1
|
Martin M, Gutierrez-Avino F, Shaikh MN, Tejedor FJ. A novel proneural function of Asense is integrated with the sequential actions of Delta-Notch, L'sc and Su(H) to promote the neuroepithelial to neuroblast transition. PLoS Genet 2023; 19:e1010991. [PMID: 37871020 PMCID: PMC10621995 DOI: 10.1371/journal.pgen.1010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
In order for neural progenitors (NPs) to generate distinct populations of neurons at the right time and place during CNS development, they must switch from undergoing purely proliferative, self-renewing divisions to neurogenic, asymmetric divisions in a tightly regulated manner. In the developing Drosophila optic lobe, neuroepithelial (NE) cells of the outer proliferation center (OPC) are progressively transformed into neurogenic NPs called neuroblasts (NBs) in a medial to lateral proneural wave. The cells undergoing this transition express Lethal of Scute (L'sc), a proneural transcription factor (TF) of the Acheate Scute Complex (AS-C). Here we show that there is also a peak of expression of Asense (Ase), another AS-C TF, in the cells neighboring those with transient L'sc expression. These peak of Ase cells help to identify a new transitional stage as they have lost NE markers and L'sc, they receive a strong Notch signal and barely exhibit NB markers. This expression of Ase is necessary and sufficient to promote the NE to NB transition in a more robust and rapid manner than that of l'sc gain of function or Notch loss of function. Thus, to our knowledge, these data provide the first direct evidence of a proneural role for Ase in CNS neurogenesis. Strikingly, we found that strong Delta-Notch signaling at the lateral border of the NE triggers l'sc expression, which in turn induces ase expression in the adjacent cells through the activation of Delta-Notch signaling. These results reveal two novel non-conventional actions of Notch signaling in driving the expression of proneural factors, in contrast to the repression that Notch signaling exerts on them during classical lateral inhibition. Finally, Suppressor of Hairless (Su(H)), which seems to be upregulated late in the transitioning cells and in NBs, represses l'sc and ase, ensuring their expression is transient. Thus, our data identify a key proneural role of Ase that is integrated with the sequential activities of Delta-Notch signaling, L'sc, and Su(H), driving the progressive transformation of NE cells into NBs.
Collapse
Affiliation(s)
- Mercedes Martin
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Francisco Gutierrez-Avino
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Mirja N. Shaikh
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Francisco J. Tejedor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| |
Collapse
|
2
|
Liu Y, Li X, Lin L. Transcriptome of the pygmy grasshopper Formosatettix qinlingensis (Orthoptera: Tetrigidae). PeerJ 2023; 11:e15123. [PMID: 37016680 PMCID: PMC10066883 DOI: 10.7717/peerj.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Formosatettix qinlingensis (Zheng, 1982) is a tiny grasshopper endemic to Qinling in China. For further study of its transcriptomic features, we obtained RNA-Seq data by Illumina HiSeq X Ten sequencing platform. Firstly, transcriptomic analysis showed that transcriptome read numbers of two female and one male samples were 25,043,314, 24,429,905, and 25,034,457, respectively. We assembled 65,977 unigenes, their average length was 1,072.09 bp, and the length of N50 was 2,031 bp. The average lengths of F. qinlingensis female and male unigenes were 911.30 bp, and 941.82 bp, and the N50 lengths were 1,745 bp and 1,735 bp, respectively. Eight databases were used to annotate the functions of unigenes, and 23,268 functional unigenes were obtained. Besides, we also studied the body color, immunity and insecticide resistance of F. qinlingensis. Thirty-nine pigment-related genes were annotated. Some immunity genes and signaling pathways were found, such as JAK-STAT and Toll-LIKE receptor signaling pathways. There are also some insecticide resistance genes and signal pathways, like nAChR, GST and DDT. Further, some of these genes were differentially expressed in female and male samples, including pigment, immunity and insecticide resistance. The transcriptomic study of F. qinlingensis will provide data reference for gene prediction and molecular expression study of other Tetrigidae species in the future. Differential genetic screening of males and females provides a basis for studying sex and immune balance in insects.
Collapse
Affiliation(s)
- Yuxin Liu
- Shaanxi Normal University, Xi’an, China
| | | | | |
Collapse
|
3
|
Delanne J, Lecat M, Blackburn P, Klee E, Stumpel C, Stegmann S, Stevens S, Nava C, Heron D, Keren B, Mahida S, Naidu S, Babovic-Vuksanovic D, Herkert J, Torring P, Kibæk M, De Bie I, Pfundt R, Hendriks Y, Ousager L, Bend R, Warren H, Skinner S, Lyons M, Poe C, Chevarin M, Jouan T, Garde A, Thomas Q, Kuentz P, Tisserant E, Duffourd Y, Philippe C, Faivre L, Thauvin-Robinet C. Further clinical and molecular characterization of an XLID syndrome associated with BRWD3 variants, a gene implicate in leukemia-related JAK-STAT pathway. Eur J Med Genet 2022; 66:104670. [DOI: 10.1016/j.ejmg.2022.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
|
4
|
Abstract
Notch signalling is a well-conserved signalling pathway that regulates cell fate through cell-cell communication. A typical feature of Notch signalling is ‘lateral inhibition’, whereby two neighbouring cells of equivalent state of differentiation acquire different cell fates. Recently, mathematical and computational approaches have addressed the Notch dynamics in Drosophila neural development. Typical examples of lateral inhibition are observed in the specification of neural stem cells in the embryo and sensory organ precursors in the thorax. In eye disc development, Notch signalling cooperates with other signalling pathways to define the evenly spaced positioning of the photoreceptor cells. The interplay between Notch and epidermal growth factor receptor signalling regulates the timing of neural stem cell differentiation in the optic lobe. In this review, we summarize the theoretical studies that have been conducted to elucidate the Notch dynamics in these systems and discuss the advantages of combining mathematical models with biological experiments.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
5
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
6
|
Chen YC, Desplan C. Gene regulatory networks during the development of the Drosophila visual system. Curr Top Dev Biol 2020; 139:89-125. [PMID: 32450970 DOI: 10.1016/bs.ctdb.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, United States.
| |
Collapse
|
7
|
Zhou Y, Yang Y, Huang Y, Wang H, Wang S, Luo H. Broad Promotes Neuroepithelial Stem Cell Differentiation in the Drosophila Optic Lobe. Genetics 2019; 213:941-951. [PMID: 31530575 PMCID: PMC6827381 DOI: 10.1534/genetics.119.302421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/08/2019] [Indexed: 11/18/2022] Open
Abstract
Brain development requires the generation of the right number, and type, of neurons and glial cells at the right time. The Drosophila optic lobe, like mammalian brains, develops from simple neuroepithelia; they first divide symmetrically to expand the progenitor pool and then differentiate into neuroblasts, which divide asymmetrically to generate neurons and glial cells. Here, we investigate the mechanisms that control neuroepithelial growth and differentiation in the optic lobe. We find that the Broad/Tramtrack/Bric a brac-zinc finger protein Broad, which is dynamically expressed in the optic lobe neuroepithelia, promotes the transition of neuroepithelial cells to medulla neuroblasts. Loss of Broad function causes neuroepithelial cells to remain highly proliferative and delays neuroepithelial cell differentiation into neuroblasts, which leads to defective lamina and medulla. Conversely, Broad overexpression induces neuroepithelial cells to prematurely transform into medulla neuroblasts. We find that the ecdysone receptor is required for neuroepithelial maintenance and growth, and that Broad expression in neuroepithelial cells is repressed by the ecdysone receptor. Our studies identify Broad as an important cell-intrinsic transcription factor that promotes the neuroepithelial-cell-to-neuroblast transition.
Collapse
Affiliation(s)
- Yanna Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuqin Yang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yanyi Huang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Shengyu Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hong Luo
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
8
|
Plazaola-Sasieta H, Zhu Q, Gaitán-Peñas H, Rios M, Estévez R, Morey M. Drosophila ClC-a is required in glia of the stem cell niche for proper neurogenesis and wiring of neural circuits. Glia 2019; 67:2374-2398. [PMID: 31479171 PMCID: PMC6851788 DOI: 10.1002/glia.23691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Abstract
Glial cells form part of the neural stem cell niche and express a wide variety of ion channels; however, the contribution of these channels to nervous system development is poorly understood. We explored the function of the Drosophila ClC‐a chloride channel, since its mammalian ortholog CLCN2 is expressed in glial cells, and defective channel function results in leukodystrophies, which in humans are accompanied by cognitive impairment. We found that ClC‐a was expressed in the niche in cortex glia, which are closely associated with neurogenic tissues. Characterization of loss‐of‐function ClC‐a mutants revealed that these animals had smaller brains and widespread wiring defects. We showed that ClC‐a is required in cortex glia for neurogenesis in neuroepithelia and neuroblasts, and identified defects in a neuroblast lineage that generates guidepost glial cells essential for photoreceptor axon guidance. We propose that glia‐mediated ionic homeostasis could nonautonomously affect neurogenesis, and consequently, the correct assembly of neural circuits.
Collapse
Affiliation(s)
- Haritz Plazaola-Sasieta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Qi Zhu
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Gaitán-Peñas
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Martín Rios
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Raúl Estévez
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morey
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Programa de Biologia Integrativa, Barcelona, Spain
| |
Collapse
|
9
|
Jörg DJ, Caygill EE, Hakes AE, Contreras EG, Brand AH, Simons BD. The proneural wave in the Drosophila optic lobe is driven by an excitable reaction-diffusion mechanism. eLife 2019; 8:e40919. [PMID: 30794154 PMCID: PMC6386523 DOI: 10.7554/elife.40919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
In living organisms, self-organised waves of signalling activity propagate spatiotemporal information within tissues. During the development of the largest component of the visual processing centre of the Drosophila brain, a travelling wave of proneural gene expression initiates neurogenesis in the larval optic lobe primordium and drives the sequential transition of neuroepithelial cells into neuroblasts. Here, we propose that this 'proneural wave' is driven by an excitable reaction-diffusion system involving epidermal growth factor receptor (EGFR) signalling interacting with the proneural gene l'sc. Within this framework, a propagating transition zone emerges from molecular feedback and diffusion. Ectopic activation of EGFR signalling in clones within the neuroepithelium demonstrates that a transition wave can be excited anywhere in the tissue by inducing signalling activity, consistent with a key prediction of the model. Our model illuminates the physical and molecular underpinnings of proneural wave progression and suggests a generic mechanism for regulating the sequential differentiation of tissues.
Collapse
Affiliation(s)
- David J Jörg
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Elizabeth E Caygill
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Anna E Hakes
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Esteban G Contreras
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Andrea H Brand
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Benjamin D Simons
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
- The Wellcome Trust/Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
10
|
Contreras EG, Egger B, Gold KS, Brand AH. Dynamic Notch signalling regulates neural stem cell state progression in the Drosophila optic lobe. Neural Dev 2018; 13:25. [PMID: 30466475 PMCID: PMC6251220 DOI: 10.1186/s13064-018-0123-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Neural stem cells generate all of the neurons and glial cells in the central nervous system, both during development and in the adult to maintain homeostasis. In the Drosophila optic lobe, neuroepithelial cells progress through two transient progenitor states, PI and PII, before transforming into neuroblasts. Here we analyse the role of Notch signalling in the transition from neuroepithelial cells to neuroblasts. Results We observed dynamic regulation of Notch signalling: strong activity in PI progenitors, low signalling in PII progenitors, and increased activity after neuroblast transformation. Ectopic expression of the Notch ligand Delta induced the formation of ectopic PI progenitors. Interestingly, we show that the E3 ubiquitin ligase, Neuralized, regulates Delta levels and Notch signalling activity at the transition zone. We demonstrate that the proneural transcription factor, Lethal of scute, is essential to induce expression of Neuralized and promote the transition from the PI progenitor to the PII progenitor state. Conclusions Our results show dynamic regulation of Notch signalling activity in the transition from neuroepithelial cells to neuroblasts. We propose a model in which Lethal of scute activates Notch signalling in a non-cell autonomous manner by regulating the expression of Neuralized, thereby promoting the progression between different neural stem cell states. Electronic supplementary material The online version of this article (10.1186/s13064-018-0123-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban G Contreras
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Boris Egger
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Present Address: Department of Biology, Zoology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Katrina S Gold
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| |
Collapse
|
11
|
Sato M, Yasugi T, Trush O. Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neurosci Res 2018; 138:49-58. [PMID: 30227165 DOI: 10.1016/j.neures.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
During neural development, a wide variety of neurons are produced in a highly coordinated manner and form complex and highly coordinated neural circuits. Temporal patterning of neuron type specification plays very important roles in orchestrating the production and wiring of neurons. The fly visual system, which is composed of the retina and the optic lobe of the brain, is an outstanding model system to study temporal patterning and wiring of the nervous system. All of the components of the fly visual system are topographically connected, and each ommatidial unit in the retina corresponds to a columnar unit in the optic lobe. In the retina, the wave of differentiation follows the morphogenetic furrow, which progresses in a posterior-to-anterior direction. At the same time, differentiation of the optic lobe also accompanies the wave of differentiation or temporally coordinated neurogenesis. Thus, temporal patterning plays important roles in establishing topographic connections throughout the fly visual system. In this article, we review how neuronal differentiation and connectivity are orchestrated in the fly visual system by temporal patterning mechanisms.
Collapse
Affiliation(s)
- Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Japan; Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Japan.
| | - Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Japan
| | - Olena Trush
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Japan
| |
Collapse
|
12
|
Strilbytska OM, Koliada AK, Storey KB, Mudra O, Vaiserman AM, Lushchak O. Longevity and stress resistance are affected by activation of TOR/Myc in progenitor cells of Drosophila gut. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AbstractDiverse physiological pathways have been shown to regulate longevity, stress resistance, fecundity and feeding rates, and metabolism in Drosophila. Here we tesed physiological traits in flies with Rheb and Myc- Rheb overexpressed in gut progenitor cells, known as enteroblasts (EBs). We found that activation of TOR signaling by overexpression of Rheb in EBs decreases survival and stress resistance. Additionall, we showed that Myc co-expression in EBs reduces fly fecundity and feeding rate. Rheb overexpression enhanced the level of whole body glucose. Higher relative expression of the metabolic genes dilps, akh, tobi and pepck was, however, observed. The role of TOR/Myc in the regulation of genes involved in lipid metabolism and protein synthesis was established. We showed a significant role of TOR/Myc in EBs in the regulation of the JAK/STAT, EGFR and insulin signaling pathways in Drosophila gut. These results highlight the importance of the balance between all different types of cells and confirm previous studies demonstrating that promotion of homeostasis in the intestine of Drosophila may function as a mechanism for the extension of organismal lifespan. Overall, the results demonstrate a role of TOR signaling and its downstream target Myc in EB cells in the regulation of Drosophila physiological processes.
Collapse
Affiliation(s)
- Olha M. Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | | | - Olha Mudra
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
13
|
Liongue C, Sertori R, Ward AC. Evolution of Cytokine Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:11-18. [DOI: 10.4049/jimmunol.1600372] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Cytokines represent essential mediators of cell–cell communication with particularly important roles within the immune system. These secreted factors are produced in response to developmental and/or environmental cues and act via cognate cytokine receptors on target cells, stimulating specific intracellular signaling pathways to facilitate appropriate cellular responses. This review describes the evolution of cytokine receptor signaling, focusing on the class I and class II receptor families and the downstream JAK–STAT pathway along with its key negative regulators. Individual components generated over a long evolutionary time frame coalesced to form an archetypal signaling pathway in bilateria that was expanded extensively during early vertebrate evolution to establish a substantial “core” signaling network, which has subsequently undergone limited diversification within discrete lineages. The evolution of cytokine receptor signaling parallels that of the immune system, particularly the emergence of adaptive immunity, which has likely been a major evolutionary driver.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Robert Sertori
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
14
|
Retinal Axon Guidance Requires Integration of Eya and the Jak/Stat Pathway into Phosphotyrosine-Based Signaling Circuitries in Drosophila. Genetics 2016; 203:1283-95. [PMID: 27194748 DOI: 10.1534/genetics.115.185918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
The transcriptional coactivator and phosphatase eyes absent (Eya) is dynamically compartmentalized between the nucleus and cytoplasm. Although the nuclear transcriptional circuits within which Eya operates have been extensively characterized, understanding of its cytoplasmic functions and interactions remains limited. Our previous work showed that phosphorylation of Drosophila Eya by the Abelson tyrosine kinase can recruit Eya to the cytoplasm and that eya-abelson interactions are required for photoreceptor axons to project to correct layers in the brain. Based on these observations, we postulated that photoreceptor axon targeting might provide a suitable context for identifying the cytoplasmic signaling cascades with which Eya interacts. Using a dose-sensitive eya misexpression background, we performed an RNA interference-based genetic screen to identify suppressors. Included among the top 10 hits were nonreceptor tyrosine kinases and multiple members of the Jak/Stat signaling network (hop, Stat92E, Socs36E, and Socs44A), a pathway not previously implicated in axon targeting. Individual loss-of-function phenotypes combined with analysis of axonal projections in Stat92E null clones confirmed the importance of photoreceptor autonomous Jak/Stat signaling. Experiments in cultured cells detected cytoplasmic complexes between Eya and Hop, Socs36E and Socs44A; the latter interaction required both the Src homology 2 motif in Socs44A and tyrosine phosphorylated Eya, suggesting direct binding and validating the premise of the screen. Taken together, our data provide new insight into the cytoplasmic phosphotyrosine signaling networks that operate during photoreceptor axon guidance and suggest specific points of interaction with Eya.
Collapse
|
15
|
Liongue C, Taznin T, Ward AC. Signaling via the CytoR/JAK/STAT/SOCS pathway: Emergence during evolution. Mol Immunol 2016; 71:166-175. [PMID: 26897340 DOI: 10.1016/j.molimm.2016.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/24/2022]
Abstract
Cell-cell signaling represents an essential hallmark of multicellular organisms, which necessarily require a means of communicating between different cell populations, particularly immune cells. Cytokine receptor signaling through the Janus kinase/Signal Transducer and Activator of Transcription/Suppressor of Cytokine Signaling (CytoR/JAK/STAT/SOCS) pathway embodies one important paradigm by which this is achieved. This pathway has been extensively studied in vertebrates and protostomes and shown to play fundamental roles in development and function of immune and other cells. However, our understanding of the origins of the individual pathway components and their assembly into a functional pathway has remained limited. This study examined the origins of each component of this pathway through bioinformatics analysis of key extant species. This has revealed step-wise accretion of individual components over a large evolutionary time-frame, but only in bilateria did a series of innovations allow their final coalescence to form a complete pathway. Assembly of the CytoR/JAK/STAT pathway has followed the retrograde model of pathway evolution, whereas addition of the SOCS component has adhered to the patchwork model.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| | - Tarannum Taznin
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
16
|
Yasugi T, Nishimura T. Temporal regulation of the generation of neuronal diversity in Drosophila. Dev Growth Differ 2015; 58:73-87. [PMID: 26690868 DOI: 10.1111/dgd.12245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 12/18/2022]
Abstract
For the construction of complex neural networks, the generation of neurons and glia must be tightly regulated both spatially and temporally. One of the major issues in neural development is the generation of a large variety of neurons and glia over time from a relatively small number of neural stem cells. In Drosophila, neural stem cells, called neuroblasts (NBs), have been used as a useful model system to uncover the molecular and cellular machinery involved in the establishment of neural diversity. NBs divide asymmetrically and produce another self-renewing progenitor cell and a differentiating cell. NBs are subdivided into several types based on their location in the central nervous system. Each type of NB has specific features related to the timing of cell generation, cell cycle progression, temporal patterning for neuronal specification, and termination mechanism. In this review, we focus on the molecular mechanisms that regulate the proliferation of NBs and generate a large variety of neuronal and glia subtypes during development.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
17
|
Akagawa H, Hara Y, Togane Y, Iwabuchi K, Hiraoka T, Tsujimura H. The role of the effector caspases drICE and dcp-1 for cell death and corpse clearance in the developing optic lobe in Drosophila. Dev Biol 2015; 404:61-75. [PMID: 26022392 DOI: 10.1016/j.ydbio.2015.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 02/02/2023]
Abstract
In the developing Drosophila optic lobe, cell death occurs via apoptosis and in a distinctive spatio-temporal pattern of dying cell clusters. We analyzed the role of effector caspases drICE and dcp-1 in optic lobe cell death and subsequent corpse clearance using mutants. Neurons in many clusters required either drICE or dcp-1 and each one is sufficient. This suggests that drICE and dcp-1 function in cell death redundantly. However, dying neurons in a few clusters strictly required drICE but not dcp-1, but required drICE and dcp-1 when drICE activity was reduced via hypomorphic mutation. In addition, analysis of the mutants suggests an important role of effecter caspases in corpse clearance. In both null and hypomorphic drICE mutants, greater number of TUNEL-positive cells were observed than in wild type, and many TUNEL-positive cells remained until later stages. Lysotracker staining showed that there was a defect in corpse clearance in these mutants. All the results suggested that drICE plays an important role in activating corpse clearance in dying cells, and that an additional function of effector caspases is required for the activation of corpse clearance as well as that for carrying out cell death.
Collapse
Affiliation(s)
- Hiromi Akagawa
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Biological Production Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yusuke Hara
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yu Togane
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kikuo Iwabuchi
- Department of Biological Production Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Tsuyoshi Hiraoka
- Department of Biological Production Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hidenobu Tsujimura
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
18
|
Hudetz JA, Patterson KM, Iqbal Z, Gandhi SD, Pagel PS. Remote Ischemic Preconditioning Prevents Deterioration of Short-Term Postoperative Cognitive Function After Cardiac Surgery Using Cardiopulmonary Bypass: Results of a Pilot Investigation. J Cardiothorac Vasc Anesth 2015; 29:382-8. [DOI: 10.1053/j.jvca.2014.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 11/11/2022]
|
19
|
Gold KS, Brand AH. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev 2014; 9:18. [PMID: 25074684 PMCID: PMC4127074 DOI: 10.1186/1749-8104-9-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/25/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND During early brain development, the organisation of neural progenitors into a neuroepithelial sheet maintains tissue integrity during growth. Neuroepithelial cohesion and patterning is essential for orderly proliferation and neural fate specification. Neuroepithelia are regionalised by the expression of transcription factors and signalling molecules, resulting in the formation of distinct developmental, and ultimately functional, domains. RESULTS We have discovered that the Six3/6 family orthologue Optix is an essential regulator of neuroepithelial maintenance and patterning in the Drosophila brain. Six3 and Six6 are required for mammalian eye and forebrain development, and mutations in humans are associated with severe eye and brain malformation. In Drosophila, Optix is expressed in a sharply defined region of the larval optic lobe, and its expression is reciprocal to that of the transcription factor Vsx1. Optix gain- and loss-of-function affects neuroepithelial adhesion, integrity and polarity. We find restricted cell lineage boundaries that correspond to transcription factor expression domains. CONCLUSION We propose that the optic lobe is compartmentalised by expression of Optix and Vsx1. Our findings provide insight into the spatial patterning of a complex region of the brain, and suggest an evolutionarily conserved principle of visual system development.
Collapse
Affiliation(s)
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development & Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
20
|
Apitz H, Salecker I. A Challenge of Numbers and Diversity: Neurogenesis in theDrosophilaOptic Lobe. J Neurogenet 2014; 28:233-49. [DOI: 10.3109/01677063.2014.922558] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Chen X, Quan Y, Wang H, Luo H. Trehalase regulates neuroepithelial stem cell maintenance and differentiation in the Drosophila optic lobe. PLoS One 2014; 9:e101433. [PMID: 25003205 PMCID: PMC4086926 DOI: 10.1371/journal.pone.0101433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
As one of the major hydrolases in Drosophila, trehalase (Treh) catalyzes the hydrolysis of trehalose into glucose providing energy for flight muscle activity. Treh is highly conserved from bacteria to humans, but little is known about its function during animal development. Here, we analyze the function of Treh in Drosophila optic lobe development. In the optic lobe, neuroepithelial cells (NEs) first divide symmetrically to expand the stem cell pool and then differentiate into neuroblasts, which divide asymmetrically to generate medulla neurons. We find that the knockdown of Treh leads to a loss of the lamina and a smaller medulla. Analyses of Treh RNAi-expressing clones and loss-of-function mutants indicate that the lamina and medulla phenotypes result from neuroepithelial disintegration and premature differentiation into medulla neuroblasts. Although the principal role of Treh is to generate glucose, the Treh loss-of-function phenotype cannot be rescued by exogenous glucose. Thus, our results indicate that in addition to being a hydrolase, Treh plays a role in neuroepithelial stem cell maintenance and differentiation during Drosophila optic lobe development.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (XC); (HL)
| | - Yaru Quan
- School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
| | - Hongbin Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hong Luo
- School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (XC); (HL)
| |
Collapse
|
22
|
Myllymäki H, Rämet M. JAK/STAT Pathway inDrosophilaImmunity. Scand J Immunol 2014; 79:377-85. [DOI: 10.1111/sji.12170] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/21/2014] [Indexed: 12/24/2022]
Affiliation(s)
- H. Myllymäki
- Laboratory of Experimental Immunology; BioMediTech; University of Tampere; Tampere Finland
| | - M. Rämet
- Laboratory of Experimental Immunology; BioMediTech; University of Tampere; Tampere Finland
- Department of Pediatrics; Tampere University Hospital; Tampere Finland
- Department of Pediatrics; Medical Research Center Oulu; University of Oulu; Oulu Finland
- Department of Children and Adolescents; Oulu University Hospital; Oulu Finland
| |
Collapse
|
23
|
Tognon E, Vaccari T. Immunohistochemical tools and techniques to visualize Notch in Drosophila melanogaster. Methods Mol Biol 2014; 1187:63-78. [PMID: 25053481 DOI: 10.1007/978-1-4939-1139-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability to accurately visualize proteins in Drosophila tissues is critical for studying their abundance and localization relative to the morphology of cells during tissue development and homeostasis. Here we describe the procedure to visualize Notch localization in whole-mount preparations of several Drosophila organs using confocal microscopy. The use of monoclonal antibodies directed to distinct portions of Notch allows one to follow the fate of the receptor during constitutive and inductive processes. The protocol described here can be used to co-label with antibodies recognizing markers of subcellular compartments in wild-type as well as mutant tissues.
Collapse
Affiliation(s)
- Emiliana Tognon
- Istituto FIRC di Oncologia Molecolare (IFOM), IFOM-IEO Campus, via Adamello 16, 20139, Milano, Italy
| | | |
Collapse
|
24
|
Morante J, Vallejo DM, Desplan C, Dominguez M. Conserved miR-8/miR-200 defines a glial niche that controls neuroepithelial expansion and neuroblast transition. Dev Cell 2013; 27:174-187. [PMID: 24139822 DOI: 10.1016/j.devcel.2013.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/22/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022]
Abstract
Neuroepithelial cell proliferation must be carefully balanced with the transition to neuroblast (neural stem cell) to control neurogenesis. Here, we show that loss of the Drosophila microRNA mir-8 (the homolog of vertebrate miR-200 family) results in both excess proliferation and ectopic neuroblast transition. Unexpectedly, mir-8 is expressed in a subpopulation of optic-lobe-associated cortex glia that extend processes that ensheath the neuroepithelium, suggesting that glia cells communicate with the neuroepithelium. We provide evidence that miR-8-positive glia express Spitz, a transforming growth factor α (TGF-α)-like ligand that triggers epidermal growth factor receptor (EGFR) activation to promote neuroepithelial proliferation and neuroblast formation. Further, our experiments suggest that miR-8 ensures both a correct glial architecture and the spatiotemporal control of Spitz protein synthesis via direct binding to Spitz 3' UTR. Together, these results establish glial-derived cues as key regulatory elements in the control of neuroepithelial cell proliferation and the neuroblast transition.
Collapse
Affiliation(s)
- Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Av Santiago Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain.
| | - Diana M Vallejo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Av Santiago Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Av Santiago Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
| |
Collapse
|
25
|
Abstract
The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Drosophila brain and identified 47 genes that are positively regulated by JAK/STAT. About two-thirds of the genes encode proteins that have orthologs in humans. The STAT targets in the optic lobe appear to be different from the targets identified in other tissues, suggesting that JAK/STAT signaling may regulate different target genes in a tissue-specific manner. Functional analysis of Nop56, a cell-autonomous STAT target, revealed an essential role for this gene in the growth and proliferation of neuroepithelial stem cells in the optic lobe and an inhibitory role in lamina neurogenesis.
Collapse
|
26
|
Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 2013; 26:101-12. [PMID: 23792147 PMCID: PMC3714590 DOI: 10.1016/j.devcel.2013.05.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/20/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed “TaDa,” a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transcribed genes in a cell-type-specific manner with considerable temporal precision, enabling the identification of differential gene expression between neuroblasts and the neuroepithelial cells from which they derive. We profile the genome-wide binding of RNA polymerase II in these adjacent, clonally related stem cells within intact Drosophila brains. Our data reveal expression of specific metabolic genes in neuroepithelial cells, but not in neuroblasts, and highlight gene regulatory networks that may pattern neural stem cell fates. TaDa is a method for cell-type-specific profiling of chromatin binding proteins TaDa does not require cell sorting, fixation, or affinity purification This is a highly sensitive and robust technique for transcriptional profiling We report differential RNA Pol II binding in clonally related stem cells
Collapse
Affiliation(s)
- Tony D Southall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Sato M, Suzuki T, Nakai Y. Waves of differentiation in the fly visual system. Dev Biol 2013; 380:1-11. [PMID: 23603492 DOI: 10.1016/j.ydbio.2013.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022]
Abstract
Sequential progression of differentiation in a tissue or in multiple tissues in a synchronized manner plays important roles in development. Such waves of differentiation are especially important in the development of the Drosophila visual system, which is composed of the retina and the optic lobe of the brain. All of the components of the fly visual system are topographically connected, and each ommatidial unit in the retina corresponds to a columnar unit in the optic lobe, which is composed of lamina, medulla, lobula and lobula plate. In the developing retina, the wave of differentiation follows the morphogenetic furrow, which progresses in a posterior-to-anterior direction. At the same time, differentiation of the lamina progresses in the same direction, behind the lamina furrow. This is not just a coincidence: differentiated photoreceptor neurons in the retina sequentially send axons to the developing lamina and trigger differentiation of lamina neurons to ensure the progression of the lamina furrow just like the furrow in the retina. Similarly, development of the medulla accompanies a wave of differentiation called the proneural wave. Thus, the waves of differentiation play important roles in establishing topographic connections throughout the fly visual system. In this article, we review how neuronal differentiation and connectivity are orchestrated in the fly visual system by multiple waves of differentiation.
Collapse
Affiliation(s)
- Makoto Sato
- Brain/Liver Interface Medicine Research Center, Graduate School of Medical Sciences, Lab of Developmental Neurobiology, Kanazawa University, Japan.
| | | | | |
Collapse
|
28
|
Replication protein a links cell cycle progression and the onset of neurogenesis in Drosophila optic lobe development. J Neurosci 2013; 33:2873-88. [PMID: 23407946 DOI: 10.1523/jneurosci.3357-12.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem cell self-renewal and differentiation must be carefully controlled during development and tissue homeostasis. In the Drosophila optic lobe, neuroepithelial cells first divide symmetrically to expand the stem cell population and then transform into asymmetrically dividing neuroblasts, which generate medulla neurons. The mechanisms underlying this cell fate transition are not well understood. Here, we show a crucial role of some cell cycle regulators in this transition. We find that loss of function in replication protein A (RPA), which consists of three highly conserved protein subunits and functions in DNA replication, leads to disintegration of the optic lobe neuroepithelium and premature differentiation of neuroepithelial cells into medulla neuroblasts. Clonal analyses of RPA loss-of-function alleles indicate that RPA is required to prevent neuroepithelial cells from differentiating into medulla neuroblasts. Inactivation of the core cell cycle regulators, including the G1/S regulators E2F1, Cyclin E, Cdk2, and PCNA, and the G2/M regulators Cyclin A, Cyclin B, and Cdk1, mimic RPA loss-of-function phenotypes, suggesting that cell cycle progression is required for both maintaining neuroepithelial cell identity and suppressing neuroblast formation. We further find that RPA or E2F1 inactivation in the neuroepithelial cells correlates with downregulation of Notch signaling activity, which appears to result from Numb mislocalization. Thus, we have shown that the transition from neuroepithelial cells to neuroblasts is directly regulated by cell cycle regulators and propose a model in which the inhibition of neuroepithelial cell cycle progression downregulates Notch signaling activity through Numb, which leads to the onset of neurogenesis.
Collapse
|
29
|
Ecdysone-dependent and ecdysone-independent programmed cell death in the developing optic lobe of Drosophila. Dev Biol 2013; 374:127-41. [DOI: 10.1016/j.ydbio.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/14/2022]
|
30
|
Stine RR, Matunis EL. JAK-STAT signaling in stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:247-67. [PMID: 23696361 DOI: 10.1007/978-94-007-6621-1_14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult stem cells are essential for the regeneration and repair of tissues in an organism. Signals from many different pathways converge to regulate stem cell maintenance and differentiation while preventing overproliferation. Although each population of adult stem cells is unique, common themes arise by comparing the regulation of various stem cell types in an organism or by comparing similar stem cell types across species. The JAK-STAT signaling pathway, identified nearly two decades ago, is now known to be involved in many biological processes including the regulation of stem cells. Studies in Drosophila first implicated JAK-STAT signaling in the control of stem cell maintenance in the male germline stem cell microenvironment, or niche; subsequently it has been shown play a role in other niches in both Drosophila and mammals. In this chapter, we will address the role of JAK-STAT signaling in stem cells in the germline, intestinal, hematopoietic and neuronal niches in Drosophila as well as the hematopoietic and neuronal niches in mammals. We will comment on how the study of JAK-STAT signaling in invertebrate systems has helped to advance our understanding of signaling in vertebrates. In addition to the role of JAK- STAT signaling in stem cell niche homeostasis, we will also discuss the diseases, including cancers, that can arise when this pathway is misregulated.
Collapse
Affiliation(s)
- Rachel R Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205 USA
| | | |
Collapse
|
31
|
Togane Y, Ayukawa R, Hara Y, Akagawa H, Iwabuchi K, Tsujimura H. Spatio-temporal pattern of programmed cell death in the developing Drosophila optic lobe. Dev Growth Differ 2012; 54:503-18. [PMID: 22587328 DOI: 10.1111/j.1440-169x.2012.01340.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A large number of cells die via programmed cell death during the normal development of the Drosophila optic lobe. In this study, we report the precise spatial and temporal pattern of cell death in this organ. Cell death in the developing optic lobe occurs in two distinct phases. The first phase extends from the start of metamorphosis to the mid-pupal stage. During this phase, a large number of cells die in the optic lobe as a whole, with a peak of cell death at an early pupal stage in the lamina and medulla cortices and the region of the T2/T3/C neurons, and a smaller number of dead cells observed in the lobula plate cortex. The second phase extends from the mid-pupal stage to eclosion. Throughout this period, a small number of dying cells can be observed, with a small peak at a late pupal stage. Most of the dying cells are neurons. During the first phase, dying cells are distributed in specific patterns in cortices. The lamina cortex contains two distinct clusters of dying cells; the medulla cortex, four clusters; the lobula plate cortex, one cluster; and the region of the T2/T3/C neurons, one cluster. Many of the clusters maintain their distinct positions in the optic lobe but others extend the region they cover during development. The presence of distinct clusters of dying cells at different phases suggests that distinct mechanisms control cell death during different stages of optic lobe development in Drosophila.
Collapse
Affiliation(s)
- Yu Togane
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-si, Tokyo, 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Liongue C, O'Sullivan LA, Trengove MC, Ward AC. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development. PLoS One 2012; 7:e32777. [PMID: 22412924 PMCID: PMC3296744 DOI: 10.1371/journal.pone.0032777] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/30/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. RESULTS Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| | - Lynda A. O'Sullivan
- School of Life & Environmental Sciences, Deakin University, Victoria, Australia
| | - Monique C. Trengove
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| |
Collapse
|
33
|
Drosophila SOCS Proteins. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:894510. [PMID: 22203896 PMCID: PMC3238392 DOI: 10.1155/2011/894510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/15/2011] [Indexed: 01/08/2023]
Abstract
The importance of signal transduction cascades such as the EGFR and JAK/STAT pathways for development and homeostasis is highlighted by the high levels of molecular conservation maintained between organisms as evolutionary diverged as fruit flies and humans. This conservation is also mirrored in many of the regulatory mechanisms that control the extent and duration of signalling in vivo. One group of proteins that represent important physiological regulators of both EGFR and JAK/STAT signalling is the members of the SOCS family. Only 3 SOCS-like proteins are encoded by the Drosophila genome, and despite this low complexity, Drosophila SOCS proteins share many similarities to their human homologues. SOCS36E is both a target gene and negative regulator of JAK/STAT signalling while SOCS44A and SOCS36E represent positive and negative regulators of EGFR signalling. Here we review our current understanding of Drosophila SOCS proteins, their roles in vivo, and future approaches to elucidating their functions.
Collapse
|