1
|
Hao X, Reyes Palomares A, Anastácio A, Liu K, Rodriguez-Wallberg KA. Evidence of apoptosis as an early event leading to cyclophosphamide-induced primordial follicle depletion in a prepubertal mouse model. Front Endocrinol (Lausanne) 2024; 15:1322592. [PMID: 39469582 PMCID: PMC11514600 DOI: 10.3389/fendo.2024.1322592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction The mechanisms leading to ovarian primordial follicle depletion following gonadotoxic chemotherapy with cyclophosphamide and other cytotoxic drugs are currently understood through two main explanatory theories: apoptosis and over-activation. Discrepancies between the findings of different studies investigating these mechanisms do not allow to reach a firm conclusion. The heterogeneity of cell types in ovaries and their different degrees of sensitivity to damage, cell-cell interactions, periodical follicle profile differences, model age-dependent differences, and differences of exposure durations of tested drugs may partially explain the discrepancies among studies. Methods This study used intact prepubertal mice ovaries in culture as study model, in which most follicles are primordial follicles. Histological and transcriptional analyses of ovaries exposed to the active metabolite of cyclophosphamide 4-hydroperoxycyclophosphamide (4-HC) were carried out via a time-course experiment at 8, 24, 48, and 72 h. Results 4-HC treated ovaries showed a significant decrease in primordial follicle density at 24 h, along with active DNA damage (TUNEL) and overexpressed apoptosis signals (cleaved-poly ADP ribose polymerase in immunohistochemistry and western blotting). Meanwhile 4-HC treatment significantly up-regulated H2ax, Casp 6, Casp 8, Noxa, and Bax in ovaries, and up-regulated Puma in primordial follicles (FISH). Discussion Our results indicated that cyclophosphamide-induced acute ovarian primordial follicle depletion was mainly related to apoptotic pathways. No evidence of follicle activation was found, neither through changes in the expression of related genes to follicle activation nor in the density of growing follicles. Further validation at protein level in 4-HC-treated prepubertal mice ovaries at 24 h confirmed these observations.
Collapse
Affiliation(s)
- Xia Hao
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Arturo Reyes Palomares
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Amandine Anastácio
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kenny A. Rodriguez-Wallberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
3
|
Hba S, Ghaddar S, Wahnou H, Pinon A, El Kebbaj R, Pouget C, Sol V, Liagre B, Oudghiri M, Limami Y. Natural Chalcones and Derivatives in Colon Cancer: Pre-Clinical Challenges and the Promise of Chalcone-Based Nanoparticles. Pharmaceutics 2023; 15:2718. [PMID: 38140059 PMCID: PMC10748144 DOI: 10.3390/pharmaceutics15122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development and progression of colon cancer makes them invaluable as targeted therapeutics. Nevertheless, it is crucial to recognize that although chalcones exhibit promise, further pre-clinical studies are required to validate their efficacy and safety. The journey toward effective colon cancer treatment is multifaceted, involving considerations such as optimizing the sequencing of therapeutic agents, comprehending the resistance mechanisms, and exploring combination therapies incorporating chalcones. Furthermore, the integration of nanoparticle-based drug delivery systems presents a novel avenue for enhancing the effectiveness of chalcones in colon cancer treatment. This review delves into the mechanisms of action of natural chalcones and some derivatives. It highlights the challenges associated with their use in pre-clinical studies, while also underscoring the advantages of employing chalcone-based nanoparticles for the treatment of colon cancer.
Collapse
Affiliation(s)
- Soufyane Hba
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Suzan Ghaddar
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | - Christelle Pouget
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| |
Collapse
|
4
|
López-Álvarez M, González-Aguilera C, Moura DS, Sánchez-Bustos P, Mondaza-Hernández JL, Martín-Ruiz M, Renshaw M, Ramos R, Castilla C, Blanco-Alcaina E, Hindi N, Martín-Broto J. Efficacy of Eribulin Plus Gemcitabine Combination in L-Sarcomas. Int J Mol Sci 2022; 24:680. [PMID: 36614121 PMCID: PMC9820645 DOI: 10.3390/ijms24010680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Although the overall survival of advanced soft-tissue sarcoma (STS) patients has increased in recent years, the median progression-free survival is lower than 5 months, meaning that there is an unmet need in this population. Among second-line treatments for advanced STS, eribulin is an anti-microtubule agent that has been approved for liposarcoma. Here, we tested the combination of eribulin with gemcitabine in preclinical models of L-sarcoma. The effect in cell viability was measured by MTS and clonogenic assay. Cell cycle profiling was studied by flow cytometry, while apoptosis was measured by flow cytometry and Western blotting. The activity of eribulin plus gemcitabine was evaluated in in vivo patient-derived xenograft (PDX) models. In L-sarcoma cell lines, eribulin plus gemcitabine showed to be synergistic, increasing the number of hypodiploid events (increased subG1 population) and the accumulation of DNA damage. In in vivo PDX models of L-sarcomas, eribulin combined with gemcitabine was a viable scheme, delaying tumour growth after one cycle of treatment, being more effective in leiomyosarcoma. The combination of eribulin and gemcitabine was synergistic in L-sarcoma cultures and it showed to be active in in vivo studies. This combination deserves further exploration in the clinical context.
Collapse
Affiliation(s)
- María López-Álvarez
- Institute of Biomedicine of Sevilla, IBIS, Hospital Universitario Virgen del Rocío-HUVR, Consejo Superior de Investigaciones Científicas-CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
| | - Cristina González-Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC, Universidad Pablo de Olavide, 41092 Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Sevilla, Spain
| | - David S. Moura
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
| | - Paloma Sánchez-Bustos
- Institute of Biomedicine of Sevilla, IBIS, Hospital Universitario Virgen del Rocío-HUVR, Consejo Superior de Investigaciones Científicas-CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
| | | | - Marta Martín-Ruiz
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
| | - Marta Renshaw
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
| | - Rafael Ramos
- Pathology Department, University Hospital Son Espases, 07120 Palma de Mallorca, Spain
| | - Carolina Castilla
- Nodo Biobanco Hospital Universitario Virgen del Rocío-Instituto de Biomedicina de Sevilla, Biobanco del SSPA, Unidad de Anatomía Patológica, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Elena Blanco-Alcaina
- Institute of Biomedicine of Sevilla, IBIS, Hospital Universitario Virgen del Rocío-HUVR, Consejo Superior de Investigaciones Científicas-CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nadia Hindi
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
- Medical Oncology Department, University Hospital Fundación Jimenez Diaz, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital General de Villalba, Collado Villalba, 28400 Madrid, Spain
| | - Javier Martín-Broto
- Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IIS/FJD), 28015 Madrid, Spain
- Medical Oncology Department, University Hospital Fundación Jimenez Diaz, 28040 Madrid, Spain
- Medical Oncology Department, University Hospital General de Villalba, Collado Villalba, 28400 Madrid, Spain
| |
Collapse
|
5
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
6
|
Jin X, Kuang Y, Li L, Li H, Zhao T, He Y, Di C, Kang J, Yuan L, Yu B, Li Q. A positive feedback circuit comprising p21 and HIF-1α aggravates hypoxia-induced radioresistance of glioblastoma by promoting Glut1/LDHA-mediated glycolysis. FASEB J 2022; 36:e22229. [PMID: 35199870 DOI: 10.1096/fj.202101736r] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
The radioresistance induced by hypoxia is the major obstacle in the successful treatment of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, through which mediates the p53-dependent cell cycle G1 phase arrest in response to a variety of stress stimuli. In this study, we discovered a novel function of p21, which participated in the regulation of metabolic pathways under hypoxia. We found that p21 was upregulated in glioblastoma (GBM) cells under hypoxic conditions, which enhanced the radioresistance of GBM cells. In principle, HIF-1α is bound directly to the hypoxia response elements (HREs) of the p21 promoter to enhance its transcription activity, in turn, p21 also promoted the transcription of HIF-1α at the mRNA level and maintained HIF-1α function under oxygen deficiency. The positive correlation between p21 and HIF-1α augmented Glut1/LDHA-mediated glycolysis and aggravated the radioresistance of GBM cells. Thus, our results constructed a positive feedback circuit comprising p21/HIF-1α that might play a key role in enhancing the radioresistance of GBM under hypoxia.
Collapse
Affiliation(s)
- Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Lanhai Nuclear Medicine Research Center, Putian, China
| | - Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yufang He
- The Third Hospital of Gansu Province, Lanzhou, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Lanhai Nuclear Medicine Research Center, Putian, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lingyan Yuan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Lanhai Nuclear Medicine Research Center, Putian, China
| |
Collapse
|
7
|
Koike M, Yutoku Y, Koike A. Feline XRCC4 undergoes rapid Ku-dependent recruitment to DNA damage sites. FEBS Open Bio 2022; 12:798-810. [PMID: 35000298 PMCID: PMC8972062 DOI: 10.1002/2211-5463.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation and chemotherapy resistance remain some of the greatest challenges in human and veterinary cancer therapies. XRCC4, an essential molecule for nonhomologous end joining repair, is a promising target for radiosensitizers. Genetic variants and mutations of XRCC4 contribute to cancer susceptibility, and XRCC4 is also the causative gene of microcephalic primordial dwarfism (MPD) in humans. The development of clinically effective molecular‐targeted drugs requires accurate understanding of the functions and regulatory mechanisms of XRCC4. In this study, we cloned and sequenced the cDNA of feline XRCC4. Comparative analysis indicated that sequences and post‐translational modification sites that are predicted to be involved in regulating the localization of human XRCC4, including the nuclear localization signal, are mostly conserved in feline XRCC4. All examined target amino acids responsible for human MPD are completely conserved in feline XRCC4. Furthermore, we found that the localization of feline XRCC4 dynamically changes during the cell cycle. Soon after irradiation, feline XRCC4 accumulated at laser‐induced DNA double‐strand break (DSB) sites in both the interphase and mitotic phase, and this accumulation was dependent on the presence of Ku. Additionally, XRCC4 superfamily proteins XLF and PAXX accumulated at the DSB sites. Collectively, these findings suggest that mechanisms regulating the spatiotemporal localization of XRCC4 are crucial for XRCC4 function in humans and cats. Our findings contribute to elucidating the functions of XRCC4 and the role of abnormal XRCC4 in diseases, including cancers and MPD, and may help in developing XRCC4‐targeted drugs, such as radiosensitizers, for humans and cats.
Collapse
Affiliation(s)
- Manabu Koike
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Yasutomo Yutoku
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Aki Koike
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
8
|
Zhu Y, Han XQ, Sun XJ, Yang R, Ma WQ, Liu NF. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy. Apoptosis 2021; 25:321-340. [PMID: 31993850 DOI: 10.1007/s10495-020-01592-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial media calcification is related to mitochondrial dysfunction. Protective mitophagy delays the progression of vascular calcification. We previously reported that lactate accelerates osteoblastic phenotype transition of VSMC through BNIP3-mediated mitophagy suppression. In this study, we investigated the specific links between lactate, mitochondrial homeostasis, and vascular calcification. Ex vivo, alizarin S red and von Kossa staining in addition to measurement of calcium content, RUNX2, and BMP-2 protein levels revealed that lactate accelerated arterial media calcification. We demonstrated that lactate induced mitochondrial fission and apoptosis in aortas, whereas mitophagy was suppressed. In VSMCs, lactate increased NR4A1 expression, leading to activation of DNA-PKcs and p53. Lactate induced Drp1 migration to the mitochondria and enhanced mitochondrial fission through NR4A1. Western blot analysis of LC3-II and p62 and mRFP-GFP-LC3 adenovirus detection showed that NR4A1 knockdown was involved in enhanced autophagy flux. Furthermore, NR4A1 inhibited BNIP3-related mitophagy, which was confirmed by TOMM20 and BNIP3 protein levels, and LC3-II co-localization with TOMM20. The excessive fission and deficient mitophagy damaged mitochondrial structure and impaired respiratory function, determined by mPTP opening rate, mitochondrial membrane potential, mitochondrial morphology under TEM, ATP production, and OCR, which was reversed by NR4A1 silencing. Mechanistically, lactate enhanced fission but halted mitophagy via activation of the NR4A1/DNA-PKcs/p53 pathway, evoking apoptosis, finally accelerating osteoblastic phenotype transition of VSMC and calcium deposition. This study suggests that the NR4A1/DNA-PKcs/p53 pathway is involved in the mechanism by which lactate accelerates vascular calcification, partly through excessive Drp-mediated mitochondrial fission and BNIP3-related mitophagy deficiency.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xi-Qiong Han
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Rui Yang
- Pharmaceutical Department, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
9
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
He Y, Wang Z, Hu Y, Yi X, Wu L, Cao Z, Wang J. Sensitive and selective monitoring of the DNA damage-induced intracellular p21 protein and unraveling the role of the p21 protein in DNA repair and cell apoptosis by surface plasmon resonance. Analyst 2020; 145:3697-3704. [DOI: 10.1039/c9an02464f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive and selective monitoring of DNA damage-induced intracellular p21 protein is proposed using surface plasmon resonance. The method serves as a viable means for unraveling the role of p21 protein in DNA repair and cell apoptosis.
Collapse
Affiliation(s)
- Yuhan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Zixiao Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Yuqing Hu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Ling Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- P. R. China 410114
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| |
Collapse
|
11
|
Al Bitar S, Gali-Muhtasib H. The Role of the Cyclin Dependent Kinase Inhibitor p21 cip1/waf1 in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics. Cancers (Basel) 2019; 11:cancers11101475. [PMID: 31575057 PMCID: PMC6826572 DOI: 10.3390/cancers11101475] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
p21cip1/waf1 mediates various biological activities by sensing and responding to multiple stimuli, via p53-dependent and independent pathways. p21 is known to act as a tumor suppressor mainly by inhibiting cell cycle progression and allowing DNA repair. Significant advances have been made in elucidating the potential role of p21 in promoting tumorigenesis. Here, we discuss the involvement of p21 in multiple signaling pathways, its dual role in cancer, and the importance of understanding its paradoxical functions for effectively designing therapeutic strategies that could selectively inhibit its oncogenic activities, override resistance to therapy and yet preserve its tumor suppressive functions.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, and Center for Drug Discovery, American University of Beirut, Beirut 1103, Lebanon.
| | - Hala Gali-Muhtasib
- Department of Biology, and Center for Drug Discovery, American University of Beirut, Beirut 1103, Lebanon.
| |
Collapse
|
12
|
Soysa R, Lampert S, Yuen S, Douglass AN, Li W, Pfeffer K, Crispe IN. Fetal origin confers radioresistance on liver macrophages via p21 cip1/WAF1. J Hepatol 2019; 71:553-562. [PMID: 31077791 DOI: 10.1016/j.jhep.2019.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Cells of hematopoietic origin, including macrophages, are generally radiation sensitive, but a subset of Kupffer cells (KCs) is relatively radioresistant. Here, we focused on the identity of the radioresistant KCs in unmanipulated mice and the mechanism of radioresistance. METHODS We employed Emr1- and inducible CX3Cr1-based fate-mapping strategies combined with the RiboTag reporter to identify the total KCs and the embryo-derived KCs, respectively. The KC compartment was reconstituted with adult bone-marrow-derived KCs (bm-KCs) using clodronate depletion. Mice were lethally irradiated and transplanted with donor bone marrow, and the radioresistance of bone-marrow- or embryo-derived KCs was studied. Gene expression was analyzed using in situ mRNA isolation via RiboTag reporter mice, and the translatomes were compared among subsets. RESULTS Here, we identified the radioresistant KCs as the long-lived subset that is derived from CX3CR1-expressing progenitor cells in fetal life, while adult bm-KCs do not resist irradiation. While both subsets upregulated the Cdkn1a gene, encoding p21-cip1/WAF1 protein, radioresistant embryo-derived KCs showed a greater increase in response to irradiation. In the absence of this molecule, the radioresistance of KCs was compromised. Replacement KCs, derived from adult hematopoietic stem cells, differed from radioresistant KCs in their expression of genes related to immunity and phagocytosis. CONCLUSIONS Here, we show that, in the murine liver, a subset of KCs of embryonic origin resists lethal irradiation through Cdkn1a upregulation and is maintained for a long period, while bm-KCs do not survive lethal irradiation. LAY SUMMARY Kupffer cells (KCs) are the tissue-resident macrophages of the liver. KCs can be originated from fetal precursors and from monocytes during the fetal stage and post-birth, respectively. Most immune cells in mice are sensitive to lethal-irradiation-induced death, while a subset of KCs resists radiation-induced death. These radioresistant KCs continue to live in the irradiated mice. We discovered that this relatively radioresistant KC subset are the fetal-derived KCs, and they achieve this through cell-cycle arrest. Understanding the radiobiology of KCs will provide valuable insights into the mechanisms that elicit radiation-induced liver disease.
Collapse
Affiliation(s)
- Radika Soysa
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Sarah Lampert
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Sebastian Yuen
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Alyse N Douglass
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Wanyu Li
- Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| | - Ian N Crispe
- Department of Pathology, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Martin OCB, Bergonzini A, D'Amico F, Chen P, Shay JW, Dupuy J, Svensson M, Masucci MG, Frisan T. Infection with genotoxin-producing Salmonella enterica synergises with loss of the tumour suppressor APC in promoting genomic instability via the PI3K pathway in colonic epithelial cells. Cell Microbiol 2019; 21:e13099. [PMID: 31414579 PMCID: PMC6899655 DOI: 10.1111/cmi.13099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Several commensal and pathogenic Gram‐negative bacteria produce DNA‐damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin‐producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin‐producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC‐deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3‐kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin‐producing bacteria in promoting a microenvironment conducive to malignant transformation.
Collapse
Affiliation(s)
- Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergonzini
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Federica D'Amico
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jacques Dupuy
- INRA, ToxAlim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Mattias Svensson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Mahadevan J, Rudolph J, Jha A, Tay JW, Dragavon J, Grumstrup EM, Luger K. Q-FADD: A Mechanistic Approach for Modeling the Accumulation of Proteins at Sites of DNA Damage. Biophys J 2019; 116:2224-2233. [PMID: 31109734 DOI: 10.1016/j.bpj.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
The repair of DNA damage requires the ordered recruitment of many different proteins that are responsible for signaling and subsequent repair. A powerful and widely used tool for studying the orchestrated accumulation of these proteins at damage sites is laser microirradiation in live cells, followed by monitoring the accumulation of the fluorescently labeled protein in question. Despite the widespread use of this approach, there exists no rigorous method for characterizing the recruitment process quantitatively. Here, we introduce a diffusion model that explicitly accounts for the unique sizes and shapes of individual nuclei and uses two variables: Deff, the effective coefficient of diffusion, and F, the fraction of mobile protein that accumulates at sites of DNA damage. Our model quantitatively describes the accumulation of three test proteins, poly-ADP-ribose polymerases 1 and 2 (PARP1/2) and histone PARylation factor 1. Deff for PARP1, as derived by our approach, is 6× greater than for PARP2 and in agreement with previous literature reports using fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Our data indicate that histone PARylation factor 1 arrives at sites of DNA damage independently of either PARP. Importantly, our model, which can be applied to existing data, allows for the direct comparison of the coefficient of diffusion for any DNA repair protein between different cell types, obtained in different laboratories and by different methods, and also allows for the interrogation of cell-to-cell variability.
Collapse
Affiliation(s)
| | | | | | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Joseph Dragavon
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Erik M Grumstrup
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana
| | - Karolin Luger
- Department of Biochemistry; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
15
|
Igotti M, Gnedina O, Morshneva A, Svetlikova S, Pospelov V. p21Waf1 deficiency does not decrease DNA repair in E1A+cHa-Ras transformed cells by HDI sodium butyrate. Biol Chem 2018; 399:1297-1304. [PMID: 30044758 DOI: 10.1515/hsz-2018-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 11/15/2022]
Abstract
This study aimed to explore a role of p21Waf1 in γH2AX foci formation and DNA repair as assessed by a Host-Cell Reactivation Assay in wild-type (p21Waf+/+) and p21Waf1-deficient E1A+Ras-transformed cells. p21Waf1+/+ cells have low γH2AX background compared to p21Waf1-/- cells. The treatment with histone deacetylase inhibitor (HDI) sodium butyrate (NaBut) causes to accumulation of γH2AX in p21Waf+/+ cells with little effect in p21Waf-/- cells. Moreover, NaBut inhibits DNA repair in wt cells but not in p21Waf1-/- cells. This could be explained by the weakening of GADD45 and PCNA proteins binding in NaBut-treated p21Waf1-expressing cells but not in p21Waf1-/- cells. We suggest that in wt-ERas cells NaBut activates both p21Waf1 expression and a release of p21Waf1 from the complexes with E1A that leads to suppression of DNA repair and promotes γH2AX persistency. The absence of p21Waf1 is by itself considered by the cell as stressful factor with formation of γH2AX. But the lack of p21Waf1 interferes with an inhibitory effect of NaBut to inhibit DNA repair and thereby to stop concomitant accumulation of harmful mutations. We conclude that p21Waf1 is directly involved in control of genome integrity and DNA repair acting through modulation of the components of the DNA repair machinery.
Collapse
Affiliation(s)
- Maria Igotti
- Institute of Cytology, Russian Academy of Sciences, Tikhoretzky av. 4, 194064 St. Petersburg, Russia
| | - Olga Gnedina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretzky av. 4, 194064 St. Petersburg, Russia
| | - Alisa Morshneva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretzky av. 4, 194064 St. Petersburg, Russia
| | - Svetlana Svetlikova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretzky av. 4, 194064 St. Petersburg, Russia
| | - Valery Pospelov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretzky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
16
|
Georgakilas AG, Martin OA, Bonner WM. p21: A Two-Faced Genome Guardian. Trends Mol Med 2017; 23:310-319. [PMID: 28279624 DOI: 10.1016/j.molmed.2017.02.001] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023]
Abstract
Upon DNA damage or other stressors, the tumor suppressor p53 is activated, leading to transient expression of the cyclin-dependent kinase inhibitor (CKI) p21. This either triggers momentary G1 cell cycle arrest or leads to a chronic state of senescence or apoptosis, a form of genome guardianship. In the clinic, the presence of p21 has been considered an indicator of wildtype p53 activity. However, recent evidence suggests that p21 also acts as an oncogenic factor in a p53-deficient environment. Here, we discuss the controversial aspects of the two-faced involvement of p21 in cancer and speculate on how this new information may increase our understanding of its role in cancer pathogenesis. Prevailing notions indicate that p21 might also act as antiapoptotic agent, which may have relevant implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Iroon Polytechniou 9, Zografou 15780, Athens, Greece.
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre and The Sir Peter MacCallum Department of Oncology, University of Melbourne, 305 Grattan street, Melbourne VIC 3000, Australia
| | - William M Bonner
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Chen P, Yu N, Zhang Z, Zhang P, Yang Y, Wu N, Xu L, Zhang J, Ge J, Yu K, Zhuang J. Thrombospondin-1 might be a therapeutic target to suppress RB cells by regulating the DNA double-strand breaks repair. Oncotarget 2017; 7:6105-20. [PMID: 26756218 PMCID: PMC4868743 DOI: 10.18632/oncotarget.6835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/29/2015] [Indexed: 12/04/2022] Open
Abstract
Retinoblastoma (RB) arises from the retina, and its growth usually occurs under the retina and toward the vitreous. Ideal therapy should aim to inhibit the tumor and protect neural cells, increasing the patient's life span and quality of life. Previous studies have demonstrated that Thrombospondin-1 (TSP-1) is associated with neurogenesis, neovascularization and tumorigenesis. However, at present, the bioactivity of TSP-1 in retinoblastoma has not been defined. Herein, we demonstrated that TSP-1 was silenced in RB cell lines and clinical tumor samples. HDAC inhibitor, Trichostatin A (TSA), could notably transcriptionally up-regulate TSP-1 in RB cells, WERI-Rb1 cells and Y79 cells. Moreover, we found human recombinant TSP-1 (hTSP-1) could significantly inhibit the cell viability of RB cells both in vitro and in vivo. Interestingly, hTSP-1 could significantly induce the expression of γ-H2AX, a well-characterized in situ marker of DNA double-strand breaks (DSBs) in RB cells. The DNA NHEJ pathway in WERI-Rb1 cells could be significantly inhibited by hTSP-1. A mutation in Rb1 might be involved in the hTSP-1-medicated γ-H2AX increasing in WERI-Rb1 cells. Furthermore, hTSP-1 could inhibit RB cells while promoting retinal neurocyte survival in the neuronal and retinoblastoma cell co-culture system. As such, TSP-1 may become a therapeutic target for treatment of retinoblastoma.
Collapse
Affiliation(s)
- Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Na Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Zhang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Ying Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Nandan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Lijun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, P. R. China 510060
| |
Collapse
|
18
|
Koike M, Yutoku Y, Koike A. Cloning, localization and focus formation at DNA damage sites of canine XRCC4. J Vet Med Sci 2016; 78:1865-1871. [PMID: 27644316 PMCID: PMC5240766 DOI: 10.1292/jvms.16-0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Various chemotherapies and radiation therapies are useful for killing cancer cells mainly by inducing DNA double-strand breaks (DSBs). Uncovering the molecular mechanisms of DSB repair processes is crucial for developing next-generation radiotherapies and chemotherapeutics for human and animal cancers. XRCC4 plays a critical role in Ku-dependent nonhomologous DNA-end joining (NHEJ) in human cells, and is one of the core NHEJ factors. The localization of core NHEJ factors, such as human Ku70 and Ku80, might play a crucial role in regulating NHEJ activity. Recently, companion animals, such as canines, have been proposed to be a good model in many aspects of cancer research. However, the localization and regulation mechanisms of core NHEJ factors in canine cells have not been elucidated. Here, we show that the expression and subcellular localization of canine XRCC4 changes dynamically during the cell cycle. Furthermore, EYFP-canine XRCC4 accumulates quickly at laser-microirradiated DSB sites. The structure of a putative human XRCC4 nuclear localization signal (NLS) is highly conserved in canine, chimpanzee and mouse XRCC4. However, the amino acid residue corresponding to the human XRCC4 K210, thought to be important for nuclear localization, is not conserved in canine XRCC4. Our findings might be useful for the study of the molecular mechanisms of Ku-dependent NHEJ in canine cells and the development of new radiosensitizers that target XRCC4.
Collapse
Affiliation(s)
- Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
19
|
Assessing Cell Cycle Independent Function of the CDK Inhibitor p21(CDKN¹A) in DNA Repair. Methods Mol Biol 2016; 1336:123-39. [PMID: 26231713 DOI: 10.1007/978-1-4939-2926-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cyclin-dependent kinase (CDK) inhibitor p21(CDKN1A) is a small protein that is able to regulate many important cell functions, often independently of its activity of CDK inhibitor. In addition to cell cycle, this protein regulates cell transcription, apoptosis, cell motility, and DNA repair. In particular, p21 may participate in different DNA repair processes, like the nucleotide excision repair (NER), base excision repair (BER), and double-strand breaks (DSB) repair, because of its ability to interact with DNA repair proteins, such as proliferating cell nuclear antigen (PCNA), a master regulator of many DNA transactions. Although this role has been debated for a long time, the influence of p21 in DNA repair has been now established. However, it remain to be clarified how this role is coupled to proteasomal degradation that has been shown to occur after DNA damage. This chapter describes procedures to study p21 protein recruitment to localized DNA damage sites in the cell nucleus. In particular, we describe a technique based on local irrradiation with UV light through a polycarbonate filter with micropores; an in situ lysis procedure to detect chromatin-bound proteins by immunofluorescence; a cell fractionation procedure to study chromatin association of p21 by Western blot analysis, and p21 protein-protein interactions by an immunoprecipitation assay.
Collapse
|
20
|
Mirzayans R, Andrais B, Scott A, Wang YW, Weiss RH, Murray D. Spontaneous γH2AX Foci in Human Solid Tumor-Derived Cell Lines in Relation to p21WAF1 and WIP1 Expression. Int J Mol Sci 2015; 16:11609-28. [PMID: 26006237 PMCID: PMC4463719 DOI: 10.3390/ijms160511609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphorylation of H2AX on Ser139 (γH2AX) after exposure to ionizing radiation produces nuclear foci that are detectable by immunofluorescence microscopy. These so-called γH2AX foci have been adopted as quantitative markers for DNA double-strand breaks. High numbers of spontaneous γH2AX foci have also been reported for some human solid tumor-derived cell lines, but the molecular mechanism(s) for this response remains elusive. Here we show that cancer cells (e.g., HCT116; MCF7) that constitutively express detectable levels of p21WAF1 (p21) exhibit low numbers of γH2AX foci (<3/nucleus), whereas p21 knockout cells (HCT116p21−/−) and constitutively low p21-expressing cells (e.g., MDA-MB-231) exhibit high numbers of foci (e.g., >50/nucleus), and that these foci are not associated with apoptosis. The majority (>95%) of cells within HCT116p21−/− and MDA-MB-231 cultures contain high levels of phosphorylated p53, which is localized in the nucleus. We further show an inverse relationship between γH2AX foci and nuclear accumulation of WIP1, an oncogenic phosphatase. Our studies suggest that: (i) p21 deficiency might provide a selective pressure for the emergence of apoptosis-resistant progeny exhibiting genomic instability, manifested as spontaneous γH2AX foci coupled with phosphorylation and nuclear accumulation of p53; and (ii) p21 might contribute to positive regulation of WIP1, resulting in dephosphorylation of γH2AX.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - April Scott
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Ying W Wang
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| | - Robert H Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
- Department of Medicine, Mather VA Medical Center, Sacramento, CA 95655, USA.
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
21
|
Koike M, Yutoku Y, Koike A. Nuclear localization of mouse Ku70 in interphase cells and focus formation of mouse Ku70 at DNA damage sites immediately after irradiation. J Vet Med Sci 2015; 77:1137-42. [PMID: 25947323 PMCID: PMC4591156 DOI: 10.1292/jvms.14-0651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To elucidate the mechanisms of DNA repair pathway is critical for developing next-generation radiotherapies and chemotherapeutic drugs for cancer. Ionizing radiation and many chemotherapeutic drugs kill tumor cells mainly by inducing DNA double-strand breaks (DSBs). The classical nonhomologous DNA-end joining (NHEJ) (C-NHEJ) pathway repairs a predominant fraction of DSBs in mammalian cells. The C-NHEJ pathway appears to start with the binding of Ku (heterodimer of Ku70 and Ku80) to DNA break ends. Therefore, recruitment of Ku to DSB sites might play a critical role in regulating NHEJ activity. Indeed, human Ku70 and Ku80 localize in the nuclei and accumulate at microirradiated DSB sites. However, the localization and regulation mechanisms of Ku70 and Ku80 homologues in animal models, such as mice and other species, have not been elucidated in detail, particularly in cells immediately after microirradiation. Here, we show that EYFP-tagged mouse Ku70 localizes in the interphase nuclei of mouse fibroblasts and epithelial cells. Furthermore, our findings indicate that EYFP-mouse Ku70 accumulates with its heterodimeric partner Ku80 immediately at laser-microirradiated DSB sites. We also confirmed that the structure of Ku70 nuclear localization signal (NLS) is highly conserved among various rodent species, such as the mouse, rat, degu and ground squirrel, supporting the idea that NLS is important for the regulation of rodent Ku70 function. Collectively, these results suggest that the mechanisms of regulating the localization and accumulation of Ku70 at DSBs might be well conserved between the mouse and human species.
Collapse
Affiliation(s)
- Manabu Koike
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
22
|
Koike M, Yutoku Y, Koike A. Dynamic changes in subcellular localization of cattle XLF during cell cycle, and focus formation of cattle XLF at DNA damage sites immediately after irradiation. J Vet Med Sci 2015; 77:1109-14. [PMID: 25947322 PMCID: PMC4591152 DOI: 10.1292/jvms.14-0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinically, many chemotherapeutics and ionizing radiation (IR) have been applied for the treatment of various types of human and animal malignancies. These treatments kill tumor cells by causing DNA double-strand breaks (DSBs). Core factors of classical nonhomologous DNA-end joining (C-NHEJ) play a vital role in DSB repair. Thus, it is indispensable to clarify the mechanisms of C-NHEJ in order to develop next-generation chemotherapeutics for cancer. The XRCC4-like factor (XLF; also called Cernunnos or NHEJ1) is the lastly identified core NHEJ factor. The localization of core NHEJ factors might play a critical role in regulating NHEJ activity. The localization and function of XLF have not been elucidated in animal species other than mice and humans. Domestic cattle (Bos taurus) are the most common and vital domestic animals in many countries. Here, we show that the localization of cattle XLF changes dynamically during the cell cycle. Furthermore, EYFP-cattle XLF accumulates quickly at microirradiated sites and colocalizes with the DSB marker γH2AX. Moreover, nuclear localization and accumulation of cattle XLF at DSB sites are dependent on 12 amino acids (288-299) of the C-terminal region of XLF (XLF CTR). Furthermore, basic amino acids on the XLF CTR are highly conserved among domestic animals including cattle, goat and horses, suggesting that the CTR is essential for the function of XLF in domestic animals. These findings might be useful to develop the molecular-targeting therapeutic drug taking XLF as a target molecule for human and domestic animals.
Collapse
Affiliation(s)
- Manabu Koike
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
23
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|
24
|
Anderson DL, Mirzayans R, Andrais B, Siegbahn EA, Fallone BG, Warkentin B. Spatial and temporal distribution of γH2AX fluorescence in human cell cultures following synchrotron-generated X-ray microbeams: lack of correlation between persistent γH2AX foci and apoptosis. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:801-810. [PMID: 24971978 DOI: 10.1107/s1600577514011424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
Formation of γH2AX foci (a marker of DNA double-strand breaks), rates of foci clearance and apoptosis were investigated in cultured normal human fibroblasts and p53 wild-type malignant glioma cells after exposure to high-dose synchrotron-generated microbeams. Doses up to 283 Gy were delivered using beam geometries that included a microbeam array (50 µm wide, 400 µm spacing), single microbeams (60-570 µm wide) and a broad beam (32 mm wide). The two cell types exhibited similar trends with respect to the initial formation and time-dependent clearance of γH2AX foci after irradiation. High levels of γH2AX foci persisted as late as 72 h post-irradiation in the majority of cells within cultures of both cell types. Levels of persistent foci after irradiation via the 570 µm microbeam or broad beam were higher when compared with those observed after exposure to the 60 µm microbeam or microbeam array. Despite persistence of γH2AX foci, these irradiation conditions triggered apoptosis in only a small proportion (<5%) of cells within cultures of both cell types. These results contribute to the understanding of the fundamental biological consequences of high-dose microbeam irradiations, and implicate the importance of non-apoptotic responses such as p53-mediated growth arrest (premature senescence).
Collapse
Affiliation(s)
- Danielle L Anderson
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Razmik Mirzayans
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Bonnie Andrais
- Experimental Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - E Albert Siegbahn
- Medical Physics, Stockholm University, Box 260, S-17176 Stockholm, Sweden
| | - B Gino Fallone
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Brad Warkentin
- Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
25
|
Yao H, Sundar IK, Gorbunova V, Rahman I. P21-PARP-1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence. PLoS One 2013; 8:e80007. [PMID: 24244594 PMCID: PMC3823706 DOI: 10.1371/journal.pone.0080007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022] Open
Abstract
Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS)-induced lung diseases. Both p21CDKN1A (p21) and poly(ADP-ribose) polymerase-1 (PARP-1) are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks) as well as non-homologous end joining proteins (Ku70 and Ku80) in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, Rochester, New York, United States of America
- * E-mail: (HY); (IR)
| | - Isaac K. Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, Rochester, New York, United States of America
| | - Vera Gorbunova
- Department of Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, Rochester, New York, United States of America
- * E-mail: (HY); (IR)
| |
Collapse
|
26
|
Koike M, Yutoku Y, Koike A. Impact of amino acid substitutions in two functional domains of Ku80: DNA-damage-sensing ability of Ku80 and survival after irradiation. J Vet Med Sci 2013; 76:51-6. [PMID: 24025432 PMCID: PMC3979949 DOI: 10.1292/jvms.13-0283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Various chemotherapeutic drugs, such as etoposide, and ionizing radiation (IR)
have been clinically applied for the treatment of many types of animal and human
malignancies. IR and chemotheraputic drugs kill tumor cells mainly by inducing DNA
double-strand breaks (DSBs). On the other hand, unrepaired or incorrectly repaired DSBs
can lead to chromosomal truncations and translocations, which can contribute to the
development of cancer in humans and animals. Thus, it is important to clarify the
molecular mechanisms underlying the chemosensitivity or radiosensitivity of mammalian
cells in order to develop medical treatments and next-generation chemotherapeutic drugs
for cancer. Previously, we established and analyzed cell lines stably expressing chimeric
constructs of EGFP and the wild-type Ku80 (XRCC5) protein or its mutant protein to which
mutations were introduced by the site-directed mutagenesis. We found that the Ku70
(XRCC6)-binding-site mutations (A453H/V454H) of Ku80 and nuclear localization signal
(NLS)-dysfunctional mutations (K565A/K566A/K568A) affected the ability to complement
etoposide sensitivity. In this study, we examined the radiosensitivity of these cell
lines. We found that either or both amino acid substitutions in two functional domains of
Ku80, i.e., Ku70-binding-site mutations (A453H/V454H) and NLS-dysfunctional mutations
(K565A/K566A/K568A), affect the ability to complement radiosensitivity. Moreover, these
mutations in the two domains of Ku80 affect the DSB-sensing ability of Ku80. These
information and Ku80 mutant cell lines used might be useful for the study of not only the
dynamics and function of Ku80, but also the molecular mechanism underlying the cellular
response to IR and chemotherapeutic drugs in mammalian cells.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
27
|
Koike M, Yutoku Y, Koike A. The C-terminal region of Rad52 is essential for Rad52 nuclear and nucleolar localization, and accumulation at DNA damage sites immediately after irradiation. Biochem Biophys Res Commun 2013; 435:260-6. [PMID: 23639616 DOI: 10.1016/j.bbrc.2013.04.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 11/26/2022]
Abstract
Rad52 plays essential roles in homologous recombination (HR) and repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae. However, in vertebrates, knockouts of the Rad52 gene show no hypersensitivity to agents that induce DSBs. Rad52 localizes in the nucleus and forms foci at a late stage following irradiation. Ku70 and Ku80, which play an essential role in nonhomologous DNA-end-joining (NHEJ), are essential for the accumulation of other core NHEJ factors, e.g., XRCC4, and a HR-related factor, e.g., BRCA1. Here, we show that the subcellular localization of EYFP-Rad52(1-418) changes dynamically during the cell cycle. In addition, EYFP-Rad52(1-418) accumulates rapidly at microirradiated sites and colocalizes with the DSB sensor protein Ku80. Moreover, the accumulation of EYFP-Rad52(1-418) at DSB sites is independent of the core NHEJ factors, i.e., Ku80 and XRCC4. Furthermore, we observed that EYFP-Rad52(1-418) localizes in nucleoli in CHO-K1 cells and XRCC4-deficient cells, but not in Ku80-deficient cells. We also found that Rad52 nuclear localization, nucleolar localization, and accumulation at DSB sites are dependent on eight amino acids (411-418) at the end of the C-terminal region of Rad52 (Rad52 CTR). Furthermore, basic amino acids on Rad52 CTR are highly conserved among mammalian, avian, and fish homologues, suggesting that Rad52 CTR is important for the regulation and function of Rad52 in vertebrates. These findings also suggest that the mechanism underlying the regulation of subcellular localization of Rad52 is important for the physiological function of Rad52 not only at a late stage following irradiation, but also at an early stage.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Res., National Institute of Radiological Sciences, Inage-ku, Chiba, Japan.
| | | | | |
Collapse
|
28
|
ID1 affects the efficacy of radiotherapy in glioblastoma through inhibition of DNA repair pathways. Med Oncol 2013; 30:325. [DOI: 10.1007/s12032-012-0325-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 01/16/2023]
|
29
|
Koike M, Yutoku Y, Koike A. Ku80 attentuates cytotoxicity induced by green fluorescent protein transduction independently of non-homologous end joining. FEBS Open Bio 2012; 3:46-50. [PMID: 23772373 PMCID: PMC3668519 DOI: 10.1016/j.fob.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/04/2012] [Accepted: 12/10/2012] [Indexed: 11/24/2022] Open
Abstract
The green fluorescent protein (GFP) is the most commonly used reporter protein for monitoring gene expression and protein localization in a variety of living and fixed cells, including not only prokaryotes, but also eukaryotes, e.g., yeasts, mammals, plants and fish. In general, it is thought that GFP is nontoxic to cells, although there are some reports on the side effect of GFP. Further, details of the molecular mechanism concerning the side effect of GFP remain unclear. Here we show that Ku80, but not XRCC4, plays an important role in the mechanism of the resistance to cytotoxicity induced by enhanced GFP (EGFP). EGFP inhibited both cell proliferation and colony formation, and induced cell death in Ku80-deficient hamster cells, i.e., xrs-6 cells. In addition, Ku80 attenuated EGFP-induced cytotoxicity in the xrs-6 cells. No EGFP-induced cytotoxicity was observed in the NHEJ core protein XRCC4-deficient hamster cells, i.e., XR-1 cells. Furthermore, EGFP markedly enhanced X-ray-induced cytotoxicity in the xrs-6 cells. These results suggest that Ku80 plays a key role in the novel NHEJ-independent defense mechanism against EGFP-induced cytotoxicity. Caution should be taken in considering of the potential influence by the stress response mechanism, namely, the Ku80-dependent elimination mechanism of EGFP-induced cytotoxicity, being activated, even when using EGFP-expressing cells in which Ku80 functions normally.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
30
|
Koike M, Yutoku Y, Koike A. The defect of Ku70 affects sensitivity to x-ray and radiation-induced caspase-dependent apoptosis in lung cells. J Vet Med Sci 2012; 75:415-20. [PMID: 23149547 DOI: 10.1292/jvms.12-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The DNA repair protein Ku70 is a key player in chemoresistance to anticancer agents (e.g., etoposide) or radioresistance. The responses of different organs to radiation vary widely and likely depend on the cell population in the organs. Previously, we established and characterized Ku70-deficient murine lung epithelial (Ku70 -/- MLE) cells and found that these cells are more sensitive than Ku70 +/- MLE cells (control cells) to X-irradiation, as determined by clonogenic survival assay; however, the mechanism underlying this sensitivity remains unclear. In this study, we examined the mechanism by which X-irradiation triggers the death of Ku70 -/- MLE cells. Our results showed that Ku70 -/- MLE cells were more sensitive to radiation-induced apoptosis than control cells, although X-irradiation activated caspase-3 and caspase-7, and cleaved PARP in both cell lines. We also examined the expression level of phosphorylated H2AX (γH2AX), which is a marker of DSB, and observed the phosphorylation of H2AX and the elimination of γH2AX in both cell lines after X-irradiation. The elimination in Ku70 -/- MLE cells was slower than that in control cells, suggesting that DSB repair activity in the Ku70 -/- MLE cells is lower than that in control cells. These findings suggest that Ku70 might play a key role in the inhibition of apoptosis through the DSB repair pathway in lung epithelial cells. Our findings also suggest that these cell lines might be useful for the study of Ku70 functions and the Ku70-dependent DSB repair pathway in lung epithelial cells.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
| | | | | |
Collapse
|
31
|
Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K. Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS NANO 2012; 6:5767-5783. [PMID: 22659047 DOI: 10.1021/nn301714n] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The in vitro labeling of therapeutic cells with nanoparticles (NPs) is becoming more and more common, but concerns about the possible effects of the NPs on the cultured cells are also increasing. In the present work, we evaluate the effects of poly(methacrylic acid)-coated 4 nm diameter Au NPs on a variety of sensitive and therapeutically interesting cell types (C17.2 neural progenitor cells, human umbilical vein endothelial cells, and PC12 rat pheochromocytoma cells) using a multiparametric approach. Using various NP concentrations and incubation times, we performed a stepwise analysis of the NP effects on cell viability, reactive oxygen species, cell morphology, cytoskeleton architecture, and cell functionality. The data show that higher NP concentrations (200 nM) reduce cell viability mostly through induction of reactive oxygen species, which was significantly induced at concentrations of 50 nM Au NPs or higher. At these concentrations, both actin and tubulin cytoskeleton were deformed and resulted in reduced cell proliferation and cellular differentiation. In terms of cell functionality, the NPs significantly impeded neurite outgrowth of PC12 cells up to 20 nM concentrations. At 10 nM, no significant effects on any cellular parameter could be observed. These data highlight the importance of using multiple assays to cover the broad spectrum of cell-NP interactions and to determine safe NP concentrations and put forward the described protocol as a possible template for future cell-NP interaction studies under comparable and standardized conditions.
Collapse
Affiliation(s)
- Stefaan J Soenen
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mauro M, Rego MA, Boisvert RA, Esashi F, Cavallo F, Jasin M, Howlett NG. p21 promotes error-free replication-coupled DNA double-strand break repair. Nucleic Acids Res 2012; 40:8348-60. [PMID: 22735704 PMCID: PMC3458556 DOI: 10.1093/nar/gks612] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p21 is a well-established regulator of cell cycle progression. The role of p21 in DNA repair, however, remains poorly characterized. Here, we describe a critical role of p21 in a replication-coupled DNA double-strand break (DSB) repair that is mechanistically distinct from its cell cycle checkpoint function. We demonstrate that p21-deficient cells exhibit elevated chromatid-type aberrations, including gaps and breaks, dicentrics and radial formations, following exposure to several DSB-inducing agents. p21−/− cells also exhibit an increased DNA damage-inducible DNA-PKCS S2056 phosphorylation, indicative of elevated non-homologous DNA end joining. Concomitantly, p21−/− cells are defective in replication-coupled homologous recombination (HR), exhibiting decreased sister chromatid exchanges and HR-dependent repair as determined using a crosslinked GFP reporter assay. Importantly, we establish that the DSB hypersensitivity of p21−/− cells is associated with increased cyclin-dependent kinase (CDK)-dependent BRCA2 S3291 phosphorylation and MRE11 nuclear foci formation and can be rescued by inhibition of CDK or MRE11 nuclease activity. Collectively, our results uncover a novel mechanism by which p21 regulates the fidelity of replication-coupled DSB repair and the maintenance of chromosome stability distinct from its role in the G1-S phase checkpoint.
Collapse
Affiliation(s)
- Maurizio Mauro
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wiese C, Rudolph JH, Jakob B, Fink D, Tobias F, Blattner C, Taucher-Scholz G. PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation. DNA Repair (Amst) 2012; 11:511-21. [DOI: 10.1016/j.dnarep.2012.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/04/2012] [Accepted: 02/28/2012] [Indexed: 12/30/2022]
|
34
|
Bufalieri F, Licursi V, D'Antonio M, Castrignanò T, Amendola R, Negri R. The transcriptional response of mammalian cancer cells to irradiation is dominated by a cell cycle signature which is strongly attenuated in non-cancer cells and tissues. Int J Radiat Biol 2012; 88:822-9. [PMID: 22420862 DOI: 10.3109/09553002.2012.676230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Our goal was to identify genes showing a general transcriptional response to irradiation in mammalian cells and to analyze their response in function of dose, time and quality of irradiation and of cell type. MATERIALS AND METHODS We used a modified MIAME (Minimal Information About Microarray Experiments) protocol to import microarray data from 177 different irradiation conditions in the Radiation Genes database and performed cut-off-based selections and hierarchical gene clustering. RESULTS We identified a set of 29 genes which respond to a wide range of irradiation conditions in different cell types and tissues. Functional analysis of the negatively modulated genes revealed a dominant signature of mitotic cell cycle regulation which appears both dose and time-dependent. This signature is prominent in cancer cells and highly proliferating tissues but it is strongly attenuated in non cancer cells. CONCLUSIONS The transcriptional response of mammalian cancer cells to irradiation is dominated by a mitotic cell cycle signature both dose and time-dependent. This core response, which is present in cancer cells and highly proliferating tissues such as skin, blood and lymph node, is weaker or absent in non-cancer cells and in liver and spleen. CDKN1A (cyclin-dependent kinase inhibitor 1A) appears as the most generally induced mammalian gene and its response (mostly dose- and time-independent) seems to go beyond the typical DNA damage response.
Collapse
Affiliation(s)
- Francesca Bufalieri
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology Charles Darwin, University of Rome, La Sapienza
| | | | | | | | | | | |
Collapse
|
35
|
Hsu JL, Ho YF, Li TK, Chen CS, Hsu LC, Guh JH. Rottlerin potentiates camptothecin-induced cytotoxicity in human hormone refractory prostate cancers through increased formation and stabilization of topoisomerase I-DNA cleavage complexes in a PKCδ-independent pathway. Biochem Pharmacol 2012; 84:59-67. [PMID: 22490701 DOI: 10.1016/j.bcp.2012.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
Abstract
Combination therapy, which can optimize killing activity to cancers and minimize drug resistance, is a mainstream therapy against hormone-refractory prostate cancers (HRPCs). Rottlerin, a natural polyphenolic component, synergistically increased PC-3 (a HRPC cell line) apoptosis induced by camptothecin (a topoisomerase I inhibitor). Using siRNA technique to knockdown protein kinase C-δ (PKCδ), the data showed that rottlerin-mediated synergistic effect was PKCδ-independent, although rottlerin has been used as a PKCδ inhibitor. Rottlerin potentiated camptothecin-induced DNA fragmentation at S phase and ATM phosphorylation at Ser1981. The effect was correlated to apoptosis (r2 = 0.9). To detect upstream signals, the data showed that camptothecin acted on and stabilized topoisomerase I-DNA complex, leading to the formation of camptothecin-trapped cleavage complexes (TOP1cc). The effect was potentiated by rottlerin. To determine DNA repair capability, the time-related γH2A.X formation was examined after camptothecin removal. Consequently, rottlerin significantly inhibited camptothecin removal-mediated decline of γH2A.X formation at S phase, indicating the impairment of DNA repair activity in the presence of rottlerin. The combinatory treatment of camptothecin and rottlerin induced conformational change and activation of Bax and formation of truncated Bad, suggesting the contribution of mitochondria stress to apoptosis. In summary, the data suggest that rottlerin-mediated camptothecin sensitization is through the augmented stabilization of TOP1cc, leading to an increase of DNA damage stress and, possibly, an impairment of DNA repair capability. Subsequently, mitochondria-involved apoptosis is triggered through Bax activation and truncated Bad formation. The novel discovery may provide an anticancer approach of combinatory use between rottlerin and camptothecin for the treatment of HRPCs.
Collapse
Affiliation(s)
- Jui-Ling Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
KOIKE M, YUTOKU Y, KOIKE A. Establishment of Hamster Cell Lines with EGFP-Tagged Human XRCC4 and Protection from Low-Dose X-Ray Radiation. J Vet Med Sci 2012; 74:1269-75. [DOI: 10.1292/jvms.12-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Manabu KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
- DNA Repair Gene Res., National Institute of Radiological Sciences, 4–9–1 Anagawa, Inage-ku, Chiba 263–8555, Japan
| | - Yasutomo YUTOKU
- DNA Repair Gene Res., National Institute of Radiological Sciences
- Graduate School of Science, Chiba University
- DNA Repair Gene Res., National Institute of Radiological Sciences, 4–9–1 Anagawa, Inage-ku, Chiba 263–8555, Japan
- Graduate School of Science, Chiba University, Chiba 263–8522, Japan
| | - Aki KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
- DNA Repair Gene Res., National Institute of Radiological Sciences, 4–9–1 Anagawa, Inage-ku, Chiba 263–8555, Japan
| |
Collapse
|