1
|
Kashirina DN, Brzhozovskiy AG, Sun W, Pastushkova LK, Popova OV, Rusanov VB, Nikolaev EN, Larina IM, Kononikhin AS. Proteomic Characterization of Dry Blood Spots of Healthy Women During Simulation the Microgravity Effects Using Dry Immersion. Front Physiol 2022; 12:753291. [PMID: 35087415 PMCID: PMC8787266 DOI: 10.3389/fphys.2021.753291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daria N. Kashirina
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Brzhozovskiy
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
- CDISE, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Wen Sun
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila Kh. Pastushkova
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Popova
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy B. Rusanov
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | | | - Irina M. Larina
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S. Kononikhin
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
- CDISE, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
2
|
Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone. Med Hypotheses 2016; 86:18-29. [DOI: 10.1016/j.mehy.2015.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023]
|
3
|
Laforenza U, Bottino C, Gastaldi G. Mammalian aquaglyceroporin function in metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1-11. [PMID: 26456554 DOI: 10.1016/j.bbamem.2015.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
Abstract
Aquaglyceroporins are integral membrane proteins that are permeable to glycerol as well as water. The movement of glycerol from a tissue/organ to the plasma and vice versa requires the presence of different aquaglyceroporins that can regulate the entrance or the exit of glycerol across the plasma membrane. Actually, different aquaglyceroporins have been discovered in the adipose tissue, small intestine, liver, kidney, heart, skeletal muscle, endocrine pancreas and capillary endothelium, and their differential expression could be related to obesity and the type 2 diabetes. Here we describe the expression and function of different aquaglyceroporins in physiological condition and in obesity and type 2 diabetes, suggesting they are potential therapeutic targets for metabolic disorders.
Collapse
Affiliation(s)
| | - Cinzia Bottino
- Department of Molecular Medicine, University of Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, Italy
| |
Collapse
|
4
|
Garneau AP, Carpentier GA, Marcoux AA, Frenette-Cotton R, Simard CF, Rémus-Borel W, Caron L, Jacob-Wagner M, Noël M, Powell JJ, Bélanger R, Côté F, Isenring P. Aquaporins Mediate Silicon Transport in Humans. PLoS One 2015; 10:e0136149. [PMID: 26313002 PMCID: PMC4551902 DOI: 10.1371/journal.pone.0136149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023] Open
Abstract
In animals, silicon is an abundant and differentially distributed trace element that is believed to play important biological functions. One would thus expect silicon concentrations in body fluids to be regulated by silicon transporters at the surface of many cell types. Curiously, however, and even though they exist in plants and algae, no such transporters have been identified to date in vertebrates. Here, we show for the first time that the human aquaglyceroporins, i.e., AQP3, AQP7, AQP9 and AQP10 can act as silicon transporters in both Xenopus laevis oocytes and HEK-293 cells. In particular, heterologously expressed AQP7, AQP9 and AQP10 are all able to induce robust, saturable, phloretin-sensitive silicon transport activity in the range that was observed for low silicon rice 1 (lsi1), a silicon transporter in plant. Furthermore, we show that the aquaglyceroporins appear as relevant silicon permeation pathways in both mice and humans based on 1) the kinetics of substrate transport, 2) their presence in tissues where silicon is presumed to play key roles and 3) their transcriptional responses to changes in dietary silicon. Taken together, our data provide new evidence that silicon is a potentially important biological element in animals and that its body distribution is regulated. They should open up original areas of investigations aimed at deciphering the true physiological role of silicon in vertebrates.
Collapse
Affiliation(s)
- Alexandre P. Garneau
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Gabriel A. Carpentier
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Andrée-Anne Marcoux
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Rachelle Frenette-Cotton
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Charles F. Simard
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Wilfried Rémus-Borel
- Department of Phytology, Faculty of Sciences of Agriculture and Alimentation, Laval Université Laval, Québec City, Québec, Canada
| | - Luc Caron
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Mariève Jacob-Wagner
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Micheline Noël
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Jonathan J. Powell
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Richard Bélanger
- Department of Phytology, Faculty of Sciences of Agriculture and Alimentation, Laval Université Laval, Québec City, Québec, Canada
| | - François Côté
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Paul Isenring
- L’Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
5
|
Kouhnavard M, Nasli Esfahani E, Montazeri M, Hashemian SJ, Mehrazma M, Larijani B, Nezami Asl A, Khoshvaghti A, Falsafi A, Lalehfar K, Malekpour K, Vosugh M. Effects of Vitamin D and Calcium Supplementation on Micro-architectural and Densitometric Changes of Rat Femur in a Microgravity Simulator Model. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e18026. [PMID: 25068054 PMCID: PMC4102987 DOI: 10.5812/ircmj.18026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/06/2014] [Accepted: 04/07/2014] [Indexed: 11/22/2022]
Abstract
Background: Revealing data on the role of vitamin D and calcium supplementation in bone health has led some to suggest that vitamin D and calcium treatment could also play a role in protecting bone against microgravity-induced mineral loss. Objectives: The aim of the present study was to investigate the effects of vitamin D and calcium administration on microscopic and densitometric changes of rat femur in a Microgravity Simulator Model. Materials and Methods: After designing a Microgravity Simulator Model, 14 rats were placed in the cages as follows: seven rats as osteoporosis group and seven rats received oral supplement of calcium/vitamin D as the treatment group. Animals were sacrificed after eight weeks and then both femurs were removed. Bone mineral density was measured for one femur from each animal, and morphologic studies were evaluated for the contralateral femur. Results: Bone mineral density of the whole femur in the treatment group was significantly higher than the osteoporosis group (0.168 ± 0.005 vs. 0.153 ± 0.006, P = 0.003). Also, bone mineral content of the whole femur was significantly higher in treatment group (0.415 ± 0.016 vs. 0.372 ± 0.019, P = 0.003). However, resorption eroded surface percentage was higher in the osteoporosis group (18.86 ± 3.71% vs. 9.71 ± 1.61%, P = 0.002). Conclusions: According to the results of this study, vitamin D and calcium administration might have protective effects against microgravity-induced mineral loss in a Rat Microgravity Simulator Model.
Collapse
Affiliation(s)
- Marjan Kouhnavard
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran , IR Iran
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran , IR Iran
| | | | - Seyed Jafar Hashemian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran , IR Iran
- Corresponding Author: Seyed Jafar Hashemian, Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran. Tel: +98-2188220037, Fax: +98-2188220052, E-mail:
| | - Mitra Mehrazma
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, IR Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran , IR Iran
| | - Amir Nezami Asl
- Aerospace and Subaquatic Medicine Faculty, AJA University of Medical Sciences, Tehran, IR Iran
| | - Amir Khoshvaghti
- Aerospace and Subaquatic Medicine Faculty, AJA University of Medical Sciences, Tehran, IR Iran
| | - Ammar Falsafi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran
| | - Komeil Lalehfar
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran
| | - Keyvan Malekpour
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran
| | - Mehran Vosugh
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran
| |
Collapse
|
6
|
Sambandam Y, Townsend MT, Pierce JJ, Lipman CM, Haque A, Bateman TA, Reddy SV. Microgravity control of autophagy modulates osteoclastogenesis. Bone 2014; 61:125-31. [PMID: 24463210 PMCID: PMC4384509 DOI: 10.1016/j.bone.2014.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Evidence indicates that astronauts experience significant bone loss during space mission. Recently, we used the NASA developed rotary cell culture system (RCCS) to simulate microgravity (μXg) conditions and demonstrated increased osteoclastogenesis in mouse bone marrow cultures. Autophagy is a cellular recycling process of nutrients. Therefore, we hypothesize that μXg control of autophagy modulates osteoclastogenesis. Real-time PCR analysis of total RNA isolated from mouse bone marrow derived non-adherent cells subjected to modeled μXg showed a significant increase in autophagic marker Atg5, LC3 and Atg16L mRNA expression compared to ground based control (Xg) cultures. Western blot analysis of total cell lysates identified an 8.0-fold and 7.0-fold increase in the Atg5 and LC3-II expression, respectively. Confocal microscopy demonstrated an increased autophagosome formation in μXg subjected RAW 264.7 preosteoclast cells. RT(2) profiler PCR array screening for autophagy related genes identified that μXg upregulates intracellular signaling molecules associated with autophagy, autophagosome components and inflammatory cytokines/growth factors which coregulate autophagy in RAW 264.7 preosteoclast cells. Autophagy inhibitor, 3-methyladenine (3-MA) treatment of mouse bone marrow derived non-adherent mononuclear cells showed a significant decrease in μXg induced Atg5 and LC3 mRNA expression in the presence or absence of RANK ligand (RANKL) stimulation. Furthermore, RANKL treatment significantly increased (8-fold) p-CREB transcription factor levels under μXg as compared to Xg cultures and 3-MA inhibited RANKL increased p-CREB expression in these cells. Also, 3-MA suppresses μXg elevated osteoclast differentiation in mouse bone marrow cultures. Thus, our results suggest that μXg induced autophagy plays an important role in enhanced osteoclast differentiation and could be a potential therapeutic target to prevent bone loss in astronauts during space flight missions.
Collapse
Affiliation(s)
- Yuvaraj Sambandam
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Molly T Townsend
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Jason J Pierce
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Cecilia M Lipman
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Azizul Haque
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Sakamuri V Reddy
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|