1
|
Ghosh AK, Su YP, Forman M, Keyes RF, Smith BC, Hu X, Ferrer M, Arav-Boger R. Harnessing the Noncanonical Keap1-Nrf2 Pathway for Human Cytomegalovirus Control. J Virol 2023; 97:e0016023. [PMID: 36939350 PMCID: PMC10134830 DOI: 10.1128/jvi.00160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Collapse
Affiliation(s)
- Ayan K. Ghosh
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yu-Pin Su
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Forman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Lee HJ, Kim SH, Kim YH, Kim SH, Oh GS, Bae JE, Kim JB, Park NY, Park K, Yeom E, Jeong K, Kim P, Jo DS, Cho DH. Nalfurafine Hydrochloride, a κ-Opioid Receptor Agonist, Induces Melanophagy via PKA Inhibition in B16F1 Cells. Cells 2022; 12:cells12010146. [PMID: 36611940 PMCID: PMC9818167 DOI: 10.3390/cells12010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Selective autophagy controls cellular homeostasis by degrading unnecessary or damaged cellular components. Melanosomes are specialized organelles that regulate the biogenesis, storage, and transport of melanin in melanocytes. However, the mechanisms underlying melanosomal autophagy, known as the melanophagy pathway, are poorly understood. To better understand the mechanism of melanophagy, we screened an endocrine-hormone chemical library and identified nalfurafine hydrochlorides, a κ-opioid receptor agonist, as a potent inducer of melanophagy. Treatment with nalfurafine hydrochloride increased autophagy and reduced melanin content in alpha-melanocyte-stimulating hormone (α-MSH)-treated cells. Furthermore, inhibition of autophagy blocked melanosomal degradation and reversed the nalfurafine hydrochloride-induced decrease in melanin content in α-MSH-treated cells. Consistently, treatment with other κ-opioid receptor agonists, such as MCOPPB or mianserin, inhibited excessive melanin production but induced autophagy in B16F1 cells. Furthermore, nalfurafine hydrochloride inhibited protein kinase A (PKA) activation, which was notably restored by forskolin, a PKA activator. Additionally, forskolin treatment further suppressed melanosomal degradation as well as the anti-pigmentation activity of nalfurafine hydrochloride in α-MSH-treated cells. Collectively, our data suggest that stimulation of κ-opioid receptors induces melanophagy by inhibiting PKA activation in α-MSH-treated B16F1 cells.
Collapse
Affiliation(s)
- Ha Jung Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong Hwan Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyeong Seok Oh
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joon Bum Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Na Yeon Park
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyuhee Park
- Bio-center, Gyeonggido Business & Science Accelerator, Gyeonggido, Suwon 16229, Republic of Korea
| | - Eunbyul Yeom
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwiwan Jeong
- Bio-center, Gyeonggido Business & Science Accelerator, Gyeonggido, Suwon 16229, Republic of Korea
| | - Pansoo Kim
- Bio-center, Gyeonggido Business & Science Accelerator, Gyeonggido, Suwon 16229, Republic of Korea
| | - Doo Sin Jo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (D.S.J.); (D.-H.C.); Tel.: +82-53-950-5382 (D.S.J. & D.-H.C.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- OGASIS Corp. 260, Changyong-daero, Yongtong-gu, Suwon 08826, Republic of Korea
- Correspondence: (D.S.J.); (D.-H.C.); Tel.: +82-53-950-5382 (D.S.J. & D.-H.C.)
| |
Collapse
|
3
|
Das A, Basu S, Bandyopadhyay D, Mukherjee K, Datta D, Chakraborty S, Jana S, Adak M, Bose S, Chakrabarti S, Swarnakar S, Chakrabarti P, Bhattacharyya SN. Inhibition of extracellular vesicle-associated MMP2 abrogates intercellular hepatic miR-122 transfer to liver macrophages and curtails inflammation. iScience 2021; 24:103428. [PMID: 34877493 PMCID: PMC8633982 DOI: 10.1016/j.isci.2021.103428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic miRNA, miR-122, plays an important role in controlling metabolic homeostasis in mammalian liver. Intercellular transfer of miR-122 was found to play a role in controlling tissue inflammation. miR-122, as part of extracellular vesicles released by lipid-exposed hepatic cells, are taken up by tissue macrophages to activate them and produce inflammatory cytokines. Matrix metalloprotease 2 or MMP2 was found to be essential for transfer of extracellular vesicles and their miRNA content from hepatic to non-hepatic cells. MMP2 was found to increase the movement of the extracellular vesicles along the extracellular matrix to enhance their uptake in recipient cells. Inhibition of MMP2 restricts functional transfer of hepatic miRNAs across the hepatic and non-hepatic cell boundaries, and by targeting MMP2, we could reduce the innate immune response in mammalian liver by preventing intra-tissue miR-122 transfer. MMP2 thus could be a useful target to restrict high-fat-diet-induced obesity-related metaflammation. Hepatocytes on exposure to high lipid export proinflammatory miR-122 in mouse liver Uptake of extracellular miR-122 induces inflammatory signals in liver macrophages MMP2 on extracellular vesicles is essential for intercellular transfer of miRNA Inhibition of MMP2 prevents miR-122 transfer and stops activation of macrophages
Collapse
Affiliation(s)
- Arnab Das
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Sudarshana Basu
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Diptankar Bandyopadhyay
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Debduti Datta
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Sreemoyee Chakraborty
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, (CSIR-HRDC), Ghaziabad, India
| | - Sayantan Jana
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Moumita Adak
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Sarpita Bose
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Partha Chakrabarti
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, (CSIR-HRDC), Ghaziabad, India
| |
Collapse
|
4
|
Impaired capillary tube formation induced by elevated secretion of IL8 involves altered signaling via the CXCR1/PI3K/MMP2 pathway. Mol Biol Rep 2021; 48:601-610. [PMID: 33411234 DOI: 10.1007/s11033-020-06104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Angiogenesis is a multistep process requiring endothelial cell activation, migration, proliferation and tube formation. We recently reported that elevated secretion of interlukin 8 (IL8) by myotubes (MT) from subjects with Type-2 Diabetes (T2D) reduced angiogenesis by human umbilical vein endothelial cells (HUVEC) and human skeletal muscle explants. This lower vascularization was mediated through impaired activation of the phosphatidylinositol 3-kinase (PI3K)-pathway. We sought to investigate additional signaling elements that might mediate reduced angiogenesis. HUVEC were exposed to levels of IL8 equal to those secreted by MT from non-diabetic (ND) and T2D subjects and the involvement of components in the angiogenic response pathway examined. Cellular content of reactive oxygen species and Nitrate secretion were similar after treatment with [ND-IL8] and [T2D-IL8]. CXCR1 protein was down-regulated after treatment with [T2D-IL8] (p < 0.01 vs [ND-IL8] treatment); CXCR2 expression was unaltered. Addition of neutralizing antibodies against CXCR1 and CXCR2 to HUVEC treated with IL8 confirmed that CXCR1 alone mediated the angiogenic response to IL8. A key modulator of angiogenesis is matrix metalloproteinase-2 (MMP2). MMP2 secretion was higher after treatment with [ND-IL8] vs [T2D-IL8] (p < 0.01). MMP2 inhibition reduced tube formation to greater extent with [ND-IL8] than with [T2D-IL8] (p < 0.005). The PI3K-pathway inhibitor LY294002 reduced IL8-induced MMP2 release. IL8 regulation of MMP2 release was CXCR1 dependent, as anti-CXCR1 significantly reduced MMP2 release (p < 0.05). These results suggest that high levels of IL8 secreted by T2D MT trigger reduced capillarization via lower activation of a CXCR1-PI3K pathway, followed by impaired release and activity of MMP2.
Collapse
|
5
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
6
|
Celentano A, Yap T, Paolini R, Yiannis C, Mirams M, Koo K, McCullough M, Cirillo N. Inhibition of matrix metalloproteinase-2 modulates malignant behaviour of oral squamous cell carcinoma cells. J Oral Pathol Med 2020; 50:323-332. [PMID: 31925966 DOI: 10.1111/jop.12992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/16/2019] [Accepted: 01/04/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play a crucial role in the malignant phenotype of cancer cells. In particular, active levels of MMP2 in cancer cells have been associated with invasion and metastasis through the degradation of basement membrane extracellular matrix proteins. However, little is known about the role of this potential biomarker in oral cancer. Our aim was to investigate the effect of MMP2 inhibition on OSCC activity in vitro, as well as to assess MMP2 dysregulation in oral cancer samples. METHODS Human OSCC cell lines H357 and H400 were tested with the selective MMP2 inhibitor ARP101 and the MMP2 neutralising monoclonal antibody MA5-13590 to assess cell proliferation in vitro using MTS assay. Cell migration at 12/24 h was assessed using a Transwell migration assay. Cell invasion was assessed at 24 h using a Corning Matrigel invasion assay. MMP2 expression was assessed in 208 tissue samples (related to 60 OSCC cases and nine normal control) using tissue microarray (TMA) and further analysed via TCGA. RESULTS Both ARP101 and MA5-13590 monoclonal antibody reduced cell proliferation in both the cell lines tested. Treatment with 4μg/mL of MMP2 monoclonal antibody showed a significant decrease in cell migration at 24 hours. The administration of ARP101 and monoclonal antibody to H357 and H400 cell lines induced a drastic reduction in cell invasion at 24 h compared to the control. In patients, TCGA analysis demonstrated that oral cancer tissues express significantly higher levels of MMP2 mRNA compared to normal oral tissues. Further, IHC analysis on TMA showed significant difference in MMP2 protein expression between low and high histopathological grade OSCC. CONCLUSIONS We have demonstrated, for the first time, that MMP2 inhibition affects oral cancer cells ability to survive, migrate and invade in vitro. Differences between MMP2 expression in normal and malignant tissues varied. Further research on the role of MMP2 in OSCC and novel mechanisms to inhibit MMP2-dependent pathways should be encouraged.
Collapse
Affiliation(s)
- Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Michiko Mirams
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Kendrick Koo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Mao S, Vincent M, Chen M, Zhang M, Hinek A. Exploration of Multiple Signaling Pathways Through Which Sodium Tanshinone IIA Sulfonate Attenuates Pathologic Remodeling Experimental Infarction. Front Pharmacol 2019; 10:779. [PMID: 31354493 PMCID: PMC6639725 DOI: 10.3389/fphar.2019.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
The level of maladaptive myocardial remodeling consistently contributes to the poor prognosis of patients following a myocardial infarction (MI). In this study, we investigated whether and how sodium tanshinone IIA sulfonate (STS) would attenuate the post-infarct cardiac remodeling in mice model of MI developing after surgical ligation of the left coronary artery. All mice subjected to experimental MI or to the sham procedure were then treated for the following 4 weeks, either with STS or with a vehicle alone. Results of our studies indicated that STS treatment of MI mice prevented the left ventricular dilatation and improved their cardiac function. Results of further tests, aimed at mechanistic explanation of the beneficial effects of STS, indicated that treatment with this compound enhanced the autophagy and, at the same time, inhibited apoptosis of the cardiomyocytes. Meaningfully, we have also established that myocardium of STS-treated mice displayed significantly higher levels of adenosine monophosphate kinase than their untreated counterparts and that this effect additionally associated with the significantly diminished activities of apoptotic promoters: mammalian target of rapamycin and P70S6 kinase. Moreover, we also found that additional administration of the adenosine monophosphate kinase inhibitor (compound C) or autophagy inhibitor (chloroquine) practically eliminated the observed beneficial effects of STS. In conclusion, we suggest that the described multistage mechanism triggered by STS treatment enhanced autophagy, thereby attenuating pathologic remodeling of the post-infarct hearts.
Collapse
Affiliation(s)
- Shuai Mao
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Matthew Vincent
- Medical School, St. George's, University of London, London, United Kingdom
| | - Maosheng Chen
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minzhou Zhang
- Key Discipline of Integrated Traditional Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Aleksander Hinek
- Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
8
|
Yan R, Liu M, Hu Y, Wang L, Wang C, Jiang Y, Zhou Q, Qi X, Dong N, Wu Q. Ectopic expression of human airway trypsin-like protease 4 in acute myeloid leukemia promotes cancer cell invasion and tumor growth. Cancer Med 2019; 8:2348-2359. [PMID: 30843660 PMCID: PMC6537003 DOI: 10.1002/cam4.2074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Transmembrane serine proteases have been implicated in the development and progression of solid and hematological cancers. Human airway trypsin-like protease 4 (HAT-L4) is a transmembrane serine protease expressed in epithelial cells and exocrine glands. In the skin, HAT-L4 is important for normal epidermal barrier function. Here, we report an unexpected finding of ectopic HAT-L4 expression in neutrophils and monocytes from acute myeloid leukemia (AML) patients. Such expression was not detected in bone marrow cells from normal individuals or patients with chronic myeloid leukemia, acute lymphocytic leukemia and chronic lymphocytic leukemia. In AML patients who underwent chemotherapy, persistent HAT-L4 expression in bone marrow cells was associated with minimal residual disease and poor prognostic outcomes. In culture, silencing HAT-L4 expression in AML-derived THP-1 cells by short hairpin RNAs inhibited matrix metalloproteinase-2 activation and Matrigel invasion. In mouse xenograft models, inhibition of HAT-L4 expression reduced the proliferation and growth of THP-1 cell-derived tumors. Our results indicate that ectopic HAT-L4 expression is a pathological mechanism in AML and that HAT-L4 may be used as a cell surface marker for AML blast detection and targeting.
Collapse
Affiliation(s)
- Ruhong Yan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yae Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Can Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yizhi Jiang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaofei Qi
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Suzhou, China.,Department of Urology of the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine of Geriatric Disease, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine of Geriatric Disease, Suzhou, China.,Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
9
|
Kryczka J, Papiewska-Pajak I, Kowalska MA, Boncela J. Cathepsin B Is Upregulated and Mediates ECM Degradation in Colon Adenocarcinoma HT29 Cells Overexpressing Snail. Cells 2019; 8:cells8030203. [PMID: 30818851 PMCID: PMC6468499 DOI: 10.3390/cells8030203] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
During tumor development and ongoing metastasis the acquisition of mesenchymal cell traits by epithelial carcinoma cells is achieved through a programmed phenotypic shift called the epithelial-to-mesenchymal transition, EMT. EMT contributes to increased cancer cell motility and invasiveness mainly through invadosomes, the adhesion structures that accompany the mesenchymal migration. The invadosomes and their associated proteases restrict protease activity to areas of the cell in direct contact with the ECM, thus precisely controlling cell invasion. Our data prove that Snail-overexpressing HT-29 cells that imitate the phenotype of colon cancer cells in the early stage of the EMT showed an increase in the expression and pericellular activity of cathepsin B. It appears that the pericellular localization of cathepsin B, also observed in colon and rectum adenocarcinoma tissue samples, plays a key role in its function.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | | | - M Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| |
Collapse
|
10
|
Mishra P, Ammanathan V, Manjithaya R. Chemical Biology Strategies to Study Autophagy. Front Cell Dev Biol 2018; 6:160. [PMID: 30538986 PMCID: PMC6277461 DOI: 10.3389/fcell.2018.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
Growing amount of evidence in the last two decades highlight that macroautophagy (generally referred to as autophagy) is not only indispensable for survival in yeast but also equally important to maintain cellular quality control in higher eukaryotes as well. Importantly, dysfunctional autophagy has been explicitly shown to be involved in various physiological and pathological conditions such as cell death, cancer, neurodegenerative, and other diseases. Therefore, modulation and regulation of the autophagy pathway has emerged as an alternative strategy for the treatment of various disease conditions in the recent years. Several studies have shown genetic or pharmacological modulation of autophagy to be effective in treating cancer, clearing intracellular aggregates and pathogens. Understanding and controlling the autophagic flux, either through a genetic or pharmacological approach is therefore a highly promising approach and of great scientific interest as spatiotemporal and cell-tissue-organ level autophagy regulation is not clearly understood. Indeed, chemical biology approaches that identify small molecule effectors of autophagy have thus a dual benefit: the modulators act as tools to study and understand the process of autophagy, and may also have therapeutic potential. In this review, we discuss different strategies that have appeared to screen and identify potent small molecule modulators of autophagy.
Collapse
Affiliation(s)
- Piyush Mishra
- Autophagy Lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Veena Ammanathan
- Autophagy Lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Lab, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
11
|
Desjarlais M, Annabi B. Dual functions of ARP101 in targeting membrane type-1 matrix metalloproteinase: Impact on U87 glioblastoma cell invasion and autophagy signaling. Chem Biol Drug Des 2018; 93:272-282. [PMID: 30291676 DOI: 10.1111/cbdd.13410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) possesses both extracellular proteolytic and intracellular signal-transducing functions in tumorigenesis. An imbalance in MT1-MMP expression and/or function triggers a metastatic, invasive, and therapy resistance phenotype. MT1-MMP is involved in extracellular matrix (ECM) proteolysis, activation of latent MMPs, as well as in autophagy signaling in human hepatoma and glioblastoma cells. A low autophagy index in tumorigenesis has been inferred by recent studies where autophagic capacity was decreased during tumor progression. Here, we establish ARP101 as a dual-function small-molecule inhibitor against MT1-MMP ECM hydrolysis and autophagy signal-transducing functions in a model of grade IV glioblastoma cells. ARP101 inhibited concanavalin-A-mediated proMMP-2 activation into MMP-2, as well as MT1-MMP auto-proteolytic processing. When overexpressing recombinant Wt MT1-MMP, ARP101 inhibited proMMP-2 activation and triggered the formation of MT1-MMP oligomers that required trafficking to the plasma membrane. ARP101 further induced cell autophagy as reflected by increased formation of acidic vacuole organelles, LC3 puncta, and autophagy-related protein ATG9 transcription. These were all significantly reversed upon siRNA-mediated gene silencing of MT1-MMP. ARP101 can thus concomitantly inhibit MT1-MMP extracellular catalytic function and exploit its intracellular transducing signal function to trigger autophagy-mediated cell death in U87 glioblastoma cancer cells.
Collapse
Affiliation(s)
- Michel Desjarlais
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, Quebec, Canada
| |
Collapse
|
12
|
Agarwal S, Muniyandi P, Maekawa T, Kumar DS. Vesicular systems employing natural substances as promising drug candidates for MMP inhibition in glioblastoma: A nanotechnological approach. Int J Pharm 2018; 551:339-361. [PMID: 30236647 DOI: 10.1016/j.ijpharm.2018.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM), one of the most lethal Brain tumors, characterized by its high invasive nature and increased mortality rates forms a major bottleneck in transport of therapeutics across the Blood Brain Barrier (BBB). Matrix metalloproteinases (MMPs) are classified as enzymes, which are found to be up regulated in the Glioma tumor microenvironment and thus can be considered as a target for inhibition for curbing GBM. Many chemotherapeutics and techniques have been employed for inhibiting MMPs till now but all of them failed miserably and were withdrawn in clinical trials due to their inability in restricting the tumor growth or increasing the overall survival rates. Thus, the quest for finding the suitable MMP inhibitor is still on and there is a critical need for identification of novel compounds which can alter the BBB permeability, restrain tumor growth and prevent tumor recurrence. Currently, naturally derived substances are gaining widespread attention as tumor inhibitors and many studies have been reported by far highlighting their importance in restricting MMP expression thus serving as chemotherapeutics for cancer due to their minimal toxicity. These substances may serve as probable candidates for inhibiting MMP expression in GBM. However, targeting and delivering the inhibitor to its target site is an issue that needs to be overcome in order to attain maximum specificity and sustained release. The birth of nanotechnology served as a boon in delivering drugs to the most complicated areas thus paving way for Nano drug delivery. An efficient Nano carrier with ability to cross the BBB and competently kill the Glioma cells forms the prerequisite for GBM chemotherapy. Vesicular drug delivery systems are one such class of carriers, which have the capacity to release the drug at a predetermined rate at the target site thus minimizing any undesirable side effects. Exploiting vesicular systems as promising Nano drug carriers to formulate naturally derived substances, that can bypass the BBB and act as an inhibitor against MMPs in GBM is the main theme of this review.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - Priyadharshni Muniyandi
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - Toru Maekawa
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - D Sakthi Kumar
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan.
| |
Collapse
|
13
|
Donato L, Bramanti P, Scimone C, Rinaldi C, Giorgianni F, Beranova-Giorgianni S, Koirala D, D'Angelo R, Sidoti A. miRNAexpression profile of retinal pigment epithelial cells under oxidative stress conditions. FEBS Open Bio 2018; 8:219-233. [PMID: 29435412 PMCID: PMC5794457 DOI: 10.1002/2211-5463.12360] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/03/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Deep analysis of regulative mechanisms of transcription and translation in eukaryotes could improve knowledge of many genetic pathologies such as retinitis pigmentosa (RP). New layers of complexity have recently emerged with the discovery that ‘junk’ DNA is transcribed and, among these, miRNAs have assumed a preponderant role. We compared changes in the expression of miRNAs obtained from whole transcriptome analyses, between two groups of retinal pigment epithelium (RPE) cells, one untreated and the other exposed to the oxidant agent oxidized low‐density lipoprotein (oxLDL), examining four time points (1, 2, 4 and 6 h). We found that 23 miRNAs exhibited altered expression in the treated samples, targeting genes involved in several biochemical pathways, many of them associated to RP for the first time, such as those mediated by insulin receptor signaling and son of sevenless. Moreover, five RP causative genes (KLHL7, RDH11,CERKL, AIPL1 and USH1G) emerged as already validated targets of five altered miRNAs (hsa‐miR‐1307, hsa‐miR‐3064, hsa‐miR‐4709, hsa‐miR‐3615 and hsa‐miR‐637), suggesting a tight connection between induced oxidative stress and RP development and progression. This miRNA expression analysis of oxidative stress‐induced RPE cells has discovered new regulative functions of miRNAs in RP that should lead to the discovery of new ways to regulate the etiopathogenesis of RP.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| | | | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy
| | | | | | | | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| |
Collapse
|
14
|
Hwang HY, Cho SM, Kwon HJ. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin Drug Discov 2017; 12:909-923. [PMID: 28758515 DOI: 10.1080/17460441.2017.1349751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In recent years, development of novel bioactive small molecules targeting autophagy has been implicated for autophagy-related disease treatment. Screening new small molecules regulating autophagy allows for the discovery of novel autophagy machinery and therapeutic agents. Areas covered: Two major screening methods for novel autophagy modulators are introduced in this review, namely target based screening and phenotype based screening. With increasing attention focused on chemical compound libraries, coupled with the development of new assay systems, this review attempts to provide an efficient strategy to explore autophagy biology and discover small molecules for the treatment of autophagy-related diseases. Expert opinion: Adopting an appropriate autophagy screening strategy is important for developing small molecules capable of treating neurodegenerative diseases and cancers. Phenotype based screening and target based screening were both used for developing effective small molecules. However, each of these methods has many pros and cons. An efficient approach is suggested to screen for novel lead compounds targeting autophagy, which could provide new hits with better efficiency and rapidity.
Collapse
Affiliation(s)
- Hui-Yun Hwang
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Sung Min Cho
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Ho Jeong Kwon
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
15
|
Kryczka J, Przygodzka P, Bogusz H, Boncela J. HMEC-1 adopt the mixed amoeboid-mesenchymal migration type during EndMT. Eur J Cell Biol 2017; 96:289-300. [PMID: 28487031 DOI: 10.1016/j.ejcb.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
The contribution of endothelial cells to scar and fibrotic tissue formation is undisputedly connected to their ability to undergo the endothelial-to-mesenchymal transition (EndMT) towards fibroblast phenotype-resembling cells. The migration model of fibroblasts and fibroblast-resembling cells is still not fully understood. It may be either a Rho/ROCK-independent, an integrin- and MMP-correlated ECM degradation-dependent, a mesenchymal model or Rho/ROCK-dependent, integrin adhesion- and MMP activity-independent, an amoeboid model. Here, we hypothesized that microvascular endothelial cells (HMEC-1) undergoing EndMT adopt an intermediate state of drifting migration model between the mesenchymal and amoeboid protrusive types in the early stages of fibrosis. We characterized the response of HMEC-1 to TGF-β2, a well-known mediator of EndMT within the microvasculature. We observed that TGF-β2 induces up to an intermediate mesenchymal phenotype in HMEC-1. In parallel, MMP-2 is upregulated and is responsible for most proteolytic activity. Interestingly, the migration of HMEC-1 undergoing EndMT is dependent on both ECM degradation and invadosome formation associated with MMP-2 proteolytic activity and Rho/ROCK cytoskeleton contraction. In conclusion, the transition from mesenchymal towards amoeboid movement highlights a molecular plasticity mechanism in endothelial cell migration in skin fibrosis.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| | | | - Helena Bogusz
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| | - Joanna Boncela
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| |
Collapse
|
16
|
Zhou Y, Rucker EB, Zhou BP. Autophagy regulation in the development and treatment of breast cancer. Acta Biochim Biophys Sin (Shanghai) 2016; 48:60-74. [PMID: 26637829 DOI: 10.1093/abbs/gmv119] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/21/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a major catabolic process in which intracellular membrane structures, protein complexes, and lysosomes are formed as lysoautophagosome to degrade and renew cytoplasmic components. Autophagy is physiologically a strategy and mechanism for cellular homeostasis as well as adaptation to stress, and thus alterations in the autophagy machinery may lead to diverse pathological conditions. The role of autophagy in cancer is complex, and the current literature reflects this as a 'double-edged sword'. Autophagy shows promise as a novel therapeutic target in various types of breast cancer, inhibiting or increasing treatment efficacy in a context- and cell-type-dependent manner. This review aims to summarize the recent advances in the understanding of the mechanisms by which key modulators of autophagy participate in cancer metastasis, highlight different autophagy-deficient murine models for breast cancer study, and provide further impetus for the modulation of autophagy in anticancer therapy.
Collapse
Affiliation(s)
- Yuting Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky School of Medicine, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Edmund B Rucker
- Department of Biology, University of Kentucky College of Arts and Sciences, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky School of Medicine, Lexington, KY 40506, USA Department of Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| |
Collapse
|
17
|
Ji H, Lu HW, Li YM, Lu L, Wang JL, Zhang YF, Shang H. Twist promotes invasion and cisplatin resistance in pancreatic cancer cells through growth differentiation factor 15. Mol Med Rep 2015; 12:3841-3848. [PMID: 26018318 DOI: 10.3892/mmr.2015.3867] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 05/06/2015] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer (PC) is an aggressive and devastating disease with a poor prognosis. Cisplatin, a commonly used chemotherapeutic agent for solid tumors, is effective as a single agent or in combination with other drugs for the treatment of PC. Previous studies have suggested that Twist and growth differentiation factor 15 (GDF15) are involved in the progression of PC. However, the role of Twist and GDF15 in PC remains to be elucidated. In the present study, the individual effect of and interaction between Twist and GDF15 in PC cell invasion and chemoresistance to cisplatin was examined. Twist and/or GDF15 were stably overexpressed or knocked down in ASPC‑1 and BXPC‑3 human PC cells. Overexpression of Twist in the two cell lines markedly increased GDF15 expression, cell invasion, matrix metalloproteinase‑2 expression/activity and the half maximal inhibitory concentration (IC50) values of cisplatin, which was eradicated by GDF15 knockdown or the selective p38 mitogen‑activated protein kinase (MAPK) inhibitor SB203580 (10 µM). By contrast, Twist knockdown significantly decreased GDF15 expression, cell invasion, matrix metalloproteinase‑2 expression/activity and the IC50 values of cisplatin, which was completely reversed by overexpression of GDF15. In addition, while overexpression and knockdown of Twist increased and decreased p38 MAPK activity, respectively, GDF15 demonstrated no significant effect on p38 MAPK activity in PC cells. In conclusion, the present study, for the first time, to the best of our knowledge, demonstrated that Twist promotes PC cell invasion and cisplatin chemoresistance through inducing GDF15 expression via a p38 MAPK‑dependent mechanism. The present study provides new insights into the molecular mechanisms underlying PC progression and chemoresistance.
Collapse
Affiliation(s)
- Hong Ji
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong-Wei Lu
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yi-Ming Li
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Le Lu
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin-Long Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ya-Fei Zhang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hao Shang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
18
|
BIX-01294-induced autophagy regulates elongation of primary cilia. Biochem Biophys Res Commun 2015; 460:428-33. [PMID: 25796328 DOI: 10.1016/j.bbrc.2015.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
Abstract
Previously, we showed that BIX-01294 treatment strongly activates autophagy. Although, the interplay between autophagy and ciliogenesis has been suggested, the role of autophagy in ciliogenesis is controversial and largely unknown. In this study, we investigated the effects of autophagy induced by BIX-01294 on the formation of primary cilia in human retinal pigmented epithelial (RPE) cells. Treatment of RPE cells with BIX-01294 caused strong elongation of the primary cilium and increased the number of ciliated cells, as well as autophagy activation. The elongated cilia in serum starved cultured cells were gradually decreased by re-feeding the cells with normal growth medium. However, the disassembly of cilia was blocked in the BIX-01294-treated cells. In addition, both genetic and chemical inhibition of autophagy suppressed BIX-01294-mediated ciliogenesis in RPE cells. Taken together, these results suggest that autophagy induced by BIX-01294 positively regulates the elongation of primary cilium.
Collapse
|
19
|
Panda PK, Mukhopadhyay S, Das DN, Sinha N, Naik PP, Bhutia SK. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Semin Cell Dev Biol 2015; 39:43-55. [PMID: 25724561 DOI: 10.1016/j.semcdb.2015.02.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/15/2022]
Abstract
Autophagy in cancer is an intensely debated concept in the field of translational research. The dual nature of autophagy implies that it can potentially modulate the pro-survival and pro-death mechanisms in tumor initiation and progression. There is a prospective molecular relationship between defective autophagy and tumorigenesis that involves the accumulation of damaged mitochondria and protein aggregates, which leads to the production of reactive oxygen species (ROS) and ultimately causes DNA damage that can lead to genomic instability. Moreover, autophagy regulates necrosis and is followed by inflammation, which limits tumor metastasis. On the other hand, autophagy provides a survival advantage to detached, dormant metastatic cells through nutrient fueling by tumor-associated stromal cells. Manipulating autophagy for induction of cell death, inhibition of protective autophagy at tissue-and context-dependent for apoptosis modulation has therapeutic implications. This review presents a comprehensive overview of the present state of knowledge regarding autophagy as a new approach to treat cancer.
Collapse
Affiliation(s)
- Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
20
|
Liu B, Liu Y, Jiang Y. Podocalyxin promotes glioblastoma multiforme cell invasion and proliferation by inhibiting angiotensin-(1-7)/Mas signaling. Oncol Rep 2015; 33:2583-91. [PMID: 25708368 DOI: 10.3892/or.2015.3813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/12/2015] [Indexed: 11/06/2022] Open
Abstract
Podocalyxin (PODX) reportedly enhances invasion in many human cancers including glioblastoma multiforme (GBM). Recent studies have shown that the local renin-angiotensin system (RAS) in tumor environment contributes significantly to tumor progression. As a counter-regulatory axis in RAS, angiotensin (Ang)-(1-7)/Mas signaling has been shown to inhibit the growth and invasiveness of several human cancers including GBM. In the present study, we examined the crosstalk between PODX and Ang-(1-7)/Mas signaling in GBM cells, and assessed its impact on GBM cell invasion and proliferation. A strong negative correlation between the expression of PODX and Mas in GBM tumor tissues from 10 consecutive patients (r=-0.768, p<0.01) was observed. The stable overexpression of PODX in LN-229 and U-118 MG human GBM cells decreased the expression of Mas at the mRNA and protein levels, which led to decreased density of Ang-(1-7)-binding Mas on the cell membrane. This effect was completely abolished by selective phosphatidylinositol 3-kinase (PI3K) inhibitor BKM120. By contrast, the stable knockdown of PODX in LN-229 and U-118 MG cells increased the expression of Mas and the density of Ang-(1-7)-binding Mas on the cell membrane. Overexpression and knockdown of PODX respectively reversed and enhanced the inhibitory effects of Ang-(1-7) on the expression/activity of matrix metalloproteinase-9 and cell invasion and proliferation in GBM cells. Although the overexpression of Mas showed no significant effect on the promoting effect of PODX on GBM cell invasion and proliferation in the absence of Ang-(1-7), it completely eliminated the effect of PODX in the presence of Ang-(1-7). In conclusion, to the best of our knowledge, the present study provided the first evidence that PODX inhibits Ang-(1-7)/Mas signaling by downregulating the expression of Mas through a PI3K-dependent mechanism in GBM cells. This effect led to enhanced GBM cell invasion and proliferation. The results of this study add new insight into the biological functions of PODX and the molecular mechanisms underlying GBM progression.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Liu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
21
|
Kim ES, Shin JH, Park SJ, Jo YK, Kim JS, Kang IH, Nam JB, Chung DY, Cho Y, Lee EH, Chang JW, Cho DH. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells. PLoS One 2015; 10:e0118190. [PMID: 25671433 PMCID: PMC4324942 DOI: 10.1371/journal.pone.0118190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/06/2015] [Indexed: 01/16/2023] Open
Abstract
Primary cilia are conserved cellular organelles that regulate diverse signaling pathways. Autophagy is a complex process of cellular degradation and recycling of cytoplasmic proteins and organelles, and plays an important role in cellular homeostasis. Despite its potential importance, the role of autophagy in ciliogenesis is largely unknown. In this study, we identified sertraline as a regulator of autophagy and ciliogenesis. Sertraline, a known antidepressant, induced the growth of cilia and blocked the disassembly of cilia in htRPE cells. Following treatment of sertraline, there was an increase in the number of cells with autophagic puncta and LC3 protein conversion. In addition, both a decrease of ATG5 expression and the treatment of an autophagy inhibitor resulted in the suppression of the sertraline-induced activation of autophagy in htRPE cells. Interestingly, we found that genetic and chemical inhibition of autophagy attenuated the growth of primary cilia in htRPE cells. Taken together, our results suggest that the inhibition of autophagy suppresses sertraline-induced ciliogenesis.
Collapse
Affiliation(s)
- Eun Sung Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji Hyun Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - So Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yoon Kyung Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Il-Hwan Kang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jung-Bum Nam
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Doo-Young Chung
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yoonchul Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - EunJoo H. Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jong Wook Chang
- Research Institute for Future Medicine Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail: (JWC); (DHC)
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- * E-mail: (JWC); (DHC)
| |
Collapse
|
22
|
da Rocha-Azevedo B, Ho CH, Grinnell F. PDGF‑stimulated dispersal of cell clusters and disruption of fibronectin matrix on three-dimensional collagen matrices requires matrix metalloproteinase-2. Mol Biol Cell 2015; 26:1098-105. [PMID: 25589674 PMCID: PMC4357509 DOI: 10.1091/mbc.e14-09-1396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous studies showed that morphogenic cell clustering depends on fibronectin fibrillar matrix assembly under procontractile conditions. The present study shows that disruption of fibronectin matrix necessary for dispersal of cell clusters under promigratory conditions requires matrix metalloproteinases, especially MMP-2. Formation of cell clusters is a common morphogenic cell behavior observed during tissue and organ development and homeostasis, as well as during pathological disorders. Dynamic regulation of cell clustering depends on the balance between contraction of cells into clusters and migration of cells as dispersed individuals. Previously we reported that under procontractile culture conditions, fibronectin fibrillar matrix assembly by human fibroblasts functioned as a nucleation center for cell clustering on three-dimensional collagen matrices. Here we report that switching preformed cell clusters from procontractile to promigratory culture conditions results in cell dispersal out of clusters and disruption of FN matrix. Experiments using small interfering RNA silencing and pharmacological inhibition demonstrated that matrix metalloproteinase activity involving MMP-2 was necessary for fibronectin matrix disruption and dispersal of cell clusters.
Collapse
Affiliation(s)
| | - Chin-Han Ho
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039
| | - Frederick Grinnell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039
| |
Collapse
|
23
|
Wang J, Zhang Y, Liu X, Ma J, Liu P, Hu C, Zhang G. Annexin A5 inhibits diffuse large B-cell lymphoma cell invasion and chemoresistance through phosphatidylinositol 3-kinase signaling. Oncol Rep 2014; 32:2557-63. [PMID: 25323007 DOI: 10.3892/or.2014.3547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/20/2014] [Indexed: 11/06/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma worldwide. Although patient outcomes have significantly improved to a greater than 40% cure rate by the combinatorial cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) chemotherapy, which is widely used, resistance to the CHOP regimen continues to pose a problem in managing or curing DLBCL. While it promotes the malignancy and chemo-resistance in certain types of cancer, Annexin A5 is negatively correlated with those in other cancers, including DLBCL. In the present study, we explored the effects of Annexin A5 on DLBCL cell invasion and chemoresistance to CHOP. Stable overexpression and knockdown of Annexin A5 were performed in Toledo and Pfeiffer human DLBCL cell lines. Overexpression of Annexin A5 in both cell lines significantly decreased cell invasion, matrix metalloproteinase-9 (MMP-9) expression/activity, phosphatidylinositol 3-kinase (PI3K) activity/Akt phosphorylation, and cell survival against CHOP-induced apoptosis. On the other hand, knockdown of Annexin A5 markedly increased cell invasion, MMP-9 expression/activity, PI3K activity/Akt phosphorylation, and CHOP-induced apoptosis in the DLBCL cell lines, which was abolished by selective PI3K inhibitor BKM120. In conclusion, our study provides the first in vitro evidence that Annexin A5 inhibits DLBCL cell invasion, MMP-9 expression/activity, and chemoresistance to CHOP through a PI3K-dependent mechanism; it provides new insight not only into the biological function of Annexin A5, but also into the molecular mechanisms underlying DLBCL progression and chemoresistance.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yang Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jinan Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
24
|
Wu L, Yang L, Xiong Y, Guo H, Shen X, Cheng Z, Zhang Y, Gao Z, Zhu X. Annexin A5 promotes invasion and chemoresistance to temozolomide in glioblastoma multiforme cells. Tumour Biol 2014; 35:12327-37. [PMID: 25245332 DOI: 10.1007/s13277-014-2545-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/25/2014] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the prevalent and most fatal brain tumor in adults. Invasion and a high rate of recurrence largely contribute to the poor prognosis of GBM. The current standard therapy for GBM includes surgery with maximum feasible resection, radiotherapy, and treatment with chemotherapeutic agent temozolomide. Annexin A5 reportedly promotes progression and chemoresistance in a variety of cancers. In the present study, we explored the effects of annexin A5 on GBM cell invasion and chemoresistance to temozolomide. Stable overexpression and knockdown of annexin A5 were performed in both U-87 MG and U-118 MG human GBM cell lines. Overexpression of annexin A5 in both cell lines significantly increased cell invasion, matrix metalloproteinase-2 (MMP-2) expression/activity, Akt phosphorylation at serine 473, and the half maximal inhibitory concentration (IC50) values of temozolomide and markedly decreased temozolomide-induced apoptosis, all of which were abolished by selective PI3K inhibitor BKM120. On the other hand, knockdown of annexin A5 markedly decreased cell invasion, MMP-2 expression/activity, Akt phosphorylation at serine 473, and the IC50 values of temozolomide and significantly increased temozolomide-induced apoptosis. In conclusion, our study provides the first evidence that annexin A5 promotes GBM cell invasion, MMP-2 expression/activity, and chemoresistance to temozolomide through a PI3K-dependent mechanism. It adds new insights not only into the biological function of annexin A5 but also into the molecular mechanisms underlying GBM progression and chemoresistance.
Collapse
Affiliation(s)
- Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu B, Wu Y, Zhou Y, Peng D. Endothelin A receptor antagonism enhances inhibitory effects of anti-ganglioside GD2 monoclonal antibody on invasiveness and viability of human osteosarcoma cells. PLoS One 2014; 9:e93576. [PMID: 24727660 PMCID: PMC3984094 DOI: 10.1371/journal.pone.0093576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yi Wu
- Hunan Provincial Health Bureau, Changsha, Hunan, P. R. China
| | - Yu Zhou
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Dan Peng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
- * E-mail:
| |
Collapse
|
26
|
Kim ES, Jo YK, Park SJ, Chang H, Shin JH, Choi ES, Kim JB, Seok SH, Kim JS, Oh JS, Kim MH, Lee EH, Cho DH. ARP101 inhibits α-MSH-stimulated melanogenesis by regulation of autophagy in melanocytes. FEBS Lett 2013; 587:3955-60. [PMID: 24188823 DOI: 10.1016/j.febslet.2013.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 01/10/2023]
Abstract
Autophagy is a cooperative process between autophagosomes and lysosomes that degrades cellular organelles. Although autophagy regulates the turnover of cellular components, its role in melanogenesis is not clearly established. Previously, we reported that ARP101 induces autophagy in various cancer cells. Here, we show that ARP101 inhibits melanogenesis by regulation of autophagy. ARP101 inhibited α-MSH-stimulated melanin synthesis and suppressed the expression of tyrosinase and TRP1 in immortalized mouse melanocytes. ARP101 also induced autophagy in melanocytes. Knockdown of ATG5 reduced both anti-melanogenic activity and autophagy mediated by ARP101 in α-MSH treated melanocytes. Electron microscopy analysis further revealed that autophagosomes engulf melanin or melanosome in α-MSH and ARP101-treated cells. Collectively, our results suggest that ARP101 inhibits α-MSH-stimulated melanogenesis through the activation of autophagy in melanocytes.
Collapse
Affiliation(s)
- Eun Sung Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeoggi-do 446-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Y, Liu JH, Chai K, Tashiro SI, Onodera S, Ikejima T. Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells. ACTA ACUST UNITED AC 2013; 65:1622-42. [PMID: 24102522 DOI: 10.1111/jphp.12140] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/02/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Herein, inhibition of hepatocyte growth factor receptor, c-Met, significantly increased cytochrome c release and Bax/Bcl-2 ratio, indicating that c-Met played an anti-apoptotic role. The following experiments are to elucidate this anti-apoptotic mechanism, then the effect of c-Met on autophagy has also been discussed. METHODS Investigated was the influence of c-Met on apoptosis, autophagy and loss of mitochondrial transmembrane potential (Δψm), and the relevant proteins were examined. KEY FINDINGS First, we found that activation of extracellular signal-regulated kinase (ERK), p53 was promoted by c-Met interference. Subsequent studies indicated that ERK was the upstream effector of p53, and this ERK-p53 pathway mediated release of cytochrome c and up-regulation of Bax/Bcl-2 ratio. Secondly, the inhibition of c-Met augmented oridonin-induced loss of mitochondrial transmembrane potential (Δψm), resulting apoptosis. Finally, the inhibition of c-Met increased oridonin-induced A549 cell autophagy accompanied by Beclin-1 activation and conversion from microtubule-associated protein light chain 3 (LC3)-I to LC3-II. Activation of ERK-p53 was also detected in autophagy process and could be augmented by inhibition of c-Met. Moreover, suppression of autophagy by 3-methyladenine (3-MA) or small interfering RNA against Beclin-1 or Atg5 decreased oridonin-induced apoptosis. Inhibition of apoptosis by pan-caspase inhibitor (z-VAD-fmk) decreased oridonin-induced autophagy as well and Loss of Δψm also occurred during autophagic process. CONCLUSION Thus, inhibiting c-Met enhanced oridonin-induced apoptosis, autophagy and loss of Δψm in A549 cells.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
28
|
The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol 2013; 2013:914104. [PMID: 24023566 PMCID: PMC3759277 DOI: 10.1155/2013/914104] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/20/2013] [Indexed: 12/31/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathogenesis of neuroinflammatory diseases (such as multiple sclerosis) as well as in the expansion of malignant gliomas because they facilitate penetration of anatomical barriers (such as the glia limitans) and migration within the neuropil. This review elucidates pathomechanisms and summarizes the current knowledge of the involvement of MMPs in neuroinflammation and glioma, invasion highlighting microglia as major sources of MMPs. The induction of expression, suppression, and multiple pathways of function of MMPs in these scenarios will also be discussed. Understanding the induction and action of MMPs might provide valuable information and reveal attractive targets for future therapeutic strategies.
Collapse
|
29
|
Nagahara Y, Takeyoshi M, Sakemoto S, Shiina I, Nakata K, Fujimori K, Wang Y, Umeda E, Watanabe C, Uetake S, Yamori T, Dan S, Yoshimi Y, Shinomiya T, Ikekita M. Novel tamoxifen derivative Ridaifen-B induces Bcl-2 independent autophagy without estrogen receptor involvement. Biochem Biophys Res Commun 2013; 435:657-63. [PMID: 23688426 DOI: 10.1016/j.bbrc.2013.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/19/2022]
Abstract
Autophagy is a self-proteolysis process in eukaryotic cells that results in the sequestering of intracellular proteins and organelles in autophagosomes. Activation of autophagy progress continued growth of some tumors, instead extensive autophagy induces cell death. In a previous study, we synthesized a novel tamoxifen derivative, Ridaifen (RID)-B. RID-B induced mitochondria-involved apoptosis even in estrogen receptor (ER)-negative cells. Since tamoxifen induces autophagy other than apoptosis, we treated ER-negative Jurkat cells with RID-B in the present study. RID-B treatment induced apoptosis and LC3 and lysosome colocalization, which results in the formation of autolysosomes. Western blotting revealed that LC3 was converted to LC3-I to LC3-II with RID-B treatment, suggesting that RID-B induced autophagy without ER involvement. Moreover, overexpression of the anti-apoptotic protein Bcl-2 suppressed the RID-B-induced cell death, but not the induction of autophagy. These results presumed that RID-B-induced autophagy is independent of Bcl-2, making RID-B-induced autophagy different from RID-B-induced apoptosis. Since Beclin 1 level is unchanged during RID-B treatment, RID-B induced autophagy pathway is Bcl-2/Beclin1 independent noncanonical pathway.
Collapse
Affiliation(s)
- Yukitoshi Nagahara
- Department of Biotechnology, College of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama 350-0394, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Targeting mutant huntingtin for the development of disease-modifying therapy. Drug Discov Today 2012; 17:1217-23. [PMID: 22772050 DOI: 10.1016/j.drudis.2012.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/09/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a progressive and fatal neurodegenerative disease, and the most common inherited CAG repeat disorder. A polyglutamine expansion in the N-terminus of the huntingtin protein (HTT) leads to protein misfolding and downstream pathogenic processes culminating in widespread functional impairment and neurodegeneration in the striatum, cortex and other brain areas. To date, only symptomatic treatments are available that address motor, psychiatric and cognitive deficits. Here we review recent strategies for developing disease-modifying therapies designed to limit or abolish the pathogenic activities of the primary molecular target in HD, the mutant HTT protein itself.
Collapse
|
31
|
Pratt J, Roy R, Annabi B. Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells. Glycobiology 2012; 22:1245-55. [PMID: 22692046 DOI: 10.1093/glycob/cws093] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-clinical trials for cancer therapeutics support the anti-neoplastic properties of the lectin from Canavalia ensiformis (Concanavalin-A, ConA) in targeting apoptosis and autophagy in a variety of cancer cells. Given that membrane type-1 matrix metalloproteinase (MT1-MMP), a plasma membrane-anchored matrix metalloproteinase, is a glycoprotein strongly expressed in radioresistant and chemoresistant glioblastoma that mediates pro-apoptotic signalling in brain cancer cells, we investigated whether MT1-MMP could also signal autophagy. Among the four lectins tested, we found that the mannopyranoside/glucopyranoside-binding ConA, which is also well documented to trigger MT1-MMP expression, increases autophagic acidic vacuoles formation as demonstrated by Acridine Orange cell staining. Although siRNA-mediated MT1-MMP gene silencing effectively reversed ConA-induced autophagy, inhibition of the MT1-MMP extracellular catalytic function with Actinonin or Ilomastat did not. Conversely, direct overexpression of the recombinant Wt-MT1-MMP protein triggered proMMP-2 activation and green fluorescent protein-microtubule-associated protein light chain 3 puncta indicative of autophagosomes formation, while deletion of MT1-MMP's cytoplasmic domain disabled such autophagy induction. ConA-treated U87 cells also showed an upregulation of BNIP3 and of autophagy-related gene members autophagy-related protein 3, autophagy-related protein 12 and autophagy-related protein 16-like 1, where respective inductions were reversed when MT1-MMP gene expression was silenced. Altogether, we provide molecular evidence supporting the pro-autophagic mechanism of action of ConA in glioblastoma cells. We also highlight new signal transduction functions of MT1-MMP within apoptotic and autophagic pathways that often characterize cancer cell responses to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jonathan Pratt
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMED, Québec, Canada
| | | | | |
Collapse
|
32
|
Shin JH, Park SJ, Jo YK, Kim ES, Kang H, Park JH, Lee EH, Cho DH. Suppression of autophagy exacerbates Mefloquine-mediated cell death. Neurosci Lett 2012; 515:162-7. [DOI: 10.1016/j.neulet.2012.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 11/28/2022]
|
33
|
Tan X, Chai J, Bi SC, Li JJ, Li WW, Zhou JY. Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension. Vet J 2012; 193:420-5. [PMID: 22377328 DOI: 10.1016/j.tvjl.2012.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/11/2012] [Accepted: 01/18/2012] [Indexed: 11/15/2022]
Abstract
Medial hypertrophy of pulmonary arterioles during pulmonary arterial hypertension (PAH) in humans is associated with enhanced proliferation of smooth muscle cells (SMCs). Elevated matrix metalloproteinase (MMP)-2 has been found in pulmonary artery SMCs (PA-SMCs) in humans with idiopathic PAH, leading to the hypothesis that MMP-2 contributes to the proliferation and migration of vascular SMCs in the pathogenesis of PAH. Rapidly growing meat-type (broiler) chickens provide a model of spontaneous PAH. The present study was conducted to determine whether MMP-2 is involved in the medial hypertrophy of pulmonary arterioles in this model. Cultured PA-SMCs from normal birds were used to evaluate the effect of MMPs on cell proliferation. Gelatin zymography showed that endothelin (ET)-1-induced proliferation of PA-SMCs was concomitant with increased pro- and active MMP-2 production. Reverse transcription PCR demonstrated upregulation of MMP-2 mRNA. However, PA-SMC proliferation was inhibited by the MMP inhibitors doxycycline and cis-9-octadecenoyl-N-hydroxylamide. In vivo experiments revealed a significant increase of MMP-2 expression in hypertrophied pulmonary arterioles of PAH broiler chickens, which was positively correlated with wall thickness and medial hypertrophy. MMP-2 may contribute to medial hypertrophy in pulmonary arterioles during PAH in broiler chickens by enhancing the proliferation of vascular SMCs.
Collapse
Affiliation(s)
- Xun Tan
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
34
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
35
|
NAD+ treatment induces delayed autophagy in Neuro2a cells partially by increasing oxidative stress. Neurochem Res 2011; 36:2270-7. [PMID: 21833846 DOI: 10.1007/s11064-011-0551-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 01/07/2023]
Abstract
NAD(+) plays important roles in various biological processes. In this study, we reported that treatment of NAD(+) induces delayed autophagy in Neuro2a cells. Moreover, the effects of NAD(+) on the autophagy in the cells appear to be, at least partially, mediated by oxidative stress. However, nicotinamide, a degradation product of NAD(+), does not affect the autophagy. Our experiments have further indicated that the NAD(+)-induced autophagy contributes to the NAD(+)-induced decrease in the survival of these cells. In summary, our study has provided the first evidence that NAD(+) treatment induces autophagy in cancer cells such as Neuro2a cells, which contributes to the NAD(+)-induced decrease in cancer cell survival.
Collapse
|
36
|
Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J. Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 2011; 121:376-88. [PMID: 21427056 DOI: 10.1093/toxsci/kfr060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson's disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes.
Collapse
Affiliation(s)
- Irmgard Paris
- Program of Molecular and Clinical Pharmacology, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | | | | | | | | | | | | | | |
Collapse
|