1
|
Sergi CM. Pediatric cancer-pathology and microenvironment influence: a perspective into osteosarcoma and non-osteogenic mesenchymal malignant neoplasms. Discov Oncol 2024; 15:358. [PMID: 39154307 PMCID: PMC11330953 DOI: 10.1007/s12672-024-01240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Pediatric cancer remains the leading cause of disease-related death among children aged 1-14 years. A few risk factors have been conclusively identified, including exposure to pesticides, high-dose radiation, and specific genetic syndromes, but the etiology underlying most events remains unknown. The tumor microenvironment (TME) includes stromal cells, vasculature, fibroblasts, adipocytes, and different subsets of immunological cells. TME plays a crucial role in carcinogenesis, cancer formation, progression, dissemination, and resistance to therapy. Moreover, autophagy seems to be a vital regulator of the TME and controls tumor immunity. Autophagy is an evolutionarily conserved intracellular process. It enables the degradation and recycling of long-lived large molecules or damaged organelles using the lysosomal-mediated pathway. The multifaceted role of autophagy in the complicated neoplastic TME may depend on a specific context. Autophagy may function as a tumor-suppressive mechanism during early tumorigenesis by eliminating unhealthy intracellular components and proteins, regulating antigen presentation to and by immune cells, and supporting anti-cancer immune response. On the other hand, dysregulation of autophagy may contribute to tumor progression by promoting genome damage and instability. This perspective provides an assortment of regulatory substances that influence the features of the TME and the metastasis process. Mesenchymal cells in bone and soft-tissue sarcomas and their signaling pathways play a more critical role than epithelial cells in childhood and youth. The investigation of the TME in pediatric malignancies remains uncharted primarily, and this unique collection may help to include novel advances in this setting.
Collapse
Affiliation(s)
- Consolato M Sergi
- Division of Anatomic Pathology, Department of Laboratory Medicine, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Laboratory Medicine, Stollery Children's Hospital, University of Alberta, Edmonton, AB, Canada.
- University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Mao P, Feng Z, Liu Y, Zhang K, Zhao G, Lei Z, Di T, Zhang H. The Role of Ubiquitination in Osteosarcoma Development and Therapies. Biomolecules 2024; 14:791. [PMID: 39062505 PMCID: PMC11274928 DOI: 10.3390/biom14070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) maintains intracellular protein homeostasis and cellular function by regulating various biological processes. Ubiquitination, a common post-translational modification, plays a crucial role in the regulation of protein degradation, signal transduction, and other physiological and pathological processes, and is involved in the pathogenesis of various cancers, including osteosarcoma. Osteosarcoma, the most common primary malignant bone tumor, is characterized by high metastatic potential and poor prognosis. It is a refractory bone disease, and the main treatment modalities are surgery combined with chemotherapy. Increasing evidence suggests a close association between UPS abnormalities and the progression of osteosarcoma. Due to the complexity and pleiotropy of the ubiquitination system, each step in the ubiquitination process can be targeted by drugs. In recent years, research and development of inhibitors targeting the ubiquitin system have increased gradually, showing great potential for clinical application. This article reviews the role of the ubiquitination system in the development and treatment of osteosarcoma, as well as research progress, with the hope of improving the therapeutic effects and prognosis of osteosarcoma patients by targeting effective molecules in the ubiquitination system.
Collapse
Affiliation(s)
- Peng Mao
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yong Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zeyuan Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Tianning Di
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
3
|
Song J, Yuan X, Piao L, Wang J, Wang P, Zhuang M, Liu J, Liu Z. Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Front Oncol 2022; 12:1072701. [DOI: 10.3389/fonc.2022.1072701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Although some advances have been made in the treatment of osteosarcoma in recent years, surgical resection remains the mainstream treatment. Initial and early diagnosis of osteosarcoma could be very difficult to achieve due to the insufficient sensitivity for the means of examination. The distal metastasis of osteosarcoma also predicts the poor prognosis of osteosarcoma. In order to solve this series of problems, people begin to discover a new method of diagnosing and treating osteosarcoma. Ubiquitination, as an emerging posttranslational modification, has been shown to be closely related to osteosarcoma in studies over the past decades. In general, this review describes the cellular functions and molecular mechanisms of ubiquitination during the development of osteosarcoma.
Collapse
|
4
|
Li Y, Yang C, Wang H, Zhao L, Kong Q, Cang Y, Zhao S, Lv L, Li Y, Mao B, Ma P. Sequential stabilization of RNF220 by RLIM and ZC4H2 during cerebellum development and Shh-group medulloblastoma progression. J Mol Cell Biol 2022; 14:6510822. [PMID: 35040952 PMCID: PMC8982406 DOI: 10.1093/jmcb/mjab082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/12/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is essential for the proliferation of cerebellar granule neuron progenitors (CGNPs), and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma (MB). During vertebrate neural development, RNF220, a ubiquitin E3 ligase, is involved in spinal cord patterning by modulating the subcellular location of glioma-associated oncogene homologs (Glis) through ubiquitination. RNF220 is also required for full activation of Shh signaling during cerebellum development in an epigenetic manner through targeting embryonic ectoderm development. ZC4H2 was reported to be involved in spinal cord patterning by acting as an RNF220 stabilizer. Here, we provided evidence to show that ZC4H2 is also required for full activation of Shh signaling in CGNP and MB progression by stabilizing RNF220. In addition, we found that the ubiquitin E3 ligase RING finger LIM domain-binding protein (RLIM) is responsible for ZC4H2 stabilization via direct ubiquitination, through which RNF220 is also thus stabilized. RLIM is a direct target of Shh signaling and is also required for full activation of Shh signaling in CGNP and MB cell proliferation. We further provided clinical evidence to show that the RLIM‒ZC4H2‒RNF220 cascade is involved in Shh-group MB progression. Disease-causative human RLIM and ZC4H2 mutations affect their interaction and regulation. Therefore, our study sheds light on the regulation of Shh signaling during cerebellar development and MB progression and provides insights into neural disorders caused by RLIM or ZC4H2 mutations.
Collapse
Affiliation(s)
- Yuwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Chencheng Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650203, China
| | - Ling Zhao
- Experimental Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qinghua Kong
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu Cang
- Department of Urology, the Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Shuhua Zhao
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Longbao Lv
- Experimental Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yan Li
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
5
|
He D, Gao J, Zheng L, Liu S, Ye L, Lai H, Pan B, Pan W, Lou C, Chen Z, Fan S. TGF‑β inhibitor RepSox suppresses osteosarcoma via the JNK/Smad3 signaling pathway. Int J Oncol 2021; 59:84. [PMID: 34533199 PMCID: PMC8460063 DOI: 10.3892/ijo.2021.5264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor and the long-term survival rates remain unsatisfactory. Transforming growth factor-β (TGF-β) has been revealed to play a crucial role in OS progression, and RepSox is an effective TGF-β inhibitor. In the present study, the effect of RepSox on the proliferation of the OS cell lines (HOS and 143B) was detected. The results revealed that RepSox effectively inhibited the proliferation of OS cells by inducing S-phase arrest and apoptosis. Moreover, the inhibitory effect of RepSox on cell migration and invasion was confirmed by wound-healing and Transwell assays. Furthermore, western blotting revealed that the protein levels of molecules associated with the epithelial-mesenchymal transition (EMT) phenotype, including E-cadherin, N-cadherin, Vimentin, matrix metalloproteinase (MMP)-2 and MMP-9, were reduced by RepSox treatment. Concurrently, it was also revealed that the JNK and Smad3 signaling pathway was inhibited. Our in vivo findings using a xenograft model also revealed that RepSox markedly inhibited the growth of tumors. In general, our data demonstrated that RepSox suppressed OS proliferation, EMT and promoted apoptosis by inhibiting the JNK/Smad3 signaling pathway. Thus, RepSox may be a potential anti-OS drug.
Collapse
Affiliation(s)
- Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Shijie Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Lin Ye
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Hehuan Lai
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Bin Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Wenzheng Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
6
|
Wang F, Gervasi MG, Bošković A, Sun F, Rinaldi VD, Yu J, Wallingford MC, Tourzani DA, Mager J, Zhu LJ, Rando OJ, Visconti PE, Strittmatter L, Bach I. Deficient spermiogenesis in mice lacking Rlim. eLife 2021; 10:e63556. [PMID: 33620316 PMCID: PMC7935487 DOI: 10.7554/elife.63556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Maria Gracia Gervasi
- Department of Veterinary & Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Fengyun Sun
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Vera D Rinaldi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Mary C Wallingford
- Department of Veterinary & Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Darya A Tourzani
- Department of Veterinary & Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Jesse Mager
- Department of Veterinary & Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Pablo E Visconti
- Department of Veterinary & Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Lara Strittmatter
- Electron Microscopy Core, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
7
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
8
|
Jin W, Gu C, Zhou L, Yang X, Gui M, Zhang J, Chen J, Dong X, Yuan Q, Shan L. Theabrownin inhibits the cytoskeleton‑dependent cell cycle, migration and invasion of human osteosarcoma cells through NF‑κB pathway‑related mechanisms. Oncol Rep 2020; 44:2621-2633. [PMID: 33125106 PMCID: PMC7640368 DOI: 10.3892/or.2020.7801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Considering the high metastatic potential of osteosarcoma, not only pro-apoptosis, but also anti-metastasis is important for anti-osteosarcoma therapy. Previously, the authors reported the pro-apoptotic and tumor-inhibitory effects of theabrownin (TB) on osteosarcoma cells; however, its effects on the metastasis-related migration and invasion of osteosarcoma cells remain unknown. The present study conducted RNA sequencing (RNA-seq) on xenograft zebrafish samples and performed in vitro experiments, including RT-qPCR, cell viability analysis, clone formation assay, cell cycle analysis, immunofluorescence, cell migration assay, cell invasion assay, wound healing assay and western blot (WB) analysis to evaluate the anti-metastatic effects and mechanism of TB against osteosarcoma cells. The RNA-seq data revealed that TB significantly downregulated the expression of genes involved in the microtubule bundle formation of U2OS cells, which was verified by RT-qPCR. The cell viability and clone formation data indicated that TB significantly inhibited U2OS cell viability and colony numbers. The results of cell cycle analysis revealed the blocked cell cycle progression of U2OS by TB. The immunofluorescent data revealed an evident cytoskeleton-inhibitory effect of TB against the microfilament and microtubule formation of U2OS cells. The results of cell migration and invasion demonstrated that TB significantly inhibited U2OS cell migration and invasion. The results of WB analysis revealed that TB significantly regulated key molecules of epithelial-mesenchymal transition [EMT; e.g., E-cadherin, vimentin, Snail-1, Slug and zinc finger E-box-binding homeobox 1 (ZEB-1)] and those of the nuclear factor (NF)-κB pathway (e.g., NF-κB, phospho-IKKα and phospho-IKKβ), indicating that NF-κB pathway-related EMT suppression may mediate the mechanisms underlying the anti-migratory and anti-invasive effects of TB against osteosarcoma. To the best of our knowledge, this is the first study on the inhibitory effects and mechanisms of TB on the cytoskeleton-dependent cell cycle, migration and invasion of human osteosarcoma cells. The findings presented herein suggest that TB may be a promising anti-metastatic candidate for anti-osteosarcoma therapy.
Collapse
Affiliation(s)
- Wangdong Jin
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Chaoqun Gu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xinyu Yang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Mengyuan Gui
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jin Zhang
- Theabio Co., Ltd., Hangzhou, Zhejiang 311121, P.R. China
| | - Jie Chen
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiang Yuan
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
9
|
Frints SGM, Ozanturk A, Rodríguez Criado G, Grasshoff U, de Hoon B, Field M, Manouvrier-Hanu S, E Hickey S, Kammoun M, Gripp KW, Bauer C, Schroeder C, Toutain A, Mihalic Mosher T, Kelly BJ, White P, Dufke A, Rentmeester E, Moon S, Koboldt DC, van Roozendaal KEP, Hu H, Haas SA, Ropers HH, Murray L, Haan E, Shaw M, Carroll R, Friend K, Liebelt J, Hobson L, De Rademaeker M, Geraedts J, Fryns JP, Vermeesch J, Raynaud M, Riess O, Gribnau J, Katsanis N, Devriendt K, Bauer P, Gecz J, Golzio C, Gontan C, Kalscheuer VM. Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder. Mol Psychiatry 2019; 24:1748-1768. [PMID: 29728705 DOI: 10.1038/s41380-018-0065-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.
Collapse
Affiliation(s)
- Suzanna G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands. .,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| | - Aysegul Ozanturk
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | | | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Bas de Hoon
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands.,Department of Gynaecology and Obstetrics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Michael Field
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Sylvie Manouvrier-Hanu
- Clinique de Génétique médicale Guy Fontaine, Centre de référence maladies rares Anomalies du développement Hôpital Jeanne de Flandre, Lille, 59000, France.,EA 7364 RADEME Maladies Rares du Développement et du Métabolisme, Faculté de Médecine, Université de Lille, Lille, 59000, France
| | - Scott E Hickey
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Molka Kammoun
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Karen W Gripp
- Alfred I. duPont Hospital for Children Nemours, Wilmington, DE, 19803, USA
| | - Claudia Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Annick Toutain
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Theresa Mihalic Mosher
- Division of Molecular & Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Benjamin J Kelly
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Eveline Rentmeester
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Sungjin Moon
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Daniel C Koboldt
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.,The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Kees E P van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Hao Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Lucinda Murray
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, NSW, 2298, Australia
| | - Eric Haan
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renee Carroll
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, 5006, Australia
| | - Lynne Hobson
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, 5006, Australia
| | - Marjan De Rademaeker
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, 1090, Brussels, Belgium
| | - Joep Geraedts
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, Maastricht, 6202 AZ, The Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, GROW, FHML, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Jean-Pierre Fryns
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Joris Vermeesch
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Martine Raynaud
- Service de Génétique, Hôpital Bretonneau, CHU de Tours, Tours, 37044, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, 37032, France
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas Katsanis
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Christelle Golzio
- Center for Human Disease Modeling and Departments of Pediatrics and Psychiatry, Duke University, Durham, NC, 27710, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics; Centre National de la Recherche Scientifique, UMR7104; Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, 67400, Illkirch, France
| | - Cristina Gontan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany.
| |
Collapse
|
10
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
11
|
The Tumor Microenvironment of Pediatric Sarcoma: Mesenchymal Mechanisms Regulating Cell Migration and Metastasis. Curr Oncol Rep 2019; 21:90. [PMID: 31418125 PMCID: PMC6695368 DOI: 10.1007/s11912-019-0839-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents a selection of regulatory molecules of tumor microenvironmental properties and metastasis. Signaling pathways controlling mesenchymal biology in bone and soft-tissue sarcomas found in children and adolescents are prioritized. RECENT FINDINGS The tumor microenvironment of pediatric tumors is still relatively unexplored. Highlighted findings are mainly on deregulated genes associated with cell adhesion, migration, and tumor cell dissemination. How these processes are involved in a mesenchymal phenotype and metastasis is further discussed in relation to the epithelial to mesenchymal transition (EMT) in epithelial tumors. Cell plasticity is emerging as a concept with impact on tumor behavior. Sarcomas belong to a heterogeneous group of tumors where local recurrence and tumor spread pose major challenges despite intense multimodal treatments. Molecular pathways involved in the metastatic process are currently being characterized, and tumor-regulatory properties of structural components, and infiltrating, non-malignant cell types should be further investigated.
Collapse
|
12
|
Verrecchia F, Rédini F. Transforming Growth Factor-β Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment. Front Oncol 2018; 8:133. [PMID: 29761075 PMCID: PMC5937053 DOI: 10.3389/fonc.2018.00133] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcomas are the most frequent form of primary bone tumors and mainly affect children, adolescents, and young adults. Despite encouraging progress in therapeutic management, including the advent of multidrug chemotherapy, the survival rates have remained unchanged for more than four decades: 75% at 5 years for localized disease, but two groups of patients are still at high risk: metastatic at diagnosis (overall survival around 40% at 5 years) and/or poor responders to chemotherapy (20% at 5 years). Because these tumors are classified as “complex genomic,” it is extremely difficult to determine the signaling pathways that might be targeted by specific therapies. A hypothesis has thus emerged, stating that the particular microenvironment of these tumors may interfere with the tumor cells that promote chemoresistance and the dissemination of metastases. The stroma is composed of a large number of cell types (immune cells, endothelial cells, mesenchymal stromal cells, etc.) which secrete growth factors, such as transforming growth factor-β (TGF-β), which favors the development of primary tumors and dissemination of metastases by constituting a permissive niche at primary and distant sites. Rather than targeting the tumor cells themselves, which are very heterogeneous in osteosarcoma, the hypothesis is instead to target the key actors secreted in the microenvironment, such as TGF-βs, which play a part in tumor progression. In the last decade, numerous studies have shown that overexpression of TGF-β is a hallmark of many cancers, including primary bone tumors. In this context, TGF-β signaling has emerged as a crucial factor in the cross talk between tumor cells and stroma cells in poor-prognosis cancers. Secretion of TGF-β by tumor cells or stroma cells can effectively act in a paracrine manner to regulate the phenotype and functions of the microenvironment to stimulate protumorigenic microenvironmental changes. TGF-β can thus exert its protumorigenic function in primary bone tumors by promoting angiogenesis, bone remodeling and cell migration, and by inhibiting immunosurveillance. This review focuses on the involvement of TGF-β signaling in primary bone tumor development, and the related therapeutic options that may be possible for these tumors.
Collapse
Affiliation(s)
- Franck Verrecchia
- UMR1238 INSERM, Université de Nantes, PHY-OS, "Bone Sarcomas and Remodeling of Calcified Tissues", Medical School, Nantes, France
| | - Françoise Rédini
- UMR1238 INSERM, Université de Nantes, PHY-OS, "Bone Sarcomas and Remodeling of Calcified Tissues", Medical School, Nantes, France
| |
Collapse
|
13
|
RLIM suppresses hepatocellular carcinogenesis by up-regulating p15 and p21. Oncotarget 2017; 8:83075-83087. [PMID: 29137325 PMCID: PMC5669951 DOI: 10.18632/oncotarget.20904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinogenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation and apoptosis. p15 and p21 are cyclin-dependent kinase inhibitors, which arrest cell proliferation and serve as critical tumor suppressors. Here we report that the E3 ubiquitin ligase RLIM expression is downregulated in hepatocellular carcinoma patients, and correlated with p15 and p21 expression in clinical progression. In addition, we showed that RLIM overexpression suppresses the cell growth and arrests cell cycle progression of hepatocellular carcinoma. Mechanistically, we found that RLIM directly binds to MIZ1, disrupting the interaction between c-MYC and MIZ1, and enhancing p15 and p21 transcription. Our results demonstrate that RLIM is an important suppressor in hepatocellular carcinogenesis.
Collapse
|
14
|
Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression. J Clin Med 2016; 5:E96. [PMID: 27827889 PMCID: PMC5126793 DOI: 10.3390/jcm5110096] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Abstract
Osteosarcomas are the most prevalent malignant primary bone tumors in children. Despite intensive efforts to improve both chemotherapeutics and surgical management, 40% of all osteosarcoma patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma remains poor; less than 30% of patients who present metastases will survive five years after initial diagnosis. Treating metastatic osteosarcoma thus remains a challenge. One of the main characteristics of osteosarcomas is their ability to deregulate bone remodelling. The invasion of bone tissue by tumor cells indeed affects the balance between bone resorption and bone formation. This deregulation induces the release of cytokines or growth factors initially trapped in the bone matrix, such as transforming growth factor-β (TGF-β), which in turn promote tumor progression. Over the past years, there has been considerable interest in the TGF-β pathway within the cancer research community. This review discusses the involvement of the TGF-β signalling pathway in osteosarcoma development and in their metastatic progression.
Collapse
Affiliation(s)
- Audrey Lamora
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
- INSERM Liliane Bettencourt School, 75014 Paris, France.
| | - Julie Talbot
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Mathilde Mullard
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Benedicte Brounais-Le Royer
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Françoise Redini
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Franck Verrecchia
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| |
Collapse
|
15
|
Gao R, Wang L, Cai H, Zhu J, Yu L. E3 Ubiquitin Ligase RLIM Negatively Regulates c-Myc Transcriptional Activity and Restrains Cell Proliferation. PLoS One 2016; 11:e0164086. [PMID: 27684546 PMCID: PMC5042457 DOI: 10.1371/journal.pone.0164086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
RNF12/RLIM is a RING domain-containing E3 ubiquitin ligase whose function has only begun to be elucidated recently. Although RLIM was reported to play important roles in some biological processes such as imprinted X-chromosome inactivation and regulation of TGF-β pathway etc., other functions of RLIM are largely unknown. Here, we identified RLIM as a novel E3 ubiquitin ligase for c-Myc, one of the most frequently deregulated oncoproteins in human cancers. RLIM associates with c-Myc in vivo and in vitro independently of the E3 ligase activity of RLIM. Moreover, RLIM promotes the polyubiquitination of c-Myc protein independently of Ser62 and Thr58 phosphorylation of c-Myc. However, RLIM-mediated ubiquitination does not affect c-Myc stability. Instead, RLIM inhibits the transcriptional activity of c-Myc through which RLIM restrains cell proliferation. Our results suggest that RLIM may function as a tumor suppressor by controlling the activity of c-Myc oncoprotein.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- * E-mail:
| | - Lan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine Ministry of Education, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hao Cai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Jingjing Zhu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
16
|
Ota K, Quint P, Weivoda MM, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 2013; 57:68-75. [PMID: 23891907 PMCID: PMC3845829 DOI: 10.1016/j.bone.2013.07.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023]
Abstract
The processes of bone resorption and bone formation are tightly coupled in young adults, which is crucial to maintenance of bone integrity. We have documented that osteoclasts secrete chemotactic agents to recruit osteoblast lineage cells, contributing to coupling. Bone formation subsequent to bone resorption becomes uncoupled with aging, resulting in significant bone loss. During bone resorption, osteoclasts release and activate transforming growth factor beta 1 (TGF-β1) from the bone matrix; thus, elevated bone resorption increases the level of active TGF-β in the local environment during aging. In this study, we examined the influences of TGF-β1 on the ability of osteoclasts to recruit osteoblasts. TGF-β1 increased osteoclast expression of the chemokine CXCL16 to promote osteoblast migration. TGF-β1 also directly stimulated osteoblast migration; however, this direct response was blocked by conditioned medium from TGF-β1-treated osteoclasts due to the presence of leukemia inhibitory factor (LIF) in the medium. CXCL16 and LIF expression was dependent on TGF-β1 activation of Smad2 and Smad3. These results establish that TGF-β1 induces CXCL16 and LIF production in osteoclasts, which modulate recruitment of osteoblasts to restore the bone lost during the resorptive phase of bone turnover.
Collapse
Affiliation(s)
- Kuniaki Ota
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Patrick Quint
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Megan M. Weivoda
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Ming Ruan
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Larry Pederson
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Jennifer J. Westendorf
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Sundeep Khosla
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Merry Jo Oursler
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
- Corresponding author: Merry Jo Oursler, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. 507-285-0712, Fax # 507-293-3853.
| |
Collapse
|
17
|
The up-regulation of cysteine-rich protein 61 induced by transforming growth factor beta enhances osteosarcoma cell migration. Mol Cell Biochem 2013; 384:269-77. [PMID: 24037310 DOI: 10.1007/s11010-013-1807-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Overexpressed cysteine-rich protein 61 (Cyr61) is believed to enhance osteosarcoma (OS) cell metastasis, but the mechanism of Cyr61 overexpression in OS is not clear so far. In this study 33 OS samples were analyzed by immunostaining and focused on two parts: the correlation between overexpression of Cyr61 and OS metastasis; the mechanism of regulating Cyr61 expression in OS. Twenty-five out of 33 cases (75.76 %) with metastasis showed high expression of Cyr61. Furthermore, Cyr61 expression in Saos-2 cells was reduced by siRNA, and lower expression of Cyr61 in Saos-2 cell resulted in a cell migration deficiency and had no effect on cell proliferation. Particularly, Cyr61 expression was significantly increased in Saos-2 cells in response to different dosages of transforming growth factor beta (TGF-β), indicating that the expression of Cyr61 is TGF-β dependent. A transwell assay showed that Saos-2 cells stimulated with TGF-β had a greater capacity for migration than the control cells. The p38 MAPK-specific inhibitor SB203580 was able to reduce Cyr61 expression and inhibit the migration of Saos-2 cells stimulated with TGF-β. These results obtained provide new evidence that overexpressed Cyr61 plays a key role in the metastasis of OS cells and Cyr61 is a potential target downstream of TGF-β/p38 MAPK to regulate cell migration.
Collapse
|
18
|
Yang G, Yuan J, Li K. EMT transcription factors: implication in osteosarcoma. Med Oncol 2013; 30:697. [PMID: 23975634 DOI: 10.1007/s12032-013-0697-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/14/2013] [Indexed: 01/12/2023]
Abstract
The primary malignant bone tumor, osteosarcoma, is a deadly disorder. Its etiology is complex, and treatment is mostly obscure. The transcription factors (TFs) involved in epithelial to mesenchymal transition (EMT) have significant role in osteosarcoma. A number of evidence suggests that overexpression of EMT-TFs, such as Twist, Snails and Zebs, is involved in complex pathogenesis of osteosarcoma. Recent research studies have showed some extent of promise in osteosarcoma treatment by targeting these EMT-TFs. However, success in research on osteosarcoma-EMT-TFs axis is just in primary stage, and a long way to go. Targeting Twist, Snail or Zeb by specific molecules or chemotherapeutic agents may provide a new dimension in osteosarcoma treatment by controlling metastasis.
Collapse
Affiliation(s)
- Guoqiong Yang
- Department of Orthopedics, The Xiangya Hospital of Central South University, 87-Xiangya Road, Changsha, 410008, Hunan, China
| | | | | |
Collapse
|
19
|
Jiao B, Taniguchi-Ishigaki N, Güngör C, Peters MA, Chen YW, Riethdorf S, Drung A, Ahronian LG, Shin J, Pagnis R, Pantel K, Tachibana T, Lewis BC, Johnsen SA, Bach I. Functional activity of RLIM/Rnf12 is regulated by phosphorylation-dependent nucleocytoplasmic shuttling. Mol Biol Cell 2013; 24:3085-96. [PMID: 23904271 PMCID: PMC3784382 DOI: 10.1091/mbc.e13-05-0239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In mice, the ubiquitin ligase RLIM/Rnf12 is a critical survival factor for mammary milk-producing alveolar cells, but little is known about how its activity is regulated. It is shown here that RLIM shuttles between the nucleus and cytoplasm in a phosphorylation-dependent manner, and shuttling is important for its alveolar survival function. The X-linked gene Rnf12 encodes the ubiquitin ligase really interesting new gene (RING) finger LIM domain–interacting protein (RLIM)/RING finger protein 12 (Rnf12), which serves as a major sex-specific epigenetic regulator of female mouse nurturing tissues. Early during embryogenesis, RLIM/Rnf12 expressed from the maternal allele is crucial for the development of extraembryonic trophoblast cells. In contrast, in mammary glands of pregnant and lactating adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor for milk-producing alveolar cells. Although RLIM/Rnf12 is detected mostly in the nucleus, little is known about how and in which cellular compartment(s) RLIM/Rnf12 mediates its biological functions. Here we demonstrate that RLIM/Rnf12 protein shuttles between nucleus and cytoplasm and this is regulated by phosphorylation of serine S214 located within its nuclear localization sequence. We show that shuttling is important for RLIM to exert its biological functions, as alveolar cell survival activity is inhibited in cells expressing shuttling-deficient nuclear or cytoplasmic RLIM/Rnf12. Thus regulated nucleocytoplasmic shuttling of RLIM/Rnf12 coordinates cellular compartments during mammary alveolar cell survival.
Collapse
Affiliation(s)
- Baowei Jiao
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2324 Centre for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|