1
|
Hakami Zanjani AA, Ebstrup ML, Nylandsted J, Khandelia H. Modulation of Annexin-Induced Membrane Curvature by Cholesterol and the Anionic Lipid Headgroup during Plasma Membrane Repair. J Phys Chem B 2024; 128:8701-8711. [PMID: 39214593 DOI: 10.1021/acs.jpcb.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Annexins (ANXAs), calcium-sensitive phospholipid-binding proteins, are pivotal for cellular membrane repair, which is crucial for eukaryotic cell survival under membrane stress. With their unique trimeric arrangements and crystalline arrays on the membrane surface, ANXA4 and ANXA5 induce membrane curvature and rapidly orchestrate plasma membrane resealing. However, the influence of cholesterol and anionic lipid headgroups on annexin-induced membrane curvature remains poorly understood at the molecular level. Using all-atom molecular dynamics simulations, we measured the local curvature-induced underneath ANXA4 and ANXA5 monomers and trimers when they bind to lipid bilayers of distinct lipid compositions: PSPC (20% POPS, 80% POPC), PAPC (20% POPA, 80% POPC), and PSPCCHL (14% POPS, 56% POPC, 30% cholesterol). Laser injury experiments were conducted on MCF7 cells transfected to transiently express fluorescently labeled ANXA4 or ANXA5 to facilitate the examination of protein and lipid accumulation at the damage site. Annexin trimers induce higher curvature than monomers, particularly with cholesterol present. Annexin trimers induce similar curvatures on both PAPC and PSPC membranes. Notably, among monomers, ANXA5 induces the highest curvature on PAPC, suggesting more efficient recruitment of ANXA5 compared with ANXA4 in the early stages of membrane repair near a lesion. Laser injury experiments confirm rapid coaccumulation of phosphatidic acid lipids with ANXA4 and ANXA5 at repair sites, potentially enhancing the accumulation of annexins in the early stages of membrane repair.
Collapse
Affiliation(s)
- Ali Asghar Hakami Zanjani
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | | | - Jesper Nylandsted
- Danish Cancer Institute, Copenhagen 2100, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense 5230, Denmark
| | - Himanshu Khandelia
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
2
|
Zhou T, Zhang X, Song Y, Ding L, Huang X, Zhang L, Ye C, Yang Y, Celentano A, Hu Q, Ni Y. Annexin A5 is a novel prognostic biomarker in oral squamous cell carcinoma. J Oral Pathol Med 2024; 53:538-543. [PMID: 38945807 DOI: 10.1111/jop.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND ANXA5, a notable tumor marker, displays irregular expression in diverse solid cancers, and links to local recurrence and metastasis rates. We aimed study the expression of ANXA5 in oral squamous cell carcinoma (OSCC) and its diagnostic and prognostic values. METHODS 520 head and neck squamous cell carcinoma (HNSCC) patients in TCGA database and 124 OSCC patients in Nanjing stomatology hospital were enrolled in our study. Immunohistochemical analyses were performed using ANXA5 antibodies. Chi-square test was used to analyze the clinicopathological features. Survival rates were determined using the Kaplan-Meier method and log-rank test. RESULTS Our results showed significantly elevated ANXA5 at the gene and protein levels in HNSCC and OSCC compared to non-tumor tissues. Histopathologically, ANXA5 was broadly present in OSCC tumor cells and fibroblast-like cells but absent in tumor-infiltrating lymphocytes, particularly at the invasive tumor front. Patients exhibiting high ANXA5 expression in these cells demonstrated poor differentiation, aggressive invasion patterns, and heightened lymph node metastasis risk, contributing to poorer postoperative outcomes. Remarkably, ANXA5 in fibroblast-like cells emerged as an independent risk factor impacting survival in OSCC patients. Gene set enrichment analysis (GSEA) highlighted ANXA5's involvement in key pathways like epithelial-mesenchymal transformation (EMT), TGF-beta signaling, and hypoxia, which correlated with adverse clinical outcomes in OSCC. CONCLUSION ANXA5 emerges as a significant prognostic biomarker for OSCC, potentially influencing its metastasis via the EMT pathway.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Oral-maxillofacial Surgery, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaofeng Huang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Zhang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chuanjin Ye
- Department of Oral Pathology, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Yang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Qingang Hu
- Department of Oral-maxillofacial Surgery, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yanhong Ni
- Department of Oral-maxillofacial Surgery, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Research Institute of Stomatology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Wang X, Yang Q, Liu N, Bian Q, Gao M, Hou X. Clinical Value of TXNDC12 Combined With IDH and 1p19q as Biomarkers for Prognosis of Glioma. Pathol Oncol Res 2021; 27:1609825. [PMID: 34629960 PMCID: PMC8493877 DOI: 10.3389/pore.2021.1609825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023]
Abstract
Background: Glioma is the primary malignant tumor of the central nervous system and presents high mortality and disability rates under existing treatment measures. Thioredoxin domain-containing 12 (TXNDC12) has been shown to play an important role in various malignant tumors. Therefore, we explored the clinicopathological characteristics of TXNDC12 in glioma to bring to light new ideas in its treatment. Methods: We obtained data packages related to TXNDC12 expression status in gliomas from public databases. We analyzed glioma TXNDC12 expression and patient survival status and validated the above results using glioma specimens from our institution. Next, we analyzed the value of TXNDC12 in combination with 1p19q and isocitrate dehydrogenase (IDH) on the prognosis of glioma by regression model and receiver operating characteristic curve (ROC). Finally, we explored the function of related genes by GO analysis and KEGG analysis. Results: Compared with normal brain tissue, the expression of TXNDC12 in glioma cells, regarding both mRNA and protein levels, was significantly upregulated. The survival time of patients with high-expression of TXNDC12 in glioma cells was shortened. In the World Health Organization pathological classification, IDH status, 1p19q status, and IDH combined with 1p19q subgroups, the expression of TXNDC12 increased with the deterioration of the above indicators. Tumor local immune analysis showed that the immune cell infiltration in TXNDC12 high-expressing glioma tissue increased, the tumor purity was reduced. GO and KEGG analyses indicated that TXNDC12 may be involved in the malignant prognosis of glioma through glycosylation and antigen processing and presentation. Conclusion: We showed that TXNDC12 is significantly highly expressed in gliomas. This high expression predicts the poor prognosis of glioma patients and is related to the gliomas’ local immune microenvironment. As a tumor-related gene, TXNDC12 may be used as a new prognostic judgment molecule.
Collapse
Affiliation(s)
- Xinzhuang Wang
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Quan Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qilong Bian
- Department of Neurosurgery, Heze Municipal Hospital, Heze, China
| | - Ming Gao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Hou
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Werle SD, Schwab JD, Tatura M, Kirchhoff S, Szekely R, Diels R, Ikonomi N, Sipos B, Sperveslage J, Gress TM, Buchholz M, Kestler HA. Unraveling the Molecular Tumor-Promoting Regulation of Cofilin-1 in Pancreatic Cancer. Cancers (Basel) 2021; 13:725. [PMID: 33578795 PMCID: PMC7916621 DOI: 10.3390/cancers13040725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cofilin-1 (CFL1) overexpression in pancreatic cancer correlates with high invasiveness and shorter survival. Besides a well-documented role in actin remodeling, additional cellular functions of CFL1 remain poorly understood. Here, we unraveled molecular tumor-promoting functions of CFL1 in pancreatic cancer. For this purpose, we first show that a knockdown of CFL1 results in reduced growth and proliferation rates in vitro and in vivo, while apoptosis is not induced. By mechanistic modeling we were able to predict the underlying regulation. Model simulations indicate that an imbalance in actin remodeling induces overexpression and activation of CFL1 by acting on transcription factor 7-like 2 (TCF7L2) and aurora kinase A (AURKA). Moreover, we could predict that CFL1 impacts proliferation and apoptosis via the signal transducer and activator of transcription 3 (STAT3). These initial model-based regulations could be substantiated by studying protein levels in pancreatic cancer cell lines and human datasets. Finally, we identified the surface protein CD44 as a promising therapeutic target for pancreatic cancer patients with high CFL1 expression.
Collapse
Affiliation(s)
- Silke D. Werle
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| | - Julian D. Schwab
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| | - Marina Tatura
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Sandra Kirchhoff
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Robin Szekely
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| | - Ramona Diels
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| | - Bence Sipos
- Institute of Pathology, University of Tübingen, 72076 Tübingen, Germany; (B.S.); (J.S.)
| | - Jan Sperveslage
- Institute of Pathology, University of Tübingen, 72076 Tübingen, Germany; (B.S.); (J.S.)
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| |
Collapse
|
5
|
Zhang N, Zhang Y, Zhang P, Lou S, Chen Y, Li H, Zeng H, Shen Y, Deng J. Overexpression of annexin A5 might guide the gemtuzumab ozogamicin treatment choice in patients with pediatric acute myeloid leukemia. Ther Adv Med Oncol 2020; 12:1758835920927635. [PMID: 32636939 PMCID: PMC7310896 DOI: 10.1177/1758835920927635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is a common hematological malignancy. Gemtuzumab
ozogamicin (GO), a humanized anti-CD33 antibody conjugated with the potent
anti-tumor antibiotic calicheamicin, represents a promising targeted therapy
for AML. Annexin A5 (ANXA5) is a proposed marker for the clinical prognosis
of AML to guide treatment choice. Methods: In total, 253 patients with pediatric AML were enrolled and divided into two
treatment groups: conventional chemotherapy alone and conventional
chemotherapy in combination with GO. Univariate, multivariate, and
Kaplan–Meier survival analyses were conducted to assess risk factors and
clinical outcomes, and to estimate hazard ratios (HRs) and their 95%
confidence interval. The level of statistical significance was set at
p < 0.05. Results: In the GO treatment group, high ANXA5 expression was
considered a favorable prognostic factor for overall survival (OS) and
event-free survival (EFS). Multivariate analysis showed that high
ANXA5 expression was an independent favorable factor
for OS (HR = 0.629, p = 0.084) and EFS (HR = 0.544,
p = 0.024) distinct from the curative effect of GO
treatment. When all patients were again divided into two groups, this time
based on the median expression of ANXA5, patients
undergoing chemotherapy combined with GO had significantly better OS
(p = 0.0012) and EFS (p = 0.0003) in
the ANXA5 high-expression group. Gene set enrichment
analysis identified a relevant series of pathways associated with
glutathione metabolism, leukocyte transendothelial migration, and
hematopoietic cell lineage. Conclusion: The expression level of ANXA5 can help optimize the
treatment regimen for individual patients, and patients with overexpression
of ANXA5 may circumvent poor outcomes from chemotherapy
combined with GO.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ying Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ping Zhang
- Hematology Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing, P.R. China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ying Chen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Huan Li
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Yan Shen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, P.R. China
| |
Collapse
|
6
|
Zhao H, He L, Yin D, Song B. Identification of β-catenin target genes in colorectal cancer by interrogating gene fitness screening data. Oncol Lett 2019; 18:3769-3777. [PMID: 31516589 PMCID: PMC6733007 DOI: 10.3892/ol.2019.10724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 11/06/2022] Open
Abstract
β-catenin regulates its target genes which are associated with proliferation, differentiation, migration and angiogenesis, and the dysregulation of Wnt/β-catenin signaling facilitates hallmarks of colorectal cancer (CRC). Identification of β-catenin targets and their potential roles in tumorigenesis has gained increased interest. However, the number of identified targets remains limited. The present study implemented a novel strategy, interrogating gene fitness profiles derived from large-scale RNA interference and CRISPR-CRISPR associated protein 9 screening data to identify β-catenin target genes in CRC cell lines. Using these data sets, pair wise gene fitness similarities were determined which highlighted a total of 13 genes whose functions were highly correlated with β-catenin. It was further demonstrated that the expression of these genes were altered in CRC, illustrating their potential roles in the progression of CRC. The present study further demonstrated that these targets could be used to predict disease-free survival in CRC. In conclusion, the findings provided novel approaches for the identification of β-catenin targets, which may become prognostic biomarkers or drug targets for the management of CRC.
Collapse
Affiliation(s)
- Haomin Zhao
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liang He
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Song
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
7
|
Ji C, Guo H, Zhang P, Kuang W, Fan Y, Wu L. AnnexinA5 promote glioma cell invasion and migration via the PI3K/Akt/NF-κB signaling pathway. J Neurooncol 2018. [PMID: 29520611 DOI: 10.1007/s11060-018-2818-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As an important member of the Annexins, AnnexinA5 has been attributed important functions in trophoblast membrane repair, anticoagulation and cellular signal transduction. Accumulated studies show that AnnexinA5 is closely associated with various types of carcinomas. However, the potential contribution of AnnexinA5 to glioma cancer progression remains unclear. In this study, we report that AnnexinA5 is significantly upregulated in both high-grade glioma samples and glioma cell lines. Moreover, overexpression of AnnexinA5 promotes cell migration and invasion in vitro and tumorigenicity of glioma cells in nude mice, while knockdown of AnnexinA5 manifests a repressive function during these cellular processes. Importantly, mechanistic studies further reveal that AnnexinA5 is an essential transcriptional target of Snail via activating the PI3K/Akt/NF-κB signaling pathway. Taken together, these findings suggest that AnnexinA5 or the PI3K/Akt/NF-κB pathway may be promising therapeutic molecules to eradicate glioma metastases.
Collapse
Affiliation(s)
- Chenxing Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Pei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Wei Kuang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanghua Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
8
|
Li X, Ma W, Wang X, Ci Y, Zhao Y. Annexin A5 overexpression might suppress proliferation and metastasis of human uterine cervical carcinoma cells. Cancer Biomark 2018; 23:23-32. [PMID: 30010106 DOI: 10.3233/cbm-171040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Annexin A5 (ANXA5) is a kind of Ca2+-dependent phospholipid binding protein which is involved in cell membrane dynamics and organization. Recent data showed that ANXA5 might involve in tumorigenesis. OBJECTIVE To explore what role ANXA5 play in human uterine cervical carcinoma. MATERIALS AND METHODS In this study, a recombined ANXA5 plasmid was constructed and uterine cervical carcinoma cell lines HeLa and SiHa were transfected with it. After ANXA5 overexpression was determined by Western Blot, cell proliferation test was detected by MTT assay and colony formation assay respectively. FACS assay and Hochest33258 staining methods were employed to detect cell apoptosis. To further investigate whether ANXA5 influence cell migration and invasion, wound healing assay and transwell assay were applied. At the same time, the relative mechanism was investigated. RESULTS When ANXA5 expression increased, cell proliferation was inhibited by regulating the expression of bcl-2 and bax while cell metastasis was suppressed by regulating E-cadherin and MMP-9 expression. CONCLUSION ANXA5 overexpression in the uterine cervical carcinoma might play important roles in cell proliferation and metastasis of uterine cervical cancer cells and act as an anti-cancer gene in uterine cervical cancer.
Collapse
|
9
|
Sun X, Wei B, Liu S, Guo C, Wu N, Liu Q, Sun MZ. Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells with high lymph node metastasis potential preferentially via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) and E-cadherin. Biomed Pharmacother 2016; 84:645-654. [PMID: 27697636 DOI: 10.1016/j.biopha.2016.09.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/10/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Annexin A5 (Anxa5) is associated with the progression of some cancers, while its role and regulation mechanism in tumor lymphatic metastasis is rarely reported. This study aims to investigate the influence of Anxa5 knockdown on the malignant behaviours of murine hepatocarcinoma Hca-F cell line with high lymph node metastatic (LNM) potential and the underlying regulation mechanism. METHODS RNA interfering was performed to silence Anxa5 in Hca-F. Monoclonal shRNA-Anxa5- Hca-F cells were obtained via G418 screening by limited dilution method. Quantitative real-time RT-PCR (qRT-PCR) and Western blotting (WB) were applied to measure Anxa5 expression levels. CCK-8, Boyden transwell-chamber and in situ LN adhesion assays were performed to explore the effects of Anxa5 on the proliferation, migration, invasion and adhesion capacities of Hca-F. WB and qRT-PCR were used to detect the level changes of key molecules in corresponding signal pathways. RESULTS We obtained two monoclonal shRNA-Anxa5-transfected Hca-F cell lines with stable knockdowns of Anxa5. Anxa5 knockdown resulted in significantly reduced proliferation, migration, invasion and in situ LN adhesion potentials of Hca-F in proportion to its knockdown extent. Anxa5 downregulation enhanced E-cadherin levels in Hca-F. Moreover, Anxa5 affected Hca-F behaviours specifically via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) instead of p38MAPK/c-Jun, Jnk/c-Jun and AKT/c-Jun pathways. CONCLUSIONS Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells via ERK2/c-Jun/p-c-Jun(Ser73) and ERK2/E-cadherin pathways. It is an important molecule in metastasis (especially LNM) and a potential therapeutic target for hepatocarcinoma.
Collapse
Affiliation(s)
- Xujuan Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Bin Wei
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Na Wu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Qinlong Liu
- Department of General Surgery, The 2nd Affiliated Hospital, Dalian Medical University, Dalian 116027, China.
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
10
|
Wu J, Chen XH, Wang XQ, Yu Y, Ren JM, Xiao Y, Zhou T, Li P, Xu CD. ERp19 contributes to tumorigenicity in human gastric cancer by promoting cell growth, migration and invasion. Oncotarget 2016; 6:11794-805. [PMID: 25940440 PMCID: PMC4494905 DOI: 10.18632/oncotarget.3649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/02/2015] [Indexed: 12/12/2022] Open
Abstract
ERp19, a mammalian thioredoxin-like protein, plays a key role in defense against endoplasmic reticulum stress. It belongs to the protein disulfide isomerize (PDI) family, whose members have been implicated in development of breast, ovarian and gastrointestinal cancers. However, the role of ERp19 in gastric cancer (GC) remains undefined. Therefore, we sought to investigate the expression and prognostic value of ERp19 in GC patients, and to explore the role of ERp19 in tumorigenicity. Expression of ERp19 in gastric tissues was assessed by immunohistochemical staining and real-time PCR in clinical samples of GC patients. Statistical analysis of clinical cases revealed that the expression levels of ERp19 were higher in tumor tissues than non-tumor tissues. And the level of ERp19 expression was correlated with tumor size, lymph node involvement and poor clinical prognosis. Furthermore, ERp19 knockdown dramatically suppressed gastric cancer cell growth, inhibited cellular migration/invasion and down-regulated the phosphorylation of FAK and paxillin, whereas ERp19 over-expression reversed these changes. We conclude that ERp19 contributes to tumorigenicity and metastasis of GC by activating the FAK signaling pathway, and may function as an oncogene in GC. ERp19 may represent a new diagnostic and prognostic marker and a novel target for the treatment of GC.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen C, Zhang LG, Liu J, Han H, Chen N, Yao AL, Kang SS, Gao WX, Shen H, Zhang LJ, Li YP, Cao FH, Li ZG. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data. Onco Targets Ther 2016; 9:1545-57. [PMID: 27051295 PMCID: PMC4803245 DOI: 10.2147/ott.s98807] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We mined the literature for proteomics data to examine the occurrence and metastasis of prostate cancer (PCa) through a bioinformatics analysis. We divided the differentially expressed proteins (DEPs) into two groups: the group consisting of PCa and benign tissues (P&b) and the group presenting both high and low PCa metastatic tendencies (H&L). In the P&b group, we found 320 DEPs, 20 of which were reported more than three times, and DES was the most commonly reported. Among these DEPs, the expression levels of FGG, GSN, SERPINC1, TPM1, and TUBB4B have not yet been correlated with PCa. In the H&L group, we identified 353 DEPs, 13 of which were reported more than three times. Among these DEPs, MDH2 and MYH9 have not yet been correlated with PCa metastasis. We further confirmed that DES was differentially expressed between 30 cancer and 30 benign tissues. In addition, DEPs associated with protein transport, regulation of actin cytoskeleton, and the extracellular matrix (ECM)–receptor interaction pathway were prevalent in the H&L group and have not yet been studied in detail in this context. Proteins related to homeostasis, the wound-healing response, focal adhesions, and the complement and coagulation pathways were overrepresented in both groups. Our findings suggest that the repeatedly reported DEPs in the two groups may function as potential biomarkers for detecting PCa and predicting its aggressiveness. Furthermore, the implicated biological processes and signaling pathways may help elucidate the molecular mechanisms of PCa carcinogenesis and metastasis and provide new targets for clinical treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Li-Guo Zhang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Jian Liu
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Hui Han
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Ning Chen
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - An-Liang Yao
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Shao-San Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Wei-Xing Gao
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Hong Shen
- Department of Modern Technology and Education Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Long-Jun Zhang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Ya-Peng Li
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Feng-Hong Cao
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Zhi-Guo Li
- Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, People's Republic of China
| |
Collapse
|
12
|
Souza AG, Marangoni K, Fujimura PT, Alves PT, Silva MJ, Bastos VAF, Goulart LR, Goulart VA. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line. Exp Cell Res 2016; 341:147-56. [PMID: 26821206 DOI: 10.1016/j.yexcr.2016.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 10/25/2022]
Abstract
Human prostate cancer (PCa) is a highly heterogeneous and multifactorial disease. Current clinical biomarkers are not sufficiently accurate, thus being unable to predict the clinical outcome. Therefore, searching for new biomarkers aiming to improve diagnosis, prognosis and therapy is still required. In this study, we performed 3D Cell-SELEX against PC-3 prostate cancer cell line, a novel strategy to select specific nucleic acid ligands against spheroid cells in 3D cell culture. This original system combines Cell-SELEX, a process that exploits the cellular structure to generate specific ligands, and 3D cell culture, an approach that mimics the tissue microenvironment in vitro. In the first round of 3D Cell-SELEX, a negative selection against RWPE-1, non-tumor cell line, was performed to subtract non-tumor specific aptamers. The supernatant was used in eight additional rounds of selection, which were performed against PC-3 cell line. After nine selection cycles, eight PC-3 specific RNA aptamers were selected and sequenced. The aptamers presented sizes between 20 and 50 nucleotides-long, with low free energy (∆G<-13.6), which contributed for their spontaneous folding and high stability. Furthermore, our results showed the aptamer A4 as a specific ligand to prostate tumor cells, with dissociation constant in the nanomolar scale. Therefore, the novel 3D Cell-SELEX procedure improved the selection of PCa cell-surface ligands and the aptamer A4 has shown potential for the identification of prostate tumor cells, suggesting the application of this molecule in further screening assays for PCa.
Collapse
Affiliation(s)
- Aline G Souza
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil.
| | - Karina Marangoni
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil; Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas, SP, Brazil
| | - Patrícia T Fujimura
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Patrícia T Alves
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Márcio J Silva
- Center of Molecular Biology and Genetic Engineering, University of Campinas, SP, Brazil
| | - Victor Alexandre F Bastos
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Luiz R Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil; University of California-Davis, Department of Medical Microbiology and Immunology, Davis, CA, USA
| | - Vivian A Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| |
Collapse
|
13
|
Müller CB, De Bastiani MA, Becker M, França FS, Branco MA, Castro MAA, Klamt F. Potential crosstalk between cofilin-1 and EGFR pathways in cisplatin resistance of non-small-cell lung cancer. Oncotarget 2016; 6:3531-9. [PMID: 25784483 PMCID: PMC4414134 DOI: 10.18632/oncotarget.3471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
Current challenge in oncology is to establish the concept of personalized medicine in clinical practice. In this context, non-small-cell lung cancer (NSCLC) presents clinical, histological and molecular heterogeneity, being one of the most genomically diverse of all cancers. Recent advances added Epidermal Growth Factor Receptor (EGFR) as a predictive biomarker for patients with advanced NSCLC. In tumors with activating EGFR mutations, tyrosine kinase inhibitors (TKI) are indicated as first-line treatment, although restricted to a very small target population. In this context, cofilin-1 (a cytosolic protein involved with actin dynamics) has been widely studied as a biomarker of an aggressive phenotype in tumors, and overexpression of cofilin-1 is associated with cisplatin resistance and poor prognosis in NSCLC. Here, we gather information about the predictive potential of cofilin-1 and reviewed the crosstalk between cofilin-1/EGFR pathways. We aimed to highlight new perspectives of how these interactions might affect cisplatin resistance in NSCLC. We propose that cofilin-1 quantification in clinical samples in combination with presence/absence of EGFR mutation could be used to select patients that would benefit from TKI's treatment. This information is of paramount importance and could result in a possibility of guiding more effective treatments to NSCLC patients.
Collapse
Affiliation(s)
- Carolina Beatriz Müller
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Marco Antônio De Bastiani
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Matheus Becker
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Fernanda Stapenhorst França
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | - Mariane Araujo Branco
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| | | | - Fabio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), Brazil.,National Institutes for Science & Technology-Translational Medicine (INCT-TM), Porto Alegre (RS), Brazil
| |
Collapse
|
14
|
Kumar A, Baycin-Hizal D, Shiloach J, Bowen MA, Betenbaugh MJ. Coupling enrichment methods with proteomics for understanding and treating disease. Proteomics Clin Appl 2015; 9:33-47. [PMID: 25523641 DOI: 10.1002/prca.201400097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Owing to recent advances in proteomics analytical methods and bioinformatics capabilities there is a growing trend toward using these capabilities for the development of drugs to treat human disease, including target and drug evaluation, understanding mechanisms of drug action, and biomarker discovery. Currently, the genetic sequences of many major organisms are available, which have helped greatly in characterizing proteomes in model animal systems and humans. Through proteomics, global profiles of different disease states can be characterized (e.g. changes in types and relative levels as well as changes in PTMs such as glycosylation or phosphorylation). Although intracellular proteomics can provide a broad overview of physiology of cells and tissues, it has been difficult to quantify the low abundance proteins which can be important for understanding the diseased states and treatment progression. For this reason, there is increasing interest in coupling comparative proteomics methods with subcellular fractionation and enrichment techniques for membranes, nucleus, phosphoproteome, glycoproteome as well as low abundance serum proteins. In this review, we will provide examples of where the utilization of different proteomics-coupled enrichment techniques has aided target and biomarker discovery, understanding the drug targeting mechanism, and mAb discovery. Taken together, these improvements will help to provide a better understanding of the pathophysiology of various diseases including cancer, autoimmunity, inflammation, cardiovascular disease, and neurological conditions, and in the design and development of better medicines for treating these afflictions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD, USA; Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
15
|
The changes of Proteome in MG-63 cells after induced by calcitonin gene-related peptide. Biochem Biophys Res Commun 2014; 453:648-52. [DOI: 10.1016/j.bbrc.2014.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/03/2014] [Indexed: 11/18/2022]
|
16
|
Yu D, Shin HS, Choi G, Lee YC. Proteomic analysis of CD44(+) and CD44(−) gastric cancer cells. Mol Cell Biochem 2014; 396:213-20. [DOI: 10.1007/s11010-014-2156-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
|
17
|
Proteomic analysis of glomeruli from streptozotocin-induced diabetic rats. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Peng B, Guo C, Guan H, Liu S, Sun MZ. Annexin A5 as a potential marker in tumors. Clin Chim Acta 2013; 427:42-8. [PMID: 24121031 DOI: 10.1016/j.cca.2013.09.048] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/20/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
Abstract
Annexin A5 (Anxa5) promotes pancreatic adenocarcinoma, sarcoma, tumorigenesis and progression of breast cancer and prostate cancer stem cells. It is involved with metastasis, invasion and development of squamous cell carcinoma, and facilitates nodal progression of bladder cancer and angiogenesis and progression of glioma. Anxa5 de-regulation is associated with drug resistance in nasopharyngeal carcinoma and gastric cancer. Although Anxa5 protein up-regulation promotes cervical cancer progression, it is markedly suppressed in cervical carcinoma cells. Anxa5 is negatively correlated with thyroid cancer malignancy. In this review, we explore the mechanisms of Anxa5 action in tumors. Anxa5 could be a predictive biomarker for tumor development, metastasis and invasion, and be of diagnostic, prognostic and therapeutic significance in cancer.
Collapse
Affiliation(s)
- Boya Peng
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | |
Collapse
|
19
|
Cell shape and cardiosphere differentiation: a revelation by proteomic profiling. Biochem Res Int 2013; 2013:730874. [PMID: 24073335 PMCID: PMC3773893 DOI: 10.1155/2013/730874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/08/2013] [Indexed: 01/16/2023] Open
Abstract
Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells) and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E) derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions.
Collapse
|
20
|
Ko CH, Cheng CF, Lai CP, Tzu TH, Chiu CW, Lin MW, Wu SY, Sun CY, Tseng HW, Wang CC, Kuo ZK, Wang LM, Chen SF. Differential proteomic analysis of cancer stem cell properties in hepatocellular carcinomas by isobaric tag labeling and mass spectrometry. J Proteome Res 2013; 12:3573-85. [PMID: 23782096 DOI: 10.1021/pr4004294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Malignant tumors are relatively resistant to treatment due to their heterogeneous nature, drug resistance, and tendency for metastasis. Recent studies suggest that a subpopulation of cancer cells is responsible for the malignant outcomes. These cells are considered as cancer stem cells (CSC). Although a number of molecules have been identified in different cancer cells as markers for cancer stem cells, no promising markers are currently available for hepatocellular carcinoma cells. In this study, two clones of Hep3B cell lines were functionally characterized as control or CSC-like cells, based on properties including spheroid formation, drug resistance, and tumor initiation. Furthermore, their protein expression profiles were investigated by isobaric tags for relative and absolute quantitation (iTRAQ), and a total of 1,127 proteins were identified and quantified from the combined fractions; 50 proteins exhibited at least 2-fold differences between these two clones. These 50 proteins were analyzed by GeneGo and were found to be associated with liver neoplasms, hepatocellular carcinoma (HCC), and liver diseases. They were also components of metabolic pathways, immune responses, and cytoskeleton remodeling. Among these proteins, the expressions of S100P, S100A14, and vimentin were verified in several HCC cell lines, and their expressions were correlated with tumorigenicity in HCC cell lines. The functional significance of vimentin and S100A14 were also investigated and verified.
Collapse
Affiliation(s)
- Ching-Huai Ko
- Strategic Business and Innovation Technology Development Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 195 Sec.4 Chung Hsing Road, Chutung, 31040 Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zanini C, Ercole E, Mandili G, Salaroli R, Poli A, Renna C, Papa V, Cenacchi G, Forni M. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications. PLoS One 2013; 8:e63748. [PMID: 23717474 PMCID: PMC3663798 DOI: 10.1371/journal.pone.0063748] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/05/2013] [Indexed: 12/18/2022] Open
Abstract
Background Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. Methodology/Principal Findings The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Conclusions/Significance Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.
Collapse
Affiliation(s)
- Cristina Zanini
- EuroClone S.p.A Research Laboratory, Molecular Biotechnology Centre-MBC, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Burch TC, Watson MT, Nyalwidhe JO. Variable metastatic potentials correlate with differential plectin and vimentin expression in syngeneic androgen independent prostate cancer cells. PLoS One 2013; 8:e65005. [PMID: 23717685 PMCID: PMC3661497 DOI: 10.1371/journal.pone.0065005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/24/2013] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer is a clinically heterogeneous disease, ranging from indolent asymptomatic disease to very aggressive metastatic and life threatening forms of the disease. Distant metastasis represents the major lethal cause of prostate cancer. The most critical clinical challenge in the management of the patients is identifying those individuals at risk of developing metastatic disease. To understand the molecular mechanisms of prostate cancer metastasis and identify markers with metastatic potential, we have analyzed protein expression in two syngeneic prostate cancer cells lines PC3-N2 and PC3-ML2 using isobaric tags for relative and absolute quantitation labeling and multi-dimensional protein identification technology liquid chromatography matrix assisted laser desorption ionization tandem mass spectrometry. PC3-N2 is lowly metastatic while PC3-ML2 highly metastatic. A total of 1,756 proteins were identified in the analyses with 130 proteins showing different expression levels (p<0.01) in the two cell lines. Out of these, 68 proteins were found to be significantly up-regulated while 62 are significantly down-regulated in PC3-ML2 cells compared with PC3-N2 cells. The upregulation of plectin and vimentin which were the most significantly differentially expressed were validated by Western blot and their functional relevance with respect to invasion and migration was determined by siRNA gene silencing. To our knowledge, this study is the first to demonstrate that up-regulation of vimentin and plectin expression positively correlates with the invasion and metastasis of androgen-independent PCA.
Collapse
Affiliation(s)
- Tanya C. Burch
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Megan T. Watson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| |
Collapse
|
23
|
Lee HN, Park SH, Lee EK, Bernardo R, Kim CW. Proteomic profiling of tumor-initiating cells in HT-29 human colorectal cancer cells. Biochem Biophys Res Commun 2012; 427:171-7. [PMID: 22995320 DOI: 10.1016/j.bbrc.2012.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 01/14/2023]
Abstract
Recent reports have suggested that tumors are organized in heterogeneous populations. Within these populations, a small subpopulation of cells is more capable of initiating malignancy; these are called cancer stem cells. In this study, HT-29 cells were sorted according to the presence or absence of the cancer stem cell marker CD133. We confirmed that CD133+ cells possessed higher clonogenicity compared to CD133- cells. Furthermore, proteomic analysis identified 10 proteins, including actin-related protein 2/3 complex subunit 5-like and profilin 2. In conclusion, our data demonstrated that the expression of specific proteins associated with metastasis and invasion in CD133+ cells contributed to the stemness and tumorigenic properties of these cells.
Collapse
Affiliation(s)
- Han-Na Lee
- School of Life Sciences and Biotechnology, Korea University, 5ga Anam-dong, Sungbuk-ku, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|