cell cycle was arrested in the sub-G1 phase and apoptotic cells were significantly increased after GPR137 knockdown. Western blotting confirmed that GPR137 silencing induced apoptosis due to cleavage of PARP (poly ADP-ribose polymerase) and upregulation of caspase 3. Furthermore, lentivirus-mediated overexpression of GPR137 promoted the proliferation of PANC-1 cells, suggesting GPR137 as a potential oncogene in pancreatic cancer cells. Taken together, our results prove the importance of GPR137 as a crucial regulator in controlling cancer cell growth and apoptosis.
Collapse
Affiliation(s)
- Xianping Cui
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Yanguo Liu
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Bo Wang
- Department of immunology, Shandong University School of Medicine, Jinan, People's Republic of China
| | - Guozhe Xian
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Xin Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
9
|
IGFBP-2: The dark horse in metabolism and cancer. Cytokine Growth Factor Rev 2015; 26:329-46. [DOI: 10.1016/j.cytogfr.2014.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/29/2022]
|
10
|
Funk RHW. Endogenous electric fields as guiding cue for cell migration. Front Physiol 2015; 6:143. [PMID: 26029113 PMCID: PMC4429568 DOI: 10.3389/fphys.2015.00143] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions.
Collapse
|
11
|
Ming M, Sinnett-Smith J, Wang J, Soares HP, Young SH, Eibl G, Rozengurt E. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells. PLoS One 2014; 9:e114573. [PMID: 25493642 PMCID: PMC4262417 DOI: 10.1371/journal.pone.0114573] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022] Open
Abstract
Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1, MiaPaCa-2) with the isoquinoline alkaloid berberine (0.3-6 µM) inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70%) the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC) at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.
Collapse
Affiliation(s)
- Ming Ming
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jia Wang
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Heloisa P. Soares
- Division of Hematology-Oncology, Department of Medicine David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven H. Young
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Liu J, Li J, Li H, Li A, Liu B, Han L. A comprehensive analysis of candidate genes and pathways in pancreatic cancer. Tumour Biol 2014; 36:1849-57. [PMID: 25409614 DOI: 10.1007/s13277-014-2787-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022] Open
Abstract
The study aimed to dissect the molecular mechanism of pancreatic cancer by a range of bioinformatics approaches. Three microarray datasets (GSE32676, GSE21654, and GSE14245) were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) with logarithm of fold change (|logFC|) >0.585 and p value <0.05 were identified between pancreatic cancer samples and normal controls. Transcription factors (TFs) were selected from the DEGs based on TRASFAC database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the DEGs using The Database for Annotation, Visualization and Integrated Discovery (p value <0.05), followed by construction of protein-protein interaction (PPI) network using Search Tool for the Retrieval of Interacting Genes software. Latent pathway identification analysis was applied to analyze the DEGs-related pathways crosstalk and the pathways with high weight value were included in the pathway crosstalk network using Cytoscape. Sixty-five DEGs were screened out. CCAAT/enhancer-binding protein delta (CEBPD), FBJ osteosarcoma oncogene B (FOSB), Stratifin (SFN), Krüppel-like factor 5 (KLF5), Pentraxin 3 (PTX3), and nuclear receptor subfamily 4, group A, member 3 (NR4A3) were important TFs. Interleukin-6 (IL-6) was the hub node of the PPI network. DEGs were significantly enriched in NOD-like receptor signaling pathway which was primarily interacted with inflammation and immune related pathways (cytosolic DNA-sensing, hematopoietic cell lineage, intestinal immune network for IgA production and chemokine pathways). The study suggested CEBPD, FOSB, SFN, KLF5, PTX3, NR4A3, IL-6, and NOD-like receptor pathways were involved in pancreatic cancer.
Collapse
Affiliation(s)
- Jie Liu
- Department of general surgery, The First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Street, Nangang District, Harbin, 150001, China
| | | | | | | | | | | |
Collapse
|
13
|
De Marco P, Romeo E, Vivacqua A, Malaguarnera R, Abonante S, Romeo F, Pezzi V, Belfiore A, Maggiolini M. GPER1 is regulated by insulin in cancer cells and cancer-associated fibroblasts. Endocr Relat Cancer 2014; 21:739-53. [PMID: 25012984 DOI: 10.1530/erc-14-0245] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Elevated insulin levels have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes characterized by a poor prognosis. Insulin stimulates the proliferation, migration, and invasiveness of cancer cells through diverse transduction pathways, including estrogen signaling. As G protein estrogen receptor 1 (GPER1) mediates rapid cell responses to estrogens, we evaluated the potential of insulin to regulate GPER1 expression and function in leiomyosarcoma cancer cells (SKUT-1) and breast cancer-associated fibroblasts (CAFs), which were used as a model system. We found that insulin transactivates the GPER1 promoter sequence and increases the mRNA and protein expression of GPER1 through the activation of the PRKCD/MAPK1/c-Fos/AP1 transduction pathway, as ascertained by means of specific pharmacological inhibitors and gene-silencing experiments. Moreover, cell migration triggered by insulin occurred through GPER1 and its main target gene CTGF, whereas the insulin-induced expression of GPER1 boosted cell-cycle progression and the glucose uptake stimulated by estrogens. Notably, a positive correlation between insulin serum levels and GPER1 expression was found in cancer fibroblasts obtained from breast cancer patients. Altogether, our data indicate that GPER1 may be included among the complex network of transduction signaling triggered by insulin that drives cells toward cancer progression.
Collapse
Affiliation(s)
- Paola De Marco
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Enrica Romeo
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Adele Vivacqua
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Roberta Malaguarnera
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Sergio Abonante
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Romeo
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Pezzi
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of PharmacyHealth and Nutritional Sciences, University of Calabria, 87036 Rende (CS), ItalyRegional HospitalCosenza, ItalyEndocrinologyDepartment of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
14
|
Lappano R, De Marco P, De Francesco EM, Chimento A, Pezzi V, Maggiolini M. Cross-talk between GPER and growth factor signaling. J Steroid Biochem Mol Biol 2013; 137:50-6. [PMID: 23542661 DOI: 10.1016/j.jsbmb.2013.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/03/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) and growth factor receptors mediate multiple physio-pathological responses to a diverse array of extracellular stimuli. In this regard, it has been largely demonstrated that GPCRs and growth factor receptors generate a multifaceted signaling network, which triggers relevant biological effects in normal and cancer cells. For instance, some GPCRs transactivate the epidermal growth factor receptor (EGFR), which stimulates diverse transduction pathways leading to gene expression changes, cell migration, survival and proliferation. Moreover, it has been reported that a functional interaction between growth factor receptors and steroid hormones like estrogens is involved in the growth of many types of tumors as well as in the resistance to endocrine therapy. This review highlights recent findings on the cross-talk between a member of the GPCR family, the G protein-coupled estrogen receptor 1 (GPER, formerly known as GPR30) and two main growth factor receptors like EGFR and insulin-like growth factor-I receptor (IGF-IR). The biological implications of the functional interaction between these important mediators of cell responses particularly in cancer are discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Dipartimento Farmaco-Biologico, Università della Calabria, via P. Bucci, 87036 Rende, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J, Rozengurt E. Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One 2013; 8:e57289. [PMID: 23437362 PMCID: PMC3578870 DOI: 10.1371/journal.pone.0057289] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/20/2013] [Indexed: 11/18/2022] Open
Abstract
The mTOR pathway is aberrantly stimulated in many cancer cells, including pancreatic ductal adenocarcinoma (PDAC), and thus it is a potential target for therapy. However, the mTORC1/S6K axis also mediates negative feedback loops that attenuate signaling via insulin/IGF receptor and other tyrosine kinase receptors. Suppression of these feed-back loops unleashes over-activation of upstream pathways that potentially counterbalance the antiproliferative effects of mTOR inhibitors. Here, we demonstrate that treatment of PANC-1 or MiaPaCa-2 pancreatic cancer cells with either rapamycin or active-site mTOR inhibitors suppressed S6K and S6 phosphorylation induced by insulin and the GPCR agonist neurotensin. Rapamycin caused a striking increase in Akt phosphorylation at Ser(473) while the active-site inhibitors of mTOR (KU63794 and PP242) completely abrogated Akt phosphorylation at this site. Conversely, active-site inhibitors of mTOR cause a marked increase in ERK activation whereas rapamycin did not have any stimulatory effect on ERK activation. The results imply that first and second generation of mTOR inhibitors promote over-activation of different pro-oncogenic pathways in PDAC cells, suggesting that suppression of feed-back loops should be a major consideration in the use of these inhibitors for PDAC therapy. In contrast, metformin abolished mTORC1 activation without over-stimulating Akt phosphorylation on Ser(473) and prevented mitogen-stimulated ERK activation in PDAC cells. Metformin induced a more pronounced inhibition of proliferation than either KU63794 or rapamycin while, the active-site mTOR inhibitor was more effective than rapamycin. Thus, the effects of metformin on Akt and ERK activation are strikingly different from allosteric or active-site mTOR inhibitors in PDAC cells, though all these agents potently inhibited the mTORC1/S6K axis.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Feedback, Physiological/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoglycemic Agents/pharmacology
- Indoles/pharmacology
- Insulin/pharmacology
- Metformin/pharmacology
- Morpholines/pharmacology
- Neurotensin/pharmacology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Purines/pharmacology
- Pyrimidines/pharmacology
- Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Heloisa P. Soares
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- Division of Hematology-Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yang Ni
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Krisztina Kisfalvi
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine; CURE: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
16
|
Fino KK, Matters GL, McGovern CO, Gilius EL, Smith JP. Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1244-52. [PMID: 22442157 PMCID: PMC3378167 DOI: 10.1152/ajpgi.00460.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastrin stimulates the growth of pancreatic cancer cells through the activation of the cholecystokinin-B receptor (CCK-BR), which has been found to be overexpressed in pancreatic cancer. In this study, we proposed that the CCK-BR drives growth of pancreatic cancer; hence, interruption of CCK-BR activity could potentially be an ideal target for cancer therapeutics. The effect of CCK-BR downregulation in the human pancreatic adenocarcinoma cells was examined by utilizing specific CCK-BR-targeted RNA interference reagents. The CCK-BR receptor expression was both transiently and stably downregulated by transfection with selective CCK-BR small-interfering RNA or short-hairpin RNA, respectively, and the effects on cell growth and apoptosis were assessed. CCK-BR downregulation resulted in reduced cancer cell proliferation, decreased DNA synthesis, and cell cycle arrest as demonstrated by an inhibition of G(1) to S phase progression. Furthermore, CCK-BR downregulation increased caspase-3 activity, TUNEL-positive cells, and decreased X-linked inhibitor of apoptosis protein expression, suggesting apoptotic activity. Pancreatic cancer cell mobility was decreased when the CCK-BR was downregulated, as assessed by a migration assay. These results show the importance of the CCK-BR in regulation of growth and apoptosis in pancreatic cancer. Strategies to decrease the CCK-BR expression and activity may be beneficial for the development of new methods to improve the treatment for patients with pancreatic cancer.
Collapse
Affiliation(s)
| | - Gail L. Matters
- Departments of 1Medicine and ,2Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | | | | | | |
Collapse
|
17
|
Insulin-like growth factor-I regulates GPER expression and function in cancer cells. Oncogene 2012; 32:678-88. [PMID: 22430216 DOI: 10.1038/onc.2012.97] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Functional cross talk between insulin-like growth factor-I (IGF-I) system and estrogen signaling has been largely reported, although the underlying molecular mechanisms remain to be fully elucidated. As GPR30/GPER mediates rapid cell responses to estrogens, we evaluated the potential of IGF-I to regulate GPER expression and function in estrogen receptor (ER)α-positive breast (MCF-7) and endometrial (Ishikawa) cancer cells. We found that IGF-I transactivates the GPER promoter sequence and upregulates GPER mRNA and protein levels in both cells types. Similar data were found, at least in part, in carcinoma-associated fibroblasts. The upregulation of GPER expression by IGF-I involved the IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway and required ERα, as ascertained by specific pharmacological inhibitors and gene-silencing. In both MCF-7 and Ishikawa cancer cells, the IGF-I-dependent cell migration required GPER and its main target gene CTGF, whereas the IGF-I-induced proliferation required both GPER and cyclin D1. Our data demonstrate that the IGF-I system regulates GPER expression and function, triggering the activation of a signaling network that leads to the migration and proliferation of cancer cells.
Collapse
|