1
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
2
|
Bae Y, Lim CW, Lee SC. Pepper RING-Type E3 Ligase CaFIRF1 Negatively Regulates the Protein Stability of Pepper Stress-Associated Protein, CaSAP14, in the Dehydration Stress Response. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39267466 DOI: 10.1111/pce.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
As part of the cellular stress response in plants, the ubiquitin-proteasome system (UPS) plays a crucial role in regulating the protein stability of stress-related transcription factors. Previous study has indicated that CaSAP14 is functionally involved in enhancing pepper plant tolerance to dehydration stress by modulating the expression of downstream genes. However, the comprehensive regulatory mechanism underlying CaSAP14 remains incompletely understood. Here, we identified a RING-type E3 ligase, CaFIRF1, which interacts with and ubiquitinates CaSAP14. Pepper plants with silenced CaFIRF1 exhibited a dehydration-tolerant phenotype when subjected to dehydration stress, while overexpression of CaFIRF1 in pepper and Arabidopsis resulted in reduced dehydration tolerance. Co-silencing of CaFIRF1 and CaSAP14 in pepper increased sensitivity to dehydration, suggesting that CaFIRF1 acts upstream of CaSAP14. A cell-free degradation analysis demonstrated that silencing of CaFIRF1 led to decreased CaSAP14 protein degradation, implicating CaFIRF1 in the regulation of CaSAP14 protein via the 26S proteasomal degradation pathway. Our findings suggest a mechanism by which CaFIRF1 mediates the ubiquitin-dependent proteasomal degradation of CaSAP14, thereby influencing the response of pepper plants to dehydration stress.
Collapse
Affiliation(s)
- Yeongil Bae
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
3
|
Vashisth V, Sharma G, Giri J, Sharma AK, Tyagi AK. Rice A20/AN1 protein, OsSAP10, confers water-deficit stress tolerance via proteasome pathway and positive regulation of ABA signaling in Arabidopsis. PLANT CELL REPORTS 2024; 43:215. [PMID: 39138747 DOI: 10.1007/s00299-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Overexpression of rice A20/AN1 zinc-finger protein, OsSAP10, improves water-deficit stress tolerance in Arabidopsis via interaction with multiple proteins. Stress-associated proteins (SAPs) constitute a class of A20/AN1 zinc-finger domain containing proteins and their genes are induced in response to multiple abiotic stresses. The role of certain SAP genes in conferring abiotic stress tolerance is well established, but their mechanism of action is poorly understood. To improve our understanding of SAP gene functions, OsSAP10, a stress-inducible rice gene, was chosen for the functional and molecular characterization. To elucidate its role in water-deficit stress (WDS) response, we aimed to functionally characterize its roles in transgenic Arabidopsis, overexpressing OsSAP10. OsSAP10 transgenics showed improved tolerance to water-deficit stress at seed germination, seedling and mature plant stages. At physiological and biochemical levels, OsSAP10 transgenics exhibited a higher survival rate, increased relative water content, high osmolyte accumulation (proline and soluble sugar), reduced water loss, low ROS production, low MDA content and protected yield loss under WDS relative to wild type (WT). Moreover, transgenics were hypersensitive to ABA treatment with enhanced ABA signaling and stress-responsive genes expression. The protein-protein interaction studies revealed that OsSAP10 interacts with proteins involved in proteasomal pathway, such as OsRAD23, polyubiquitin and with negative and positive regulators of stress signaling, i.e., OsMBP1.2, OsDRIP2, OsSCP and OsAMTR1. The A20 domain was found to be crucial for most interactions but insufficient for all interactions tested. Overall, our investigations suggest that OsSAP10 is an important candidate for improving water-deficit stress tolerance in plants, and positively regulates ABA and WDS signaling via protein-protein interactions and modulation of endogenous genes expression in ABA-dependent manner.
Collapse
Affiliation(s)
- Vishal Vashisth
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gunjan Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
4
|
Bae Y, Lim CW, Lee SC. Pepper stress-associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid-dependent osmotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:357-374. [PMID: 36458345 DOI: 10.1111/tpj.16052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a prominent role in various abiotic stress responses of plants. In the ABA-dependent osmotic stress response, SnRK2.6, one of the subclass III SnRK2 kinases, has been identified as playing a key role by phosphorylating and activating downstream genes. Although several modulatory proteins have been reported to be phosphorylated by SnRK2.6, the identities of the full spectrum of downstream targets have yet to be sufficiently established. In this study, we identified CaSAP14, a stress-associated protein in pepper (Capsicum annuum), as a downstream target of CaSnRK2.6. We elucidated the physical interaction between SnRK2.6 and CaSAP14, both in vitro and in vivo, and accordingly identified a C-terminal C2H2-type zinc finger domain of CaSAP14 as being important for their interaction. CaSAP14-silenced pepper plants showed dehydration- and high salt-sensitive phenotypes, whereas overexpression of CaSAP14 in Arabidopsis conferred tolerance to dehydration, high salinity, and mannitol treatment, with plants showing ABA-hypersensitive phenotypes. Furthermore, an in-gel kinase assay revealed that CaSnRK2.6 phosphorylates CaSAP14 in response to exogenous ABA, dehydration, and high-salinity stress. Collectively, these findings suggest that CaSAP14 is a direct substrate of CaSnRK2.6 and positively modulates dehydration- and high salinity-induced osmotic stress responses.
Collapse
Affiliation(s)
- Yeongil Bae
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| |
Collapse
|
5
|
Sirko A, Wawrzyńska A, Brzywczy J, Sieńko M. Control of ABA Signaling and Crosstalk with Other Hormones by the Selective Degradation of Pathway Components. Int J Mol Sci 2021; 22:4638. [PMID: 33924944 PMCID: PMC8125534 DOI: 10.3390/ijms22094638] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
A rapid and appropriate genetic and metabolic acclimation, which is crucial for plants' survival in a changing environment, is maintained due to the coordinated action of plant hormones and cellular degradation mechanisms influencing proteostasis. The plant hormone abscisic acid (ABA) rapidly accumulates in plants in response to environmental stress and plays a pivotal role in the reaction to various stimuli. Increasing evidence demonstrates a significant role of autophagy in controlling ABA signaling. This field has been extensively investigated and new discoveries are constantly being provided. We present updated information on the components of the ABA signaling pathway, particularly on transcription factors modified by different E3 ligases. Then, we focus on the role of selective autophagy in ABA pathway control and review novel evidence on the involvement of autophagy in different parts of the ABA signaling pathway that are important for crosstalk with other hormones, particularly cytokinins and brassinosteroids.
Collapse
Affiliation(s)
- Agnieszka Sirko
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland; (J.B.); (M.S.)
| | - Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland; (J.B.); (M.S.)
| | | | | |
Collapse
|
6
|
Comprehensive Genomic Analysis and Expression Profiling of the C2H2 Zinc Finger Protein Family Under Abiotic Stresses in Cucumber ( Cucumis sativus L.). Genes (Basel) 2020; 11:genes11020171. [PMID: 32041281 PMCID: PMC7074296 DOI: 10.3390/genes11020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Cucumber is one of the most important vegetables in the world. The C2H2 zinc finger protein (C2H2-ZFP) family plays an important role in the growth development and abiotic stress responses of plants. However, there have been no systematic studies on cucumber. In this study, we performed a genome-wide study of C2H2-ZFP genes and analyzed their chromosomal location, gene structure, conservation motif, and transcriptional expression. In total, 101 putative cucumber C2H2-ZFP genes were identified and divided into six groups (I–VI). RNA-seq transcriptome data on different organs revealed temporal and spatial expression specificity of the C2H2-ZFP genes. Expression analysis of sixteen selected C2H2-ZFP genes in response to cold, drought, salt, and abscisic acid (ABA) treatments by real-time quantitative polymerase chain reaction showed that C2H2-ZFP genes may be involved in different signaling pathways. These results provide valuable information for studying the function of cucumber C2H2-ZFP genes in the future.
Collapse
|
7
|
Liu S, Wang J, Jiang S, Wang H, Gao Y, Zhang H, Li D, Song F. Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT PATHOLOGY 2019; 20:815-830. [PMID: 30907488 PMCID: PMC6637894 DOI: 10.1111/mpp.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tomato stress-associated proteins (SAPs) belong to A20/AN1 zinc finger protein family, some of which have been shown to play important roles in plant stress responses. However, little is known about the functions and underlying molecular mechanisms of SAPs in plant immune responses. In the present study, we reported the function of tomato SlSAP3 in immunity to Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlSAP3 attenuated while overexpression of SlSAP3 in transgenic tomato increased immunity to Pst DC3000, accompanied with reduced and increased Pst DC3000-induced expression of SA signalling and defence genes, respectively. Flg22-induced reactive oxygen species (ROS) burst and expression of PAMP-triggered immunity (PTI) marker genes SlPTI5 and SlLRR22 were strengthened in SlSAP3-OE plants but were weakened in SlSAP3-silenced plants. SlSAP3 interacted with two SlBOBs and the A20 domain in SlSAP3 is critical for the SlSAP3-SlBOB1 interaction. Silencing of SlBOB1 and co-silencing of all three SlBOB genes conferred increased resistance to Pst DC3000, accompanied with increased Pst DC3000-induced expression of SA signalling and defence genes. These data demonstrate that SlSAP3 acts as a positive regulator of immunity against Pst DC3000 in tomato through the SA signalling and that SlSAP3 may exert its function in immunity by interacting with other proteins such as SlBOBs, which act as negative regulators of immunity against Pst DC3000 in tomato.
Collapse
Affiliation(s)
- Shixia Liu
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Jiali Wang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Siyu Jiang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
- College of Life ScienceTaizhou UniversityTaizhouZhejiang318000China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
8
|
Liu S, Yuan X, Wang Y, Wang H, Wang J, Shen Z, Gao Y, Cai J, Li D, Song F. Tomato Stress-Associated Protein 4 Contributes Positively to Immunity Against Necrotrophic Fungus Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:566-582. [PMID: 30589365 DOI: 10.1094/mpmi-04-18-0097-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress-associated proteins (SAPs) are A20 and AN1 domain-containing proteins, some of which play important roles in plant stress signaling. Here, we report the involvement of tomato SlSAP family in immunity. SlSAPs responded with different expression patterns to Botrytis cinerea and defense signaling hormones. Virus-induced gene silencing of each of the SlSAP genes and disease assays revealed that SlSAP4 and SlSAP10 play roles in immunity against B. cinerea. Silencing of SlSAP4 resulted in attenuated immunity to B. cinerea, accompanying increased accumulation of reactive oxygen species and downregulated expression of jasmonate and ethylene (JA/ET) signaling-responsive defense genes. Transient expression of SlSAP4 in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Exogenous application of methyl jasmonate partially restored the resistance of the SlSAP4-silenced plants against B. cinerea. SlSAP4 interacted with three of four SlRAD23 proteins. The A20 domain in SlSAP4 and the Ub-associated domains in SlRAD23d are critical for SlSAP4-SlRAD23d interaction. Silencing of SlRAD23d led to decreased resistance to B. cinerea, but silencing of each of other SlRAD23s did not affect immunity against B. cinerea. Furthermore, silencing of SlSAP4 and each of the SlRAD23s did not affect immunity to Pseudomonas syringae pv. tomato DC3000. These data suggest that SlSAP4 contributes positively to tomato immunity against B. cinereal through affecting JA/ET signaling and may be involved in the substrate ubiquitination process via interacting with SlRAD23d.
Collapse
Affiliation(s)
- Shixia Liu
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xi Yuan
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyan Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiali Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhihui Shen
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiating Cai
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
9
|
Saad RB, Hsouna AB, Saibi W, Hamed KB, Brini F, Ghneim-Herrera T. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:234-243. [PMID: 30312968 DOI: 10.1016/j.jplph.2018.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Agricultural soil pollution by heavy metals is a severe global ecological problem. We recently showed that overexpression of LmSAP, a member of the stress-associated protein (SAP) gene family isolated from Lobularia maritima, in transgenic tobacco led to enhanced tolerance to abiotic stress. In this study, we characterised the response of LmSAP transgenic tobacco plants to metal stresses (cadmium (Cd), copper (Cu), manganese (Mn), and zinc (Zn)). In L. maritima, LmSAP expression increased after 12 h of treatment with these metals, suggesting its involvement in the plant response to heavy metal stress. LmSAP transgenic tobacco plants subjected to these stress conditions were healthy, experienced higher seedling survival rates, and had longer roots than non-transgenic plants (NT). However, they exhibited higher tolerance towards cadmium and manganese than towards copper and zinc. LmSAP-overexpressing tobacco seedlings accumulated more cadmium, copper, and manganese compared with NT plants, but displayed markedly decreased hydrogen peroxide (H2O2) and lipid peroxidation levels after metal treatment. Activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly higher in transgenic plants than in NT plants after exposure to metal stress. LmSAP overexpression also enhanced the transcription of several genes encoding metallothioneins (Met1, Met2, Met3, Met4, and Met5), a copper transport protein CCH, a Cys and His-rich domain-containing protein RAR1 (Rar1), and a ubiquitin-like protein 5 (PUB1), which are involved in metal tolerance in tobacco. Our findings indicate that LmSAP overexpression in tobacco enhanced tolerance to heavy metal stress by protecting the plant cells against oxidative stress, scavenging reactive oxygen species (ROS), and decreasing the intracellular concentration of free heavy metals through its effect on metal-binding proteins in the cytosol.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia; Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Walid Saibi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif, 2050, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | | |
Collapse
|
10
|
Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW, Tzean Y, Cheng AP, Chiu YS, Yeh HH. Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 2018; 14:e1007288. [PMID: 30212572 PMCID: PMC6155556 DOI: 10.1371/journal.ppat.1007288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/25/2018] [Accepted: 08/21/2018] [Indexed: 12/30/2022] Open
Abstract
Salicylic acid (SA) is a key phytohormone that mediates a broad spectrum of resistance against a diverse range of viruses; however, the downstream pathway of SA governed antiviral immune response remains largely to be explored. Here, we identified an orchid protein containing A20 and AN1 zinc finger domains, designated Pha13. Pha13 is up-regulated upon virus infection, and the transgenic monocot orchid and dicot Arabidopsis overexpressing orchid Pha13 conferred greater resistance to different viruses. In addition, our data showed that Arabidopsis homolog of Pha13, AtSAP5, is also involved in virus resistance. Pha13 and AtSAP5 are early induced by exogenous SA treatment, and participate in the expression of SA-mediated immune responsive genes, including the master regulator gene of plant immunity, NPR1, as well as NPR1-independent virus defense genes. SA also induced the proteasome degradation of Pha13. Functional domain analysis revealed that AN1 domain of Pha13 is involved in expression of orchid NPR1 through its AN1 domain, whereas dual A20/AN1 domains orchestrated the overall virus resistance. Subcellular localization analysis suggested that Pha13 can be found localized in the nucleus. Self-ubiquitination assay revealed that Pha13 confer E3 ligase activity, and the main E3 ligase activity was mapped to the A20 domain. Identification of Pha13 interacting proteins and substrate by yeast two-hybrid screening revealed mainly ubiquitin proteins. Further detailed biochemical analysis revealed that A20 domain of Pha13 binds to various polyubiquitin chains, suggesting that Pha13 may interact with multiple ubiquitinated proteins. Our findings revealed that Pha13 serves as an important regulatory hub in plant antiviral immunity, and uncover a delicate mode of immune regulation through the coordination of A20 and/or AN1 domains, as well as through the modulation of E3 ligase and ubiquitin chain binding activity of Pha13.
Collapse
Affiliation(s)
- Li Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ho-Hsiung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Che Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Chia Lu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Tan-Tung Wang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - An-Po Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Shu Chiu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Zhang B, Dang J, Ba D, Wang C, Han J, Zheng F. Potential function of CTLA-4 in the tumourigenic capacity of melanoma stem cells. Oncol Lett 2018; 16:6163-6170. [PMID: 30344757 DOI: 10.3892/ol.2018.9354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
Extensive clinical evidence supports that cytotoxic T lymphocyte antigen-4 (CTLA-4) is expressed in a variety of human malignant tumour cells in addition to T cells. In certain types of cancer, the overexpression of CTLA-4 is associated with poor patient prognosis. However, few studies have demonstrated the effects of tumour-intrinsic CTLA-4 in cancer stem cells, including melanoma stem cells (MSCs). In the present study, it was demonstrated that melanoma cell-intrinsic CTLA-4 induced tumour cell proliferation in vitro and suppressed tumour cell apoptosis. Furthermore, CTLA-4 was expressed in aldehyde dehydrogenase (ALDH)+ MSCs. CTLA-4 inhibited MSCs proliferation in vitro by blocking antibodies and significantly downregulated ALDH1A1, ALDH1A3 and ALDH2 mRNA expression (P<0.01). Functionally, blocking CTLA-4 in melanoma cell lines suppressed the properties of stem-like cells, including ALDH activity and significantly suppressed the ability of these cells to form spheres in vitro (P<0.05). In addition, the blocking of CTLA-4 in melanoma cells suppressed the properties of stem-like cells in vivo, including the capacity for tumourigenesis. The presence of residual ALDH+ MSCs within the tumour was observed, and the blocking CTLA-4 significantly decreased the number of residual ALDH+ MSCs in vivo (P<0.01). Altogether, these results indicate the identification of a novel mechanism underlying melanoma progression in the present study and that CTLA-4-targeted therapy may benefit candidate CTLA-4-targeted therapy by improving the long-term outcome for patients with advanced stages of melanoma.
Collapse
Affiliation(s)
- Bingyu Zhang
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianzhong Dang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Diandian Ba
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cencen Wang
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Juan Han
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fang Zheng
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:65-110. [PMID: 30712675 DOI: 10.1016/bs.ircmb.2018.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitination is a prevalent post-translation modification system that is involved in almost all aspects of eukaryotic biology. It involves the attachment of ubiquitin, a small, highly conserved protein to selected substrates. The most notable function of ubiquitin is the targeting of modified proteins to the multi-proteolytic 26S proteasome complex for degradation. The ubiquitin proteasome system (UPS) regulates the abundance of numerous enzymes, structural and regulatory proteins ensuring proper cellular function. Plants utilize the UPS to facilitate cellular changes required to respond to and tolerate adverse growth conditions. In this review, the regulatory role of the UPS in responses to abiotic stress is discussed, particularly the function of ubiquitin-dependent degradation in the suppression, activation and attenuation or termination of stress signaling.
Collapse
|
13
|
Wang GN, Zhong M, Chen Y, Ji J, Gao XQ, Wang TF. Expression of WNT1 in ameloblastoma and its significance. Oncol Lett 2018; 16:1507-1512. [PMID: 30008830 PMCID: PMC6036424 DOI: 10.3892/ol.2018.8820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/16/2018] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to measure the expression of WNT1 in ameloblastoma (AB). Immunohistochemistry was used to observe changes in WNT1 expression in 80 AB samples, 10 keratocystic odontogenic tumor (KCOT) samples and 10 normal oral mucosa (NOM) samples. Western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to measure WNT1 protein and mRNA expression, respectively, in 30 AB samples, 5 KCOT samples, 5 NOM samples and 3 tooth germ samples. Ectopic cytoplasmic expression of WNT1 was detected in AB; 88.8% (71/80) of the samples were WNT1-positive. The western blotting results demonstrated that compared with NOM (0.57±0.05), WNT1 expression was significantly higher in AB tissue (1.74±0.36, P<0.05), whereas it was not significantly different between AB and KCOT samples (0.80±0.06, P>0.05). RT-qPCR revealed that the level of WNT1 gene expression in AB was increased 2.43-fold compared with normal mucosa, and 1.77-fold compared with tooth germ tissue. In conclusion, WNT1 protein and mRNA expression were increased in AB, and there was ectopic cytoplasmic expression. This indicates that WNT1 may serve an important role in AB occurrence and development.
Collapse
Affiliation(s)
- Guan-Nan Wang
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China.,Basic Medicine College, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ming Zhong
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Yv Chen
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Jia Ji
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiu-Qiu Gao
- Department of Oral Medicine, Second Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Tian-Fu Wang
- Liaoning Railway Vocational and Technical College, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
14
|
Dixit A, Tomar P, Vaine E, Abdullah H, Hazen S, Dhankher OP. A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. PLANT, CELL & ENVIRONMENT 2018; 41:1171-1185. [PMID: 29194659 DOI: 10.1111/pce.13103] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 05/28/2023]
Abstract
Members of Stress-Associated Protein (SAP) family in plants have been shown to impart tolerance to multiple abiotic stresses, however, their mode of action in providing tolerance to multiple abiotic stresses is largely unknown. There are 14 SAP genes in Arabidopsis thaliana containing A20, AN1, and Cys2-His2 zinc finger domains. AtSAP13, a member of the SAP family, carries two AN1 zinc finger domains and an additional Cys2-His2 domain. AtSAP13 transcripts showed upregulation in response to Cd, ABA, and salt stresses. AtSAP13 overexpression lines showed strong tolerance to toxic metals (AsIII, Cd, and Zn), drought, and salt stress. Further, transgenic lines accumulated significantly higher amounts of Zn, but less As and Cd accumulation in shoots and roots. AtSAP13 promoter-GUS fusion studies showed GUS expression predominantly in the vascular tissue, hydathodes, and the apical meristem and region of root maturation and elongation as well as the root hairs. At the subcellular level, the AtSAP13-eGFP fusion protein was found to localize in both nucleus and cytoplasm. Through yeast one-hybrid assay, we identified several AP2/EREBP family transcription factors that interacted with the AtSAP13 promoter. AtSAP13 and its homologues will be highly useful for developing climate resilient crops.
Collapse
Affiliation(s)
- Anirudha Dixit
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Parul Tomar
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Evan Vaine
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Hesham Abdullah
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Samuel Hazen
- Biology Department, University of Massachusetts Amherst, MA, 01003, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| |
Collapse
|
15
|
Ben Saad R, Farhat-Khemekhem A, Ben Halima N, Ben Hamed K, Brini F, Saibi W. The LmSAP gene isolated from the halotolerant Lobularia maritima improves salt and ionic tolerance in transgenic tobacco lines. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:378-391. [PMID: 32290960 DOI: 10.1071/fp17202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/29/2017] [Indexed: 06/11/2023]
Abstract
The A20/AN1 zinc-finger domain-containing proteins of the stress-associated proteins (SAPs) family are fast emerging as potential candidates for biotechnological approaches to improve abiotic stress tolerance in plants. We identified LmSAP, one of the SAPs genes in Lobularia maritima (L.) Desv., a halophyte brassicaceae, through its transcript accumulation in response to salinity and ionic stresses. Sequence homology analysis revealed that LmSAP contains two conserved zinc-finger domains A20 and AN1. Phylogeny analyses showed that LmSAP exhibited high amino acid sequence identity to other plant SAPs. Heterologous expression of LmSAP in yeast increased cell tolerance to salt and osmotic stress. In addition, the overexpression of LmSAP conferred high salt and ionic tolerance to transgenic tobacco plants. Transgenic tobacco seedlings showed higher survival rates and antioxidant activities under salt and ionic stresses. Enhanced antioxidant activities paralleled lower malondialdehyde and superoxide anion O2- levels in the LmSAP transgenic seedlings. Overall, our results suggest that overexpression of LmSAP enhanced salt tolerance by maintaining ionic balance and limiting oxidative and osmotic stresses.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Ameny Farhat-Khemekhem
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax - Tunisia
| | - Nihed Ben Halima
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Karim Ben Hamed
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Walid Saibi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| |
Collapse
|
16
|
Ghneim-Herrera T, Selvaraj MG, Meynard D, Fabre D, Peña A, Ben Romdhane W, Ben Saad R, Ogawa S, Rebolledo MC, Ishitani M, Tohme J, Al-Doss A, Guiderdoni E, Hassairi A. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:994. [PMID: 28659945 PMCID: PMC5466986 DOI: 10.3389/fpls.2017.00994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
We evaluated the yields of Oryza sativa L. 'Nipponbare' rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT) and wild-type (WT) controls, providing 50-90% increases in grain yield (GY). Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.
Collapse
Affiliation(s)
| | | | - Donaldo Meynard
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Denis Fabre
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Alexandra Peña
- Departamento de Ciencias Biológicas, Universidad IcesiCali, Colombia
| | - Walid Ben Romdhane
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of SfaxSfax, Tunisia
| | - Satoshi Ogawa
- International Center for Tropical AgricultureCali, Colombia
- Graduate School of Agricultural and Life Science, Department of Global Agricultural Science, The University of TokyoTokyo, Japan
| | | | | | - Joe Tohme
- International Center for Tropical AgricultureCali, Colombia
| | - Abdullah Al-Doss
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Emmanuel Guiderdoni
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Centre of Biotechnology of SfaxSfax, Tunisia
| |
Collapse
|
17
|
Kang M, Lee S, Abdelmageed H, Reichert A, Lee HK, Fokar M, Mysore KS, Allen RD. Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. PLANT, CELL & ENVIRONMENT 2017; 40:702-716. [PMID: 28039858 DOI: 10.1111/pce.12892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/19/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana Stress Associated Protein 9 (AtSAP9) is a member of the A20/AN1 zinc finger protein family known to play important roles in plant stress responses and in the mammalian immune response. Although SAPs of several plant species were shown to be involved in abiotic stress responses, the underlying molecular mechanisms are largely unknown, and little is known about the involvement of SAPs in plant disease responses. Expression of SAP9 in Arabidopsis is up-regulated in response to dehydration, cold, salinity and abscisic acid (ABA), as well as pathogen infection. Constitutive expression of AtSAP9 in Arabidopsis leads to increased sensitivity to ABA and osmotic stress during germination and post-germinative development. Plants that overexpress AtSAP9 also showed increased susceptibility to infection by non-host pathogen Pseudomonas syringae pv. phaseolicola, indicating a potential role of AtSAP9 in disease resistance. AtSAP9 was found to interact with RADIATION SENSITIVE23d (Rad23d), a shuttle factor for the transport of ubiquitinated substrates to the proteasome, and it is co-localized with Rad23d in the nucleus. Thus, AtSAP9 may promote the protein degradation process by mediating the interaction of ubiquitinated targets with Rad23d. Taken together, these results indicate that AtSAP9 regulates abiotic and biotic stress responses, possibly via the ubiquitination/proteasome pathway.
Collapse
Affiliation(s)
- Miyoung Kang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Seonghee Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
- Current address: Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Balm, FL, 33598, USA
| | - Haggag Abdelmageed
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Agricultural Botany, Cairo University, Giza, 12613, Egypt
| | - Angelika Reichert
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Weitkampweg 81, 49084, Osnabrück, Germany
| | - Hee-Kyung Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Mohamed Fokar
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Randy D Allen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Weitkampweg 81, 49084, Osnabrück, Germany
| |
Collapse
|
18
|
Lloret A, Conejero A, Leida C, Petri C, Gil-Muñoz F, Burgos L, Badenes ML, Ríos G. Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 2017; 7:332. [PMID: 28336950 PMCID: PMC5428470 DOI: 10.1038/s41598-017-00471-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
We have identified a gene (PpSAP1) of Prunus persica coding for a stress-associated protein (SAP) containing Zn-finger domains A20 and AN1. SAPs have been described as regulators of the abiotic stress response in plant species, emerging as potential candidates for improvement of stress tolerance in plants. PpSAP1 was highly expressed in leaves and dormant buds, being down-regulated before bud dormancy release. PpSAP1 expression was moderately induced by water stresses and heat in buds. In addition, it was found that PpSAP1 strongly interacts with polyubiquitin proteins in the yeast two-hybrid system. The overexpression of PpSAP1 in transgenic plum plants led to alterations in leaf shape and an increase of water retention under drought stress. Moreover, we established that leaf morphological alterations were concomitant with a reduced cell size and down-regulation of genes involved in cell growth, such as GROWTH-REGULATING FACTOR (GRF)1-like, TONOPLAST INTRINSIC PROTEIN (TIP)-like, and TARGET OF RAPAMYCIN (TOR)-like. Especially, the inverse expression pattern of PpSAP1 and TOR-like in transgenic plum and peach buds suggests a role of PpSAP1 in cell expansion through the regulation of TOR pathway.
Collapse
Affiliation(s)
- Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Ana Conejero
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Carmen Leida
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - César Petri
- Department of Plant Production, Instituto de Biotecnología Vegetal-Universidad Politécnita de Cartagena (IBV-UPCT), 30202, Cartagena, Murcia, Spain
| | - Francisco Gil-Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Lorenzo Burgos
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, 30100, Murcia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
19
|
Gao W, Long L, Tian X, Jin J, Liu H, Zhang H, Xu F, Song C. Genome-wide identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cotton. Mol Genet Genomics 2016; 291:2199-2213. [PMID: 27681253 DOI: 10.1007/s00438-016-1252-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Abstract
Stress-associated proteins (SAPs) containing the A20/AN1 zinc-finger domain play important roles in response to both biotic and abiotic stresses in plants. Nevertheless, few studies have focused on the SAP gene family in cotton. To explore the distributions and expression patterns of these genes, we performed genome-wide identification and characterization of SAPs in tetraploid Gossypium hirsutum L. TM-1 (AD1). A total of 37 genes encoding SAPs were identified, 36 of which were duplicated in the A and D sub-genomes. The analysis of gene architectures and conserved protein motifs revealed that nearly all A20-AN1-type SAPs were intron-free, whereas AN1-AN1-type SAPs contained one intron. The cis-elements of the SAP promoters were studied, as were the expression levels of cotton SAP genes under different stresses based on RNA-seq data and validated by qRT-PCR. Most cotton SAP genes were induced by multiple stresses and phytohormones, particularly salt stress, indicating that SAP genes may play important roles in cotton's response to unfavorable environmental changes. Among these identified SAPs, the expression of GhSAP17A/D is suppressed in cotton response to Vertillium dahliae, and the GhSAP17A/D-silenced cotton exhibits more resistance to V. dahliae. This study provides insight into the evolution of SAP genes in upland cotton and may aid in efforts at further functional identification of A20/AN1-type proteins and cotton's response to different stresses.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Xinquan Tian
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Jingjing Jin
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, People's Republic of China
| | - Huili Liu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Fuchun Xu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Chunpeng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
20
|
Kothari KS, Dansana PK, Giri J, Tyagi AK. Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:1057. [PMID: 27486471 PMCID: PMC4949214 DOI: 10.3389/fpls.2016.01057] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/06/2016] [Indexed: 05/19/2023]
Abstract
Stress associated proteins (SAPs) are the A20/AN1 zinc-finger containing proteins which can regulate the stress signaling in plants. The rice SAP protein, OsSAP1 has been shown to confer abiotic stress tolerance to plants, when overexpressed, by modulating the expression of endogenous stress-related genes. To further understand the mechanism of OsSAP1-mediated stress signaling, OsSAP1 interacting proteins were identified using yeast two-hybrid analysis. Two novel proteins, aminotransferase (OsAMTR1) and a SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) were found to interact with OsSAP1. The genes encoding OsAMTR1 and OsSCP were stress-responsive and showed higher expression upon abiotic stress treatments. The role of OsAMTR1 and OsSCP under stress was analyzed by overexpressing them constitutively in Arabidopsis and responses of transgenic plants were assessed under salt and water-deficit stress. The OsAMTR1 and OsSCP overexpressing plants showed higher seed germination, root growth and fresh weight than wild-type plants under stress conditions. Overexpression of OsAMTR1 and OsSCP affected the expression of many known stress-responsive genes which were not affected by the overexpression of OsSAP1. Moreover, the transcript levels of OsSCP and OsAMTR1 were also unaffected by the overexpression of OsSAP1. Hence, it was concluded that OsSAP1 regulates the stress responsive signaling by interacting with these proteins which further regulate the downstream stress responsive gene expression.
Collapse
Affiliation(s)
| | - Prasant K. Dansana
- Department of Plant Molecular Biology, University of Delhi South Campus, New DelhiIndia
| | - Jitender Giri
- National Institute of Plant Genome Research, New DelhiIndia
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research, New DelhiIndia
- Department of Plant Molecular Biology, University of Delhi South Campus, New DelhiIndia
- *Correspondence: Akhilesh K. Tyagi,
| |
Collapse
|
21
|
Zhang Y, Lan H, Shao Q, Wang R, Chen H, Tang H, Zhang H, Huang J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:315-26. [PMID: 26512055 DOI: 10.1093/jxb/erv464] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice.
Collapse
Affiliation(s)
- Ye Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxia Lan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaolin Shao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijuan Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China. Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Sharma G, Giri J, Tyagi AK. Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:80-92. [PMID: 26089154 DOI: 10.1016/j.plantsci.2015.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 05/19/2023]
Abstract
Stress associated protein (SAP) genes in plants regulate abiotic stress responses. SAP gene family consists of 18 members in rice. Although their abiotic stress responsiveness is well established, the mechanism of their action is poorly understood. OsiSAP7 was chosen to investigate the mechanism of its action based on the dual nature of its sub-cellular localization preferentially in the nucleus or sub-nuclear speckles upon transient expression in onion epidermal cells. Its expression was down-regulated in rice seedlings under abiotic stresses. OsiSAP7 was localized evenly in the nucleus under unstressed conditions and in sub-nuclear speckles on MG132 treatment. OsiSAP7 exhibits E3 ubiquitin ligase activity in vitro. Abiotic stress responses of OsiSAP7 were assessed by its overexpression in Arabidopsis under the control of a stress inducible promoter rd29A. Stress response assessment was done at seed germination and advanced stages of development. Transgenics were ABA insensitive at seed germination stage and sensitive to water-deficit stress at advanced stage as compared to wild type (WT). They were also impaired in ABA and stress-responsive gene expression. Our study suggests that OsiSAP7 acts as a negative regulator of ABA and water-deficit stress signalling by acting as an E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Gunjan Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| |
Collapse
|
23
|
Dansana PK, Kothari KS, Vij S, Tyagi AK. OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. PLANT CELL REPORTS 2014; 33:1425-40. [PMID: 24965356 DOI: 10.1007/s00299-014-1626-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/21/2014] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
OsiSAP1, an A20/AN1 zinc-finger protein, confers water-deficit stress tolerance at different stages of growth by affecting expression of several endogenous genes in transgenic rice. Transgenic lines have been generated from rice constitutively expressing OsiSAP1, an A20/AN1 zinc-finger containing stress-associated protein gene from rice, driven by maize UBIQUITIN gene promoter and evaluated for water-deficit stress tolerance at different stages of growth. Their seeds show early germination and seedlings grow better under water-deficit stress compared to non-transgenic (NT) rice. Leaves from transgenic seedlings showed lesser membrane damage and lipid peroxidation under water-deficit stress. Relatively lower rate of leaf water loss has been observed in detached intact leaves from transgenic plants during late vegetative stage. Delayed leaf rolling and higher relative water content were also observed in transgenic plants under progressive water-deficit stress during reproductive developmental stage. Although reduction in grain yield is observed under unstressed condition, the relative water-deficit stress-induced yield losses are lower in transgenic rice vis-à-vis NT plants thereby resulting in yield loss protection. Transcriptome analysis suggests that overexpression of OsiSAP1 in transgenic rice results in altered expression of several endogenous genes including those coding for transcription factors, membrane transporters, signaling components and genes involved in metabolism, growth and development. A total of 150 genes were found to be more than twofold up-regulated in transgenic rice of which 43 genes are known to be involved in stress response. Our results suggest that OsiSAP1 is a positive regulator of water-deficit stress tolerance in rice.
Collapse
Affiliation(s)
- Prasant K Dansana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | |
Collapse
|
24
|
Tyagi H, Jha S, Sharma M, Giri J, Tyagi AK. Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:68-76. [PMID: 25017161 DOI: 10.1016/j.plantsci.2014.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 05/22/2023]
Abstract
Eukaryotic A20/AN1 zinc-finger proteins (ZFPs) play an important role in the regulation of immune and stress response. After elucidation of the role of first such protein, OsSAP1, in abiotic stress tolerance, 18 rice stress associated protein (SAP) genes have been shown to be regulated by multiple abiotic stresses. In the present study, expression pattern of all the 18 OsSAP genes have been analysed in response to different biotic stress simulators, in order to get insights into their possible involvement in biotic stress tolerance. Our results showed the upregulation of OsSAP1 and OsSAP11 by all biotic stress simulator treatments. Furthermore, the functional role of OsSAP1 in plant defence responses has been explored through overexpression in transgenic plants. Constitutive expression of OsSAP1 in transgenic tobacco resulted into enhanced disease resistance against virulent bacterial pathogen, together with the upregulation of known defence-related genes. Present investigation suggests that rice SAPs are responsive to multiple biotic stresses and OsSAP1 plays a key role in basal resistance against pathogen infection. This strongly supports the involvement of rice SAPs in cross-talk between biotic and abiotic stress signalling pathways, which makes them ideal candidate to design strategies for protecting crop plants against multiple stresses.
Collapse
Affiliation(s)
- Himani Tyagi
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | - Shweta Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Meenakshi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India; National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| |
Collapse
|
25
|
Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK. SAPs as novel regulators of abiotic stress response in plants. Bioessays 2013; 35:639-48. [PMID: 23640876 DOI: 10.1002/bies.201200181] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress associated proteins (SAPs), novel A20/AN1 zinc-finger domain-containing proteins, are fast emerging as potential candidates for biotechnological approaches in order to improve abiotic stress tolerance in plants - the ultimate aim of which is crop-yield protection. Until relatively recently, such proteins had only been identified in humans, where they had been shown to be key regulators of innate immunity. Their phylogenetic relationship and recruitment of diverse protein domains reflect an architectural and mechanistic diversity. Emerging evidence suggests that SAPs may act as ubiquitin ligase, redox sensor, and regulator of gene expression during stress. Here, we evaluate the new knowledge on SAPs with a view to understand their mechanism of action. Furthermore, we set an agenda for investigating hitherto unexplored roles of these proteins.
Collapse
Affiliation(s)
- Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| | | | | | | | | | | |
Collapse
|
26
|
Shin D, Lee SY, Han S, Ren S, Kim S, Aikawa Y, Lee S. Differential polyubiquitin recognition by tandem ubiquitin binding domains of Rabex-5. Biochem Biophys Res Commun 2012; 423:757-62. [PMID: 22705550 DOI: 10.1016/j.bbrc.2012.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 01/22/2023]
Abstract
Linkage-specific polyubiquitination regulates many cellular processes. The N-terminal fragment of Rabex-5 (Rabex-5(9-73)) contains tandem ubiquitin binding domains: A20_ZF and MIU. The A20_ZF-MIU of Rabex-5 is known to bind monoubiquitin but molecular details of polyubiquitin binding affinity and linkage selectivity by Rabex-5(9-73) remain elusive. Here we report that Rabex-5(9-73) binds linear, K63- and K48-linked tetraubiquitin (Ub(4)) chains with K(d) of 0.1-1 μM, determined by biolayer interferometry. Mutational analysis of qualitative and quantitative binding data reveals that MIU is more important than A20_ZF in linkage-specific polyubiquitin recognition. MIU prefers binding to linear and K63-linked Ub(4) with sub μM affinities. However, A20_ZF recognizes the three linkage-specific Ub(4) with similar affinities with K(d) of 3-4 μM, unlike ZnF4 of A20. Taken together, our data suggest differential physiological roles of the two ubiquitin binding domains in Rabex-5.
Collapse
Affiliation(s)
- Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|