1
|
Ying Z, Ye N, Ma Q, Chen F, Li N, Zhen X. Targeted to neuronal organelles for CNS drug development. Adv Drug Deliv Rev 2023; 200:115025. [PMID: 37516410 DOI: 10.1016/j.addr.2023.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Significant evidences indicate that sub-cellular organelle dynamics is critical for both physiological and pathological events and therefore may be attractive drug targets displaying great therapeutic potential. Although the basic biological mechanism underlying the dynamics of intracellular organelles has been extensively studied, relative drug development is still limited. In the present review, we show that due to the development of technical advanced imaging tools, especially live cell imaging methods, intracellular organelle dynamics (including mitochondrial dynamics and membrane contact sites) can be dissected at the molecular level. Based on these identified molecular targets, we review and discuss the potential of drug development to target organelle dynamics, especially mitochondria dynamics and ER-organelle membrane contact dynamics, in the central nervous system for treating human diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
3
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
4
|
Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int J Mol Sci 2023; 24:ijms24010823. [PMID: 36614266 PMCID: PMC9820882 DOI: 10.3390/ijms24010823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily. These mechanisms can be considered promising for pharmacological regulation. Therefore, the aim of this review was to analyze the mechanisms of endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) in the pathogenesis of neurodegenerative diseases. Data on BiP and Sigma1R chaperones in clinical and experimental studies of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are presented. The possibility of neuroprotective effect dependent on Sigma1R ligand activation in these diseases is also demonstrated. The interaction between Sigma1R and BiP-associated signaling in the neuroprotection is discussed. The performed analysis suggests the feasibility of pharmacological regulation of chaperone function, possibility of ligand activation of Sigma1R in order to achieve a neuroprotective effect, and the need for further studies of the conjugation of cellular mechanisms controlled by Sigma1R and BiP chaperones.
Collapse
|
5
|
Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer's disease. Front Aging Neurosci 2022; 14:1019412. [PMID: 36389082 PMCID: PMC9664938 DOI: 10.3389/fnagi.2022.1019412] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no effective therapeutic drugs currently. The complicated pathophysiology of AD is not well understood, although beta-amyloid (Aβ) cascade and hyperphosphorylated tau protein were regarded as the two main causes of AD. Other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitters, mitochondrial dysfunction, and inflammation, were also proposed and studied as targets in AD. This review aims to summarize the small-molecule drugs that were developed based on the pathogenesis and gives a deeper understanding of the AD. We hope that it could help scientists find new and better treatments to gradually conquer the problems related to AD in future.
Collapse
|
6
|
Edonerpic maleate regulates glutamate receptors through CRMP2- and Arc-mediated mechanisms in response to brain trauma. Cell Death Dis 2022; 8:95. [PMID: 35246523 PMCID: PMC8897457 DOI: 10.1038/s41420-022-00901-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Dysfunction of ionotropic glutamate receptors (iGluRs) is a key molecular mechanism of excitotoxic neuronal injury following traumatic brain injury (TBI). Edonerpic maleate is a low molecular-weight compound that was screened as a candidate neuroprotective agent. In this study, we investigated its effects on TBI and GluRs signaling. Traumatic neuronal injury (TNI) induced by scratch followed by glutamate treatment was performed to mimic TBI in vitro. Edonerpic maleate at 1 and 10 μM exerted protective activity when it was added within 2 h following injury. The protective activities were also confirmed by the reduction of lipid peroxidation and oxidative stress. In addition, edonerpic maleate inhibited the expression of surface NR2B, total GluR1, and surface GluR1, and mitigated the intracellular Ca2+ responses following injury in vitro. Western blot analysis showed that edonerpic maleate reduced the cleavage of collapsing response mediator protein 2 (CRMP2), but increased the expression of postsynaptic protein Arc. By using gene overexpression and silencing technologies, CRMP2 was overexpressed and Arc was knockdown in cortical neurons. The results showed that the effect of edonerpic maleate on NMDA receptor expression was mediated by CRMP2, whereas the edonerpic maleate-induced AMPA receptor regulation was dependent on Arc activation. In in vivo TBI model, 30 mg/kg edonerpic maleate alleviated the TBI-induced brain edema, neuronal loss, and microglial activation, with no effect on locomotor function at 24 h. However, edonerpic maleate improves long-term neurological function after TBI. Furthermore, edonerpic maleate inhibited CRMP2 cleavage but increased Arc activation in vivo. In summary, our results identify edonerpic maleate as a clinically potent small compound with which to attenuate TBI-related brain damage through regulating GluRs signaling.
Collapse
|
7
|
Prasanth MI, Malar DS, Tencomnao T, Brimson JM. The emerging role of the sigma-1 receptor in autophagy: hand-in-hand targets for the treatment of Alzheimer's. Expert Opin Ther Targets 2021; 25:401-414. [PMID: 34110944 DOI: 10.1080/14728222.2021.1939681] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Autophagy is a cellular catabolic mechanism that helps clear damaged cellular components and is essential for normal cellular and tissue function. The sigma-1 receptor (σ-1R) is a chaperone protein involved in signal transduction, neurite outgrowth, and plasticity, improving memory, and neuroprotection. Recent evidence shows that σ-1R can promote autophagy. Autophagy activation by the σ-1Rs along with other neuroprotective effects makes it an interesting target for the treatment of Alzheimer's disease. AF710B, T-817 MA, and ANAVEX2-73 are some of the σ-1R agonists which have shown promising results and have entered clinical trials. These molecules have also been found to induce autophagy and show cytoprotective effects in cellular models. AREAS COVERED This review provides insight into the current understanding of σ-1R functions related to autophagy and their role in alleviating AD. EXPERT OPINION We propose a mechanism through which the activation of σ-1R and autophagy could alter amyloid precursor protein processing to inhibit amyloid-β production by reconstituting cholesterol and gangliosides in the lipid raft to offer neuroprotection against AD. Future AD treatment could involve the combined targeting of the σ-1R and autophagy activation. We suggest that future studies investigate the link between autophagy the σ-1R and AD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Ishimoto T, Kato Y. Regulation of Neurogenesis by Organic Cation Transporters: Potential Therapeutic Implications. Handb Exp Pharmacol 2021; 266:281-300. [PMID: 33782772 DOI: 10.1007/164_2021_445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurogenesis is the process by which new neurons are generated from neural stem cells (NSCs), which are cells that have the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. The process is essential for homeostatic tissue regeneration and the coordination of neural plasticity throughout life, as neurons cannot regenerate once injured. Therefore, defects in neurogenesis are related to the onset and exacerbation of several neuropsychiatric disorders, and therefore, the regulation of neurogenesis is considered to be a novel strategy for treatment. Neurogenesis is regulated not only by NSCs themselves, but also by the functional microenvironment surrounding the NSCs, known as the "neurogenic niche." The neurogenic niche consists of several types of neural cells, including neurons, glial cells, and vascular cells. To allow communication with these cells, transporters may be involved in the secretion and uptake of substrates that are essential for signal transduction. This chapter will focus on the involvement of polyspecific solute carriers transporting organic cations in the possible regulation of neurogenesis by controlling the concentration of several organic cation substrates in NSCs and the neurogenic niche. The potential therapeutic implications of neurogenesis regulation by these transporters will also be discussed.
Collapse
Affiliation(s)
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
9
|
Ye N, Qin W, Tian S, Xu Q, Wold EA, Zhou J, Zhen XC. Small Molecules Selectively Targeting Sigma-1 Receptor for the Treatment of Neurological Diseases. J Med Chem 2020; 63:15187-15217. [PMID: 33111525 DOI: 10.1021/acs.jmedchem.0c01192] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sigma-1 (σ1) receptor, an enigmatic protein originally classified as an opioid receptor subtype, is now understood to possess unique structural and functional features of its own and play critical roles to widely impact signaling transduction by interacting with receptors, ion channels, lipids, and kinases. The σ1 receptor is implicated in modulating learning, memory, emotion, sensory systems, neuronal development, and cognition and accordingly is now an actively pursued drug target for various neurological and neuropsychiatric disorders. Evaluation of the five selective σ1 receptor drug candidates (pridopidine, ANAVEX2-73, SA4503, S1RA, and T-817MA) that have entered clinical trials has shown that reaching clinical approval remains an evasive and important goal. This review provides up-to-date information on the selective targeting of σ1 receptors, including their history, function, reported crystal structures, and roles in neurological diseases, as well as a useful collation of new chemical entities as σ1 selective orthosteric ligands or allosteric modulators.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangzhi Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
10
|
[The future of dementia prevention and treatment strategies]. Nihon Ronen Igakkai Zasshi 2020; 57:374-396. [PMID: 33268621 DOI: 10.3143/geriatrics.57.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Brimson JM, Brimson S, Chomchoei C, Tencomnao T. Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 2020; 24:1009-1028. [PMID: 32746649 DOI: 10.1080/14728222.2020.1805435] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sigma receptors are found abundantly in the central nervous system and are targets for the treatment of various diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), depression, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). However, for many of these diseases, other receptors and targets have been the focus of the most, such as acetylcholine esterase inhibitors in Alzheimer's and dopamine replacement in Parkinson's. The currently available drugs for these diseases have limited success resulting in the requirement of an alternative approach to their treatment. AREAS COVERED In this review, we discuss the potential role of the sigma receptors and their ligands as part of a multi receptor approach in the treatment of the diseases mentioned above. The literature reviewed was obtained through searches in databases, including PubMed, Web of Science, Google Scholar, and Scopus. EXPERT OPINION Given sigma receptor agonists provide neuroprotection along with other benefits such as potentiating the effects of other receptors, further development of multi-receptor targeting ligands, and or the development of multi-drug combinations to target multiple receptors may prove beneficial in the future treatment of degenerative diseases of the CNS, especially when coupled with better diagnostic techniques.
Collapse
Affiliation(s)
- James Michael Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
12
|
Schneider LS, Thomas RG, Hendrix S, Rissman RA, Brewer JB, Salmon DP, Oltersdorf T, Okuda T, Feldman HH. Safety and Efficacy of Edonerpic Maleate for Patients With Mild to Moderate Alzheimer Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol 2019; 76:1330-1339. [PMID: 31282954 DOI: 10.1001/jamaneurol.2019.1868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Edonerpic maleate (T-817MA) protects against Aβ40-induced neurotoxic effects and memory deficits, promotes neurite outgrowth, and preserves hippocampal synapses and spatial memory in tau transgenic mice. These effects may be mediated via sigma-1 receptor activation, delivery of synaptic AMPA receptors, or modulation of microglial function and may benefit patients with Alzheimer disease. Objective To assess the efficacy, safety, and tolerability of edonerpic for patients with mild to moderate Alzheimer disease. Design, Setting, and Participants Randomized, double-blind, placebo-controlled, parallel-group, phase 2 clinical trial conducted over 52 weeks from June 2, 2014, to December 14, 2016, at 52 US clinical and academic centers. Of 822 outpatients screened, 484 met the following criteria and were randomly assigned to treatment: 55 to 85 years of age, probable Alzheimer disease, Mini-Mental State Examination scores from 12 to 22, and taking stable doses of donepezil or rivastigmine with or without memantine. Interventions Random assignment (1:1:1 allocation) to placebo or 224 mg or 448 mg of edonerpic maleate, once per day. Main Outcomes and Measures Coprimary outcomes were scores on the Alzheimer Disease Assessment Scale-Cognitive Subscale (ADAS-cog) and Alzheimer's Disease Cooperative Study-Clinical Impression of Change (ADCS-CGIC) at week 52. Biomarkers were brain, lateral ventricular, and hippocampal volumes, as determined on magnetic resonance imaging, and cerebrospinal fluid Aβ40, Aβ42, total tau, and phospho-tau181. The primary efficacy analysis was performed on the coprimary end points for the modified intention-to-treat population. Results Of 482 participants in the safety population, 140 of 158 participants (88.6%) assigned to placebo, 117 of 166 participants (70.5%) to 224 mg of edonerpic maleate, and 120 of 158 participants (76.0%) to 448 mg of edonerpic maleate completed the trial. The mean ADAS-cog score change at week 52 was 7.91 for the placebo group, 7.45 for the 224-mg group, and 7.08 for the 448-mg group. Mean differences from placebo were -0.47 (95% CI, -2.36 to 1.43; P = .63) for the 224-mg group and -0.84 (95% CI, -2.75 to 1.08; P = .39) for the 448-mg group. Mean ADCS-CGIC scores were 5.22 for the placebo group, 5.24 for the 224-mg group, and 5.25 for the 448-mg group, with mean differences from placebo of 0.03 (95% CI, -0.20 to 0.25; P = .81) for the 224-mg group and 0.04 (95% CI, -0.19 to 0.26; P = .76) for the 448-mg group. In the safety population, a total of 7 of 158 participants (4.4%) in the placebo group, 23 of 166 participants (13.9%) in the 224-mg group, and 23 of 158 participants (14.6%) in the 448-mg group discontinued because of adverse events. The most frequent adverse events were diarrhea and vomiting. Conclusions and Relevance Edonerpic maleate appeared to be safe and tolerable, with expected gastrointestinal symptoms occurring early but without evidence for a clinical effect among patients with mild to moderate Alzheimer disease. Trial Registration ClinicalTrials.gov identifier: NCT02079909.
Collapse
Affiliation(s)
- Lon S Schneider
- Keck School of Medicine of the University of Southern California, Los Angeles
| | - Ronald G Thomas
- Department of Neurosciences, University of California San Diego School of Medicine
| | | | - Robert A Rissman
- Department of Neurosciences, University of California San Diego School of Medicine
| | - James B Brewer
- Department of Neurosciences, University of California San Diego School of Medicine
| | - David P Salmon
- Department of Neurosciences, University of California San Diego School of Medicine
| | - Tilman Oltersdorf
- Department of Neurosciences, University of California San Diego School of Medicine
| | - Tomohiro Okuda
- Development Division, FUJIFILM Toyama Chemical Co, Ltd, Tokyo, Japan
| | - Howard H Feldman
- Department of Neurosciences, University of California San Diego School of Medicine
| | | |
Collapse
|
13
|
Liu Z, Zhang A, Sun H, Han Y, Kong L, Wang X. Two decades of new drug discovery and development for Alzheimer's disease. RSC Adv 2017. [DOI: 10.1039/c6ra26737h] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease is a progressive and irreversible neurodegenerative disease, associated with a decreased cognitive function and severe behavioral abnormalities.
Collapse
Affiliation(s)
- Zhidong Liu
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Aihua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Ying Han
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Ling Kong
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| | - Xijun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry
- Sino-US Chinmedomics Technology Cooperation Center
- Chinmedomics Research Center of TCM State Administration
- Laboratory of Metabolomics
- Key Pharmacometabolomics Platform of Chinese Medicines
| |
Collapse
|
14
|
Uehara T, Sumiyoshi T, Kurachi M. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function. Curr Neuropharmacol 2016; 13:793-801. [PMID: 26630957 PMCID: PMC4759318 DOI: 10.2174/1570159x13666151009120153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, 1-1 Daigaku, Uchinada-cho, Ishikawa 920-0293, Japan.
| | | | | |
Collapse
|
15
|
Advances in recent patent and clinical trial drug development for Alzheimer's disease. Pharm Pat Anal 2016; 3:429-47. [PMID: 25291315 DOI: 10.4155/ppa.14.22] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, involving a large number of genes, proteins and their complex interactions. Currently, no effective therapeutic agents are available to either stop or reverse the progression of this disease, likely due to its polygenic nature. The complicated pathophysiology of AD remains unresolved. Although it has been hypothesized that the amyloid β cascade and the hyper-phosphorylated tau protein may be primarily involved, other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitter, mitochondrial dysfunction and inflammation have also been implicated. The main focus of this review is to document current therapeutic agents in clinical trials and patented candidate compounds under development based on their main mechanisms of action. It also discusses the relationship between the recent understanding of key targets and the development of potential therapeutic agents for the treatment of AD.
Collapse
|
16
|
Nakamura T, Matsumoto J, Takamura Y, Ishii Y, Sasahara M, Ono T, Nishijo H. Relationships among parvalbumin-immunoreactive neuron density, phase-locked gamma oscillations, and autistic/schizophrenic symptoms in PDGFR-β knock-out and control mice. PLoS One 2015; 10:e0119258. [PMID: 25803852 PMCID: PMC4372342 DOI: 10.1371/journal.pone.0119258] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 01/09/2015] [Indexed: 12/23/2022] Open
Abstract
Cognitive deficits and negative symptoms are important therapeutic targets for schizophrenia and autism disorders. Although reduction of phase-locked gamma oscillation has been suggested to be a result of reduced parvalbumin-immunoreactive (putatively, GABAergic) neurons, no direct correlations between these have been established in these disorders. In the present study, we investigated such relationships during pharmacological treatment with a newly synthesized drug, T-817MA, which displays neuroprotective and neurotrophic effects. In this study, we used platelet-derived growth factor receptor-β gene knockout (PDGFR-β KO) mice as an animal model of schizophrenia and autism. These mutant mice display a reduction in social behaviors; deficits in prepulse inhibition (PPI); reduced levels of parvalbumin-immunoreactive neurons in the medical prefrontal cortex, hippocampus, amygdala, and superior colliculus; and a deficit in of auditory phase-locked gamma oscillations. We found that oral administration of T-817MA ameliorated all these symptoms in the PDGFR-β KO mice. Furthermore, phase-locked gamma oscillations were significantly correlated with the density of parvalbumin-immunoreactive neurons, which was, in turn, correlated with PPI and behavioral parameters. These findings suggest that recovery of parvalbumin-immunoreactive neurons by pharmacological intervention relieved the reduction of phase-locked gamma oscillations and, consequently, ameliorated PPI and social behavioral deficits. Thus, our findings suggest that phase-locked gamma oscillations could be a useful physiological biomarker for abnormality of parvalbumin-immunoreactive neurons that may induce cognitive deficits and negative symptoms of schizophrenia and autism, as well as of effective pharmacological interventions in both humans and experimental animals.
Collapse
Affiliation(s)
- Tomoya Nakamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Jumpei Matsumoto
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Yoko Ishii
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, Japan
| |
Collapse
|
17
|
Berk C, Paul G, Sabbagh M. Investigational drugs in Alzheimer's disease: current progress. Expert Opin Investig Drugs 2014; 23:837-46. [PMID: 24702504 DOI: 10.1517/13543784.2014.905542] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Alzheimer's disease is a progressive neurodegenerative disorder affecting millions of people worldwide. Yet, this disease is presently incurable and treatable only in terms of modest delay of symptomatic progression. The need for more effective pharmacological intervention is becoming more pronounced as the patient population increases. AREAS COVERED This paper outlines and evaluates the current landscape of interventions in early phases of clinical study. Data and analysis for this review were procured from PubMed, clinicaltrials.gov, review of posters, abstracts and presentations from American Neurological Association, American Academy of Neurology meetings, Alzheimer's Association International Conference and Clinical Trials on Alzheimer's disease. Keywords and criteria searched included: Phase 0, I, and II trials related to Alzheimer's disease, amyloid-β, anti-tau, monoclonal antibodies and metabolism. EXPERT OPINION The development of novel pharmacological interventions would be more fruitful if multitarget therapies were introduced, and unexplored mechanisms of action were expanded upon. Additionally, there is a rationale for intervening earlier in the disease, perhaps preceding or at the advent of symptoms.
Collapse
Affiliation(s)
- Camryn Berk
- Banner Sun Health Research Institute, The Cleo Roberts Center for Clinical Research , 10515 West Santa Fe Drive, Sun City, AZ 85351 , USA +1 623 832 6500 ; +1 623 832 6504 ;
| | | | | |
Collapse
|
18
|
Leidel F, Eiden M, Geissen M, Hirschberger T, Tavan P, Giese A, Kretzschmar HA, Schätzl H, Groschup MH. Piperazine derivatives inhibit PrP/PrP(res) propagation in vitro and in vivo. Biochem Biophys Res Commun 2014; 445:23-9. [PMID: 24502948 DOI: 10.1016/j.bbrc.2014.01.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders, which are not curable and no effective treatment exists so far. The major neuropathological change in diseased brains is the conversion of the normal cellular form of the prion protein PrPc(C) into a disease-associated isoform PrP(Sc). PrP(Sc) accumulates into multimeres and fibrillar aggregates, which leads to the formation of amyloid plaques. Increasing evidence indicates a fundamental role of PrP(Sc) species and its aggregation in the pathogenesis of prion diseases, which initiates the pathological cascade and leads to neurodegeneration accompanied by spongiform changes. In search of compounds that have the potential to interfere with PrP(Sc) formation and propagation, we used a cell based assay for the screening of potential aggregation inhibitors. The assay deals with a permanently prion infected cell line that was adapted for a high-throughput screening of a compound library composed of 10,000 compounds (DIVERset 2, ChemBridge). We could detect six different classes of highly potent inhibitors of PrP(Sc) propagation in vitro and identified piperazine derivatives as a new inhibitory lead structure, which increased incubation time of scrapie infected mice.
Collapse
Affiliation(s)
- Fabienne Leidel
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Markus Geissen
- Department of Vascular Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Thomas Hirschberger
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians Universität, München, Germany
| | - Paul Tavan
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians Universität, München, Germany
| | - Armin Giese
- Institut für Neuropathologie, Ludwig-Maximilians Universität, München, Germany
| | - Hans A Kretzschmar
- Institut für Neuropathologie, Ludwig-Maximilians Universität, München, Germany
| | - Hermann Schätzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
19
|
Ramos-Rodriguez JJ, Molina-Gil S, Rey-Brea R, Berrocoso E, Garcia-Alloza M. Specific serotonergic denervation affects tau pathology and cognition without altering senile plaques deposition in APP/PS1 mice. PLoS One 2013; 8:e79947. [PMID: 24278223 PMCID: PMC3837012 DOI: 10.1371/journal.pone.0079947] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Senile plaques and neurofibrillary tangles are major neuropathological features of Alzheimer's Disease (AD), however neuronal loss is the alteration that best correlates with cognitive impairment in AD patients. Underlying neurotoxic mechanisms are not completely understood although specific neurotransmission deficiencies have been observed in AD patients and, in animal models, cholinergic and noradrenergic denervation may increase amyloid-beta deposition and tau phosphorylation in denervated areas. On the other hand brainstem neurodegeneration has been suggested as an initial event in AD, and serotonergic dysfunction, as well as reductions in raphe neurones density, have been reported in AD patients. In this study we addressed whether specific serotonergic denervation, by administering 5,7-dihydroxitriptamine (5,7-DHT) in the raphe nuclei, could also worsen central pathology in APPswe/PS1dE9 mice or interfere with learning and memory activities. In our hands specific serotonergic denervation increased tau phosphorylation in denervated cortex, without affecting amyloid-beta (Aβ) pathology. We also observed that APPswe/PS1dE9 mice lesioned with 5,7-DHT were impaired in the Morris water maze test, supporting a synergistic effect of the serotonergic denervation and the presence of APP/PS1 transgenes on learning and memory impairment. Altogether our data suggest that serotonergic denervation may interfere with some pathological aspects observed in AD, including tau phosphorylation or cognitive impairment, without affecting Aβ pathology, supporting a differential role of specific neurotransmitter systems in AD.
Collapse
Affiliation(s)
| | - Sara Molina-Gil
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain
| | - Raquel Rey-Brea
- Department of Neuroscience, School of Medicine, University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III. Madrid, Spain
| | - Esther Berrocoso
- Department of Neuroscience, School of Medicine, University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III. Madrid, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain
- * E-mail:
| |
Collapse
|
20
|
Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer's disease. Ageing Res Rev 2013; 12:116-40. [PMID: 22982398 DOI: 10.1016/j.arr.2012.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most important neurodegenerative disorders, bringing about huge medical and social burden in the elderly worldwide. Many aspects of its pathogenesis have remained unclear and no effective treatment exists for it. Within the past 20 years, various mice models harboring AD-related human mutations have been produced. These models imitate diverse AD-related pathologies and have been used for basic and therapeutic investigations in AD. In this regard, there are a wide variety of preclinical trials of potential therapeutic modalities using AD mice models which are of paramount importance for future clinical trials and applications. This review summarizes more than 140 substances and treatment modalities being used in transgenic AD mice models from 2001 to 2011. We also discuss advantages and disadvantages of each model to be used in therapeutic development for AD.
Collapse
|
21
|
Mitigation of H(2)O(2)-Induced Mitochondrial-Mediated Apoptosis in NG108-15 Cells by Novel Mesuagenin C from Mesua kunstleri (King) Kosterm. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:156521. [PMID: 22956972 PMCID: PMC3418696 DOI: 10.1155/2012/156521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/16/2012] [Accepted: 04/20/2012] [Indexed: 12/31/2022]
Abstract
This study was aimed to isolate and evaluate neuroprotective compounds from the hexane extract of the bark of Mesua kunstleri (Clusiaceae) on H(2)O(2)-induced apoptosis in NG108-15 cells. Five 4-phenylcoumarins were isolated by using various chromatographic techniques via neuroprotective activity-guided fractionation and isolation from the active hexane extract. The chemical structures of the isolated compounds were confirmed by NMR spectroscopic data interpretation and comparison with literature values. Cell viability data demonstrated that mesuagenin C 3 significantly increased cell viability. Hoechst 33342/PI staining illustrated mesuagenin C 3 was able to abate the nuclear shrinkage, chromatin condensation and formation of apoptotic bodies. Pretreatment with mesuagenin C 3 reduced total annexin V positive cells and increased the level of intracellular glutathione (GSH). Mesuagenin C 3 attenuated membrane potential (Δψm), reduced Bax/Bcl-2 ratio and inactivated of caspase-3/7 and -9. These results indicated that mesuagenin C 3 could protect NG108-15 cells against H(2)O(2)-induced apoptosis by increasing intracellular GSH level, aggrandizing Δψm, and modulating apoptotic signalling pathway through Bcl-2 family and caspase-3/7 and -9. These findings confirmed the involvement of intrinsic apoptotic pathway in H(2)O(2)-induced apoptosis and suggested that mesuagenin C 3 may have potential therapeutic properties for neurodegenerative diseases.
Collapse
|
22
|
Mustroph M, King M, Klein R, Ramirez J. Adult-onset focal expression of mutated human tau in the hippocampus impairs spatial working memory of rats. Behav Brain Res 2012; 233:141-8. [PMID: 22561128 PMCID: PMC3378764 DOI: 10.1016/j.bbr.2012.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 11/20/2022]
Abstract
Tauopathy in the hippocampus is one of the earliest cardinal features of Alzheimer's disease (AD), a condition characterized by progressive memory impairments. In fact, density of tau neurofibrillary tangles (NFTs) in the hippocampus strongly correlates with severity of cognitive impairments in AD. In the present study, we employed a somatic cell gene transfer technique to create a rodent model of tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the hippocampus of adult rats. The P301L mutation is causal for frontotemporal dementia with parkinsonism-17 (FTDP-17), but it has been used for studying memory effects characteristic of AD in transgenic mice. To ascertain if P301L-induced mnemonic deficits are persistent, animals were tested for 6 months. It was hypothesized that adult-onset, spatially restricted tau expression in the hippocampus would produce progressive spatial working memory deficits on a learned alternation task. Rats injected with the tau vector exhibited persistent impairments on the hippocampal-dependent task beginning at about 6 weeks post-transduction compared to rats injected with a green fluorescent protein vector. Histological analysis of brains for expression of human tau revealed hyperphosphorylated human tau and NFTs in the hippocampus in experimental animals only. Thus, adult-onset, vector-induced tauopathy spatially restricted to the hippocampus progressively impaired spatial working memory in rats. We conclude that the model faithfully reproduces histological and behavioral findings characteristic of dementing tauopathies. The rapid onset of sustained memory impairment establishes a preclinical model particularly suited to the development of potential tauopathy therapeutics.
Collapse
Affiliation(s)
- M.L. Mustroph
- Department of Psychology and Neuroscience Program, Davidson College, Davidson, NC, USA
| | - M.A. King
- Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
- Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - R.L. Klein
- Pharmacology, Toxicology, and Neuroscience, LSUHSC, Shreveport, LA, USA
| | - J.J. Ramirez
- Department of Psychology and Neuroscience Program, Davidson College, Davidson, NC, USA
| |
Collapse
|
23
|
Uehara T, Sumiyoshi T, Seo T, Matsuoka T, Itoh H, Kurachi M. T-817MA, but Not Haloperidol and Risperidone, Restores Parvalbumin-Positive γ -Aminobutyric Acid Neurons in the Prefrontal Cortex and Hippocampus of Rats Transiently Exposed to MK-801 at the Neonatal Period. ISRN PSYCHIATRY 2012; 2012:947149. [PMID: 23738215 PMCID: PMC3658548 DOI: 10.5402/2012/947149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/07/2012] [Indexed: 12/24/2022]
Abstract
The number of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) neurons is decreased in the brain of rats transiently exposed to MK-801, an N-methyl-D-aspartate (NMDA) receptor blocker, in the neonatal stage (Uehara et al. (2012)). T-817MA [1-{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl} azetidin-3-ol maleate] is a neuroprotective agent synthesized for the treatment of psychiatric disorders characterized by cognitive disturbances, such as dementia. We herein sought to determine whether T-817MA, haloperidol (HPD), or risperidone (RPD) would ameliorate the decrease in the number of PV-positive GABA neurons in the medial prefrontal cortex (mPFC) and hippocampus of the model animals. Rats were treated with MK-801 (0.2 mg/kg/day) or vehicle on postnatal days (PD) 7–10, and the number of PV-positive neurons in the mPFC and hippocampus were measured on PDs 63. T-817MA (20 mg/kg), HPD (1 mg/kg), or RPD (1 mg/kg) were administered during PDs 49–62. Fourteen-day administration of T-817MA reversed the decrease in the number of PV-positive neurons in the above brain regions of rats given MK-801, whereas HPD and RPD were ineffective. These results indicate that T-817MA provides a novel pharmacologic strategy to enhance cognitive function in patients with schizophrenia.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan ; Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians University of Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVE VaD is the second-most common form of dementia, second only to that caused by AD. As the name indicates, VaD is predominantly considered a disease caused by vascular phenomena. METHODS In this invited review, we introduce the reader to recent developments in defining VaD as a unique form of dementia by reviewing the current pertinent literature. We discuss the clinical and experimental evidence that supports the notion that the microcirculation, specifically cell-to-cell communication, likely contributes to the development of VaD. Through exploration of the concept of the NVU, we elucidate the extensive cerebrovascular communication that exists and highlight models that may help test the contribution(s) of cell-to-cell communication at the microvascular level to the development and progression of VaD. Lastly, we explore the possibility that some dementia, generally considered to be purely neurodegenerative, may actually have a vascular component at the neurovascular level. CONCLUSION This latter recognition potentially broadens the critical involvement of microvascular events that contribute to the numerous dementias affecting an increasingly larger sector of the adult population.
Collapse
Affiliation(s)
- Hans H Dietrich
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1010, USA.
| |
Collapse
|
25
|
Dunkel P, Chai CL, Sperlágh B, Huleatt PB, Mátyus P. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2012; 21:1267-308. [PMID: 22741814 DOI: 10.1517/13543784.2012.703178] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION According to the definition of the Committee to Identify Neuroprotective Agents in Parkinson's Disease (CINAPS), "neuroprotection would be any intervention that favourably influences the disease process or underlying pathogenesis to produce enduring benefits for patients" [Meissner W, et al. Trends Pharmacol Sci 2004;25:249-253]. Preferably, neuroprotective agents should be used before or eventually during the prodromal phase of the diseases that could start decades before the appearance of symptoms. Although several symptomatic drugs are available, a disease-modifying agent is still elusive. AREAS COVERED The aim of the present review is to give an overview of neuroprotective agents being currently investigated for the treatment of AD, PD, HD and ALS in clinical phases. EXPERT OPINION Development of effective neuroprotective therapies resulting in clinically meaningful results is hampered by several factors in all research stages, both conceptual and methodological. Novel solutions might be offered by evaluation of new targets throughout clinical studies, therapies emerging from drug repositioning approaches, multi-target approaches and network pharmacology.
Collapse
Affiliation(s)
- Petra Dunkel
- Semmelweis University, Department of Organic Chemistry, Budapest, Hungary
| | | | | | | | | |
Collapse
|
26
|
Uehara T, Sumiyoshi T, Hattori H, Itoh H, Matsuoka T, Iwakami N, Suzuki M, Kurachi M. T-817MA, a novel neurotrophic agent, ameliorates loss of GABAergic parvalbumin-positive neurons and sensorimotor gating deficits in rats transiently exposed to MK-801 in the neonatal period. J Psychiatr Res 2012; 46:622-9. [PMID: 22342346 DOI: 10.1016/j.jpsychires.2012.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/15/2011] [Accepted: 01/19/2012] [Indexed: 01/02/2023]
Abstract
T-817MA [1-{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol maleate] is a newly synthesized neuroprotective agent for the treatment of psychiatric disorders characterized by cognitive disturbances, such as Alzheimer's disease. Cognitive impairment has also been suggested to be a cardinal feature of schizophrenia. We sought to determine whether T-817MA would ameliorate sensorimotor gating deficits and loss of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) neurons in the brain of rats transiently exposed to MK-801, an N-methyl-d-aspartate receptor blocker, in the neonatal stage, as an animal model of schizophrenia. Prepulse inhibition (PPI) was examined in rats treated neonatally with MK-801 (postnatal day; PD 7-10, 0.2 mg/kg/day, s.c.) or vehicle at PD 35 and PD 63. The number of PV-positive GABAergic neurons in the medial prefrontal cortex (mPFC) and the hippocampus was measured after the behavioral assessments. T-817MA (10 or 20 mg/kg) or vehicle was administered for 14 days (on PD 49-62). Administration of T-817MA at 20 mg/kg, but not 10 mg/kg, ameliorated PPI deficits and completely reversed the decrease in the number of PV-positive GABAergic neurons in rats given MK-801. These results indicate that T-817MA may provide a novel therapeutic approach for the treatment of cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|