1
|
Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation. ZYGOTE 2019; 27:180-186. [PMID: 31171044 DOI: 10.1017/s0967199419000236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SummaryHeat shock may disrupt oocyte function by increasing the generation of reactive oxygen species (ROS). We evaluated the capacity of the antioxidant melatonin to protect oocytes using two models of oxidative stress - heat shock and the pro-oxidant menadione. Bovine cumulus-oocyte complexes (COC) were exposed in the presence or absence of 1 µM melatonin to the following treatments during maturation: 38.5°C, 41°C and 38.5°C+5 µM menadione. In the first experiment, COC were matured for 3 h with 5 µM CellROX® and analyzed by epifluorescence microscopy to quantify production of ROS. The intensity of ROS was greater for oocytes exposed to heat shock and menadione than for control oocytes. Melatonin reduced ROS intensity for heat-shocked oocytes and oocytes exposed to menadione, but not for control oocytes. In the second experiment, COC were matured for 22 h. After maturation, oocytes were fertilized and the embryos cultured for 7.5 days. The proportion of oocytes that cleaved after fertilization was lower for oocytes exposed to heat shock and menadione than for control oocytes. Melatonin increased cleavage for heat-shocked oocytes and oocytes exposed to menadione, but not for control oocytes. Melatonin tended to increase the developmental competence of embryos from heat-shocked oocytes but not for embryos from oocytes exposed to menadione or from control oocytes. In conclusion, melatonin reduced production of ROS of maturing oocytes and protected oocytes from deleterious effects of both stresses on competence of the oocyte to cleave after coincubation with sperm. These results suggest that excessive production of ROS compromises oocyte function.
Collapse
|
2
|
Madeja ZE, Warzych E, Pawlak P, Lechniak D. Inhibitor mediated WNT and MEK/ERK signalling affects apoptosis and the expression of quality related genes in bovine in vitro obtained blastocysts. Biochem Biophys Res Commun 2019; 510:403-408. [PMID: 30711254 DOI: 10.1016/j.bbrc.2019.01.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
Culture conditions determine embryo quality, which may be affected on many levels (timing of development, blastomere count, transcripts, metabolite content, apoptosis). Molecular interactions of signalling pathways like MEK/ERK and WNT/β-catenin are critical for cell-to-cell communication and cellular differentiation. Both pathways are important regulators of apoptosis. We have aimed to verify the prolonged effect of MEK/ERK silencing and WNT activation by chemical inhibitors (2i or 3i systems) on bovine IVP embryos. Apoptotic index, total cell count and transcription of embryo quality markers were evaluated. A higher rate of apoptosis was observed in 2i blastocysts, but was not accompanied by changes in transcript content of genes controlling apoptosis (BAX, BCL2, BAK, BAX/BCL2 ratio). Therefore, alternative pathways of apoptotic activation cannot be ruled out. The expression of genes related to embryo quality (HSPA1A, SLC2A1) was not affected. GJA1 transcripts were significantly higher in 3i blastocysts, what indicates a stimulatory effect of the applied inhibitors on cell-to-cell interactions. The lowest mRNA level of the IFNT2 gene was found in 2i embryos. A variation in the SDHA gene transcript was observed (with the highest content in the 3i blastocysts), what may suggest their reduced quality. It may be concluded that the modifications of culture conditions (activation of the WNT and silencing of the MEK/ERK signalling) might alter pathways crucial for embryo development without causing embryonic death.
Collapse
Affiliation(s)
- Zofia E Madeja
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| |
Collapse
|
3
|
Abstract
INTRODUCTION Cell-free "fetal" DNA is released from the placenta. Because the fetal membranes also arise from the trophectoderm layer of the blastocyst, these studies sought to test the hypothesis that the membranes also release cell-free DNA (cfDNA). METHODS Fetal membranes were harvested from pregnant CD-1 mice and cultured in 12-well plates containing media alone or with staurosporine and thapsigargin (apoptosis stimulators), Q-VD-OPh (caspase inhibitor), Trolox (vitamin E analog), and lipopolysaccharide and tumor necrosis factor α (TNFα; inflammatory mediators). The cfDNA in the media was extracted, quantified, and normalized for tissue weight. Media was used for a lactate dehydrogenase (LDH) assay. Membrane homogenates were used to assess activated caspase levels and the expression of DNA fragmentation factor B (DFFB) and BAX proteins. 5-Methylcytosine was assessed using a 5-mC DNA enzyme-linked immunosorbent assay. The cfDNA was used to stimulate interleukin 6 (IL6) release by J774A.1 mouse macrophage cells. RESULTS Increased cfDNA release at 6 and 21 hours occurred in parallel with increasing LDH levels. The cfDNA concentrations were significantly suppressed by Q-VD-OPh and Trolox and increased by thapsigargin and TNFα. Increased caspase activity was suppressed by Q-VD-OPh and increased by TNFα, thapsigargin, and staurosporine. The expression of BAX and DFFB proteins significantly increased by 21 hours. 5-Methylcytosine levels were significantly lower in fetal membranes and placentas and below detectable in the cfDNA released by the explants. The cfDNA-stimulated IL6 release by macrophage cells was suppressed by chloroquine, a Toll-like receptor 9 (TLR9) inhibitor. CONCLUSIONS These studies have confirmed cfDNA release by the mouse fetal membranes; cfDNA was markedly hypomethylated and a robust stimulator of TLR9.
Collapse
Affiliation(s)
- Michala R Sawyer
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA
| | - Sharareh Adeli
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA
| | - Mark Phillippe
- Division of Maternal-Fetal Medicine and the Vincent Center for Reproductive Biology, Department of Obstetrics & Gynecology, Massachusetts General Hospital, 55 Fruit Street, Thier Bldg. 9-911, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Global, Survival, and Apoptotic Transcriptome during Mouse and Human Early Embryonic Development. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5895628. [PMID: 30515407 PMCID: PMC6236930 DOI: 10.1155/2018/5895628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Survival and cell death signals are crucial for mammalian embryo preimplantation development. However, the knowledge on the molecular mechanisms underlying their regulation is still limited. Mouse studies are widely used to understand preimplantation embryo development, but extrapolation of these results to humans is questionable. Therefore, we wanted to analyse the global expression profiles during early mouse and human development with a special focus on genes involved in the regulation of the apoptotic and survival pathways. We used DNA microarray technology to analyse the global gene expression profiles of preimplantation human and mouse embryos (metaphase II oocytes, embryos at the embryonic genome activation stage, and blastocysts). Components of the major apoptotic and survival signalling pathways were expressed during early human and mouse embryonic development; however, most expression profiles were species-specific. Particularly, the expression of genes encoding components and regulators of the apoptotic machinery were extremely stable in mouse embryos at all analysed stages, while it was more stage-specific in human embryos. CASP3, CASP9, and AIF were the only apoptosis-related genes expressed in both species and at all studied stages. Moreover, numerous transcripts related to the apoptotic and survival pathway were reported for the first time such as CASP6 and IL1RAPL1 that were specific to MII oocytes; CASP2, ENDOG, and GFER to blastocysts in human. These findings open new perspectives for the characterization and understanding of the survival and apoptotic signalling pathways that control early human and mouse embryonic development.
Collapse
|
5
|
Nuttinck F, Jouneau A, Charpigny G, Hue I, Richard C, Adenot P, Ruffini S, Laffont L, Chebrout M, Duranthon V, Guienne BML. Prosurvival effect of cumulus prostaglandin G/H synthase 2/prostaglandin2 signaling on bovine blastocyst: impact on in vivo posthatching development. Biol Reprod 2017; 96:531-541. [PMID: 28339853 PMCID: PMC5819843 DOI: 10.1095/biolreprod.116.145367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022] Open
Abstract
Apoptotic activity is a common physiological process which culminates at the blastocyst stage in the preimplantation embryo of many mammals. The degree of embryonic cell death can be influenced by the oocyte microenvironment. However, the prognostic significance of the incidence of apoptosis remains undefined. Prostaglandin E2 (PGE2) derived from prostaglandin G/H synthase-2 (PTGS2) activity is a well-known prosurvival factor that is mainly studied in oncology. PGE2 is the predominant PTGS2-derived prostaglandin present in the oocyte microenvironment during the periconceptional period. Using an in vitro model of bovine embryo production followed by transfer and collection procedures, we investigated the impact of periconceptional PGE2 on the occurrence of spontaneous apoptosis in embryos and on subsequent in vivo posthatching development. Different periconceptional PGE2 environments were obtained using NS-398, a specific inhibitor of PTGS2 activity, and exogenous PGE2. We assessed the level of embryonic cell death in blastocysts at day 8 postfertilization by counting total cell numbers, by the immunohistochemical staining of active caspase-3, and by quantifying terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling signals and apoptosis regulator (BCL-2/BAX) mRNA expression. Morphometric parameters were used to estimate the developmental stage of the embryonic disk and the extent of trophoblast elongation on day 15 conceptuses. Our findings indicate that periconceptional PGE2 signaling durably impacts oocytes, conferring increased resistance to spontaneous apoptosis in blastocysts and promoting embryonic disk development and the elongation process during preimplantation development.
Collapse
Affiliation(s)
| | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | - Pierre Adenot
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Sylvie Ruffini
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Ludivine Laffont
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | |
Collapse
|
6
|
Incidence of apoptosis after retinoids and insulin-like growth factor-I (IGF-I) supplementation during goat in vitro embryo production. ZYGOTE 2016; 24:808-813. [PMID: 27587268 DOI: 10.1017/s0967199416000125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The addition of growth factors and vitamins enhances goat embryonic development in vitro. However, few attempts have been reported trying to identify supplementation regimens for oocyte maturation or embryo culture with additive properties. The present report was aimed to evaluate if retinoids [0.3 μM retinyl acetate (RAc) and 0.5 μM 9-cis-retinoic acid (RA)] supplementation during goat oocyte maturation and retinoids and/or 50 ng mL-1 IGF-I during embryo culture synergically enhanced embryonic development while diminishing the incidence of apoptosis. All combinations of RAc and RA treatment produced blastocysts with similar efficiencies, while IGF-I enhanced embryos yields irrespectively of retinoid addition. Moreover, retinoids and IGF-I supplementation showed similar caspase activity or DNA fragmentation indexes in blastocysts. In conclusion, supplementation with retinoids and IGF-I during goat embryo culture enhances blastocysts development without synergic reduction of apoptosis.
Collapse
|
7
|
Pomini Pinto RF, Fontes PK, Loureiro B, Sousa Castilho AC, Sousa Ticianelli J, Montanari Razza E, Satrapa RA, Buratini J, Moraes Barros C. Effects of FGF10 on Bovine Oocyte Meiosis Progression, Apoptosis, Embryo Development and Relative Abundance of Developmentally Important GenesIn Vitro. Reprod Domest Anim 2014; 50:84-90. [DOI: 10.1111/rda.12452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
Affiliation(s)
- RF Pomini Pinto
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - PK Fontes
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - B Loureiro
- Laboratory of Animal Reproductive Physiology; University of Vila Velha (UVV); Vila Velha ES Brazil
| | - AC Sousa Castilho
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - J Sousa Ticianelli
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - E Montanari Razza
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - RA Satrapa
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - J Buratini
- Department of Phisiology; Institute of Biosciences; São Paulo State University; Botucatu SP Brazil
| | - C Moraes Barros
- Department of Pharmacology; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| |
Collapse
|
8
|
Insulin-like growth factor 2: A modulator of anti-apoptosis related genes (HSP70, BCL2-L1) in bovine preimplantation embryos. Theriogenology 2014; 82:942-50. [DOI: 10.1016/j.theriogenology.2014.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 01/09/2023]
|
9
|
Beta-catenin is vital for the integrity of mouse embryonic stem cells. PLoS One 2014; 9:e86691. [PMID: 24466203 PMCID: PMC3897734 DOI: 10.1371/journal.pone.0086691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/09/2013] [Indexed: 01/08/2023] Open
Abstract
β-Catenin mediated Wnt-signaling is assumed to play a major function in embryonic stem cells in maintaining their stem cell character and the exit from this unique trait. The complexity of β-catenin action and conflicting results on the role of β-catenin in maintaining the pluripotent state have made it difficult to understand its precise cellular and molecular functions. To attempt this issue we have generated new genetically modified mouse embryonic stem cell lines allowing for the deletion of β-catenin in a controlled manner by taking advantage of the Cre-ER-T2 system and analyzed the effects in a narrow time window shortly after ablation. By using this approach, rather then taking long term cultured β-catenin null cell lines we demonstrate that β-catenin is dispensable for the maintenance of pluripotency associated genes. In addition we observed that the removal of β-catenin leads to a strong increase of cell death, the appearance of multiple clustered functional centrosomes most likely due to a mis-regulation of the polo-like-kinase 2 and furthermore, alterations in chromosome segregation. Our study demonstrates the importance of β-catenin in maintaining correct cellular functions and helps to understand its role in embryonic stem cells.
Collapse
|
10
|
Sakatani M, Bonilla L, Dobbs KB, Block J, Ozawa M, Shanker S, Yao J, Hansen PJ. Changes in the transcriptome of morula-stage bovine embryos caused by heat shock: relationship to developmental acquisition of thermotolerance. Reprod Biol Endocrinol 2013; 11:3. [PMID: 23320502 PMCID: PMC3583805 DOI: 10.1186/1477-7827-11-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/11/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND While initially sensitive to heat shock, the bovine embryo gains thermal resistance as it progresses through development so that physiological heat shock has little effect on development to the blastocyst stage by Day 5 after insemination. Here, experiments using 3' tag digital gene expression (3'DGE) and real-time PCR were conducted to determine changes in the transcriptome of morula-stage bovine embryos in response to heat shock (40 degrees C for 8 h) that could be associated with thermotolerance. RESULTS Using 3'DGE, expression of 173 genes were modified by heat shock, with 94 genes upregulated by heat shock and 79 genes downregulated by heat shock. A total of 38 differentially-regulated genes were associated with the ubiquitin protein, UBC. Heat shock increased expression of one heat shock protein gene, HSPB11, and one heat shock protein binding protein, HSPBP1, tended to increase expression of HSPA1A and HSPB1, but did not affect expression of 64 other genes encoding heat shock proteins, heat shock transcription factors or proteins interacting with heat shock proteins. Moreover, heat shock increased expression of five genes associated with oxidative stress (AKR7A2, CBR1, GGH, GSTA4, and MAP2K5), decreased expression of HIF3A, but did not affect expression of 42 other genes related to free radical metabolism. Heat shock also had little effect on genes involved in embryonic development. Effects of heat shock for 2, 4 and 8 h on selected heat shock protein and antioxidant genes were also evaluated by real-time PCR. Heat shock increased steady-state amounts of mRNA for HSPA1A (P<0.05) and tended to increase expression of HSP90AA1 (P<0.07) but had no effect on expression of SOD1 or CAT. CONCLUSIONS Changes in the transcriptome of the heat-shocked bovine morula indicate that the embryo is largely resistant to effects of heat shock. As a result, transcription of genes involved in thermal protection is muted and there is little disruption of gene networks involved in embryonic development. It is likely that the increased resistance of morula-stage embryos to heat shock as compared to embryos at earlier stages of development is due in part to developmental acquisition of mechanisms to prevent accumulation of denatured proteins and free radical damage.
Collapse
Affiliation(s)
- Miki Sakatani
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto, 861-1192, Japan
| | - Luciano Bonilla
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Present address: Minitube International Center for Biotechnology, Mt. Horeb, WI, 53572, USA
| | - Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
| | - Jeremy Block
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Ovatech LLC, Gainesville Florida, FL, 32608, USA
| | - Manabu Ozawa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Savita Shanker
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - JiQiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
| |
Collapse
|