1
|
Wei Y, Xie C, Wei Y, Li Z, Li L, Chen Y, Jia C, Xie H, Liao J. SVF Cell Sheets as a New Multicellular Material-Based Strategy for Promoting Angiogenesis and Regeneration in Diced Cartilage Grafts. J Craniofac Surg 2025:00001665-990000000-02621. [PMID: 40209026 DOI: 10.1097/scs.0000000000011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025] Open
Abstract
Autologous diced cartilage, while biocompatible and easy to shape, is limited in clinical application due to its high adsorption rate and challenges in establishing timely and effective neovascularization postsurgery. In this study, the authors produced SVF cell sheets from adipose-derived stromal vascular fraction (SVF) through enzymatic digestion, employing a temperature-sensitive culture system. Our in vivo and in vitro experiments validated that SVF cell sheets, when wrapped around granular cartilage, exhibited a notable promotion of cartilage regeneration and mitigated granular cartilage adsorption in a rabbit diced cartilage graft model. Our findings demonstrate that SVF cell sheets facilitated effective neovascularization and timely cartilage block formation by secreting VEGF and Ang-1 while also suppressing the expression of pyroptotic proteins like NLRP3, Caspase1, and GSDMD. As a biofilm, derived from a multicellular source, SVF cell sheets can replace perichondrium and promote the expression of proangiogenic growth factors Ang-1 and VEGF, thereby promoting local microvascular regeneration, reducing chondrocyte pyroptosis, and promoting the formation of cartilage blocks. This strategy provides a potential new method for autologous cartilage grafting, which will help solve the dilemma of limited sources of cartilage tissue in clinical practice and provide natural autologous cartilage filling materials for the treatment of craniofacial defects.
Collapse
Affiliation(s)
- Yangchen Wei
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Cong Xie
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Yi Wei
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital
| | - Zhengyang Li
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Li Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Yan Chen
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Chiyu Jia
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| | - Hongju Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Junlin Liao
- Center of Burn and Plastic and Wound Repair, The First Affiliated Hospital, Hengyang Medical School, University of South China
| |
Collapse
|
2
|
Zhang J, Shi M, Sun J, Xu L, Xu Y, Jiang W, Zhao W, Zhou M, Mao C, Zhang S. Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5735-5751. [PMID: 39818693 DOI: 10.1021/acsami.4c16568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity. Simultaneously, tetravalent vanadium can induce a catalytic reaction of overexpressed H2O2, producing plenty of toxic hydroxyl radicals (·OH) and singlet oxygen (1O2), leading to tumor cell ferroptosis. In addition, the consumption of disulfide bonds can also lead to the degradation of nanoparticles into high-valent vanadates, activating thermal protein domain-associated protein 3 (NLRP3) inflammasomes and causing tumor cell pyroptosis. It is worth mentioning that VSB NPs can not only ablate tumor cells under near-infrared light irradiation but also further disrupt the redox homeostasis of the tumor microenvironment, thereby enhancing the ferroptosis and pyroptosis of tumor cells induced by biodegradable vanadium-based nanomaterials. This strategy, based on the biological effects of vanadium to regulate the redox state in tumor cells, provides possibilities for cancer treatment.
Collapse
Affiliation(s)
- Jinzha Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mingkang Shi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiawen Sun
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lingxia Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuping Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wentao Jiang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University, Nanjing 210008, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shirong Zhang
- Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China
| |
Collapse
|
3
|
Xi R, Cao Y, Fu N, Sheng Y, Yu J, Li L, Zhang G, Wang F. Allosteric inhibition of the tyrosine phosphatase SHP2 enhances the anti-tumor immunity of interferon α through induction of caspase-1-mediated pyroptosis in renal cancer. Int Immunopharmacol 2024; 143:113498. [PMID: 39467353 DOI: 10.1016/j.intimp.2024.113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Interferon alpha (IFNα) leads to therapeutic effects on various tumors, especially renal cell cancer (RCC), by directly protecting against tumors cell proliferation or indirectly inducing an anti-tumor immune response. However, new combination therapies are needed to enhance the efficacy of IFNα and reduce its adverse effects during long-term treatment. In this study, we found that the anti-proliferative effects of IFNα on RCC cells in vitro and in vivo were greater after the allosteric inhibition of SHP2 by SHP099 than after treatment with enzymatic inhibitors of SHP2. SHP099 increased IFNα-induced pro-caspase-1 expression in RCC cells, activated the NLRP3 inflammasome, and induced pyroptosis. Mechanistically, SHP099 not only increased the expression of NLRP3 inflammasome components via the NF-κB signaling pathway, but also further activated the NLRP3 inflammasome by regulating mitochondrial homeostasis through ANT1-mediated reactive oxygen species modulation. Allosteric inhibition of SHP2 by SHP099 also potently enhanced the anti-tumor immunity induced by IFNα by modulating T cell proliferation and infiltration in vitro and in vivo. These results reveal the new function of SHP2 in NLRP3 inflammasome activation and pyroptosis in RCC and provide a basis for further investigating the combination of allosteric SHP2 inhibitors with IFNα in cancer immunotherapy.
Collapse
Affiliation(s)
- Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Naijie Fu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
4
|
Gavrilin MA, Prather ER, Vompe AD, McAndrew CC, Wewers MD. cAbl Kinase Regulates Inflammasome Activation and Pyroptosis via ASC Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2021; 206:1329-1336. [PMID: 33568399 DOI: 10.4049/jimmunol.2000969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022]
Abstract
Inflammasome activation is regulated in part by the posttranslational modification of inflammasome proteins. Tyrosine phosphorylation is one possible modification. Having previously shown that the protein tyrosine kinase (PTK) inhibitor AG126 greatly inhibits inflammasome activation, we sought to uncover the target kinase. To do this, we screened a commercial tyrosine kinase library for inhibition of inflammasome-dependent IL-18/IL-1β release and pyroptosis. THP-1 cells (human monocyte cell line) were incubated with PTK inhibitors (0.1, 1, and 10 μM) before stimulation with LPS followed by ATP. The PTK inhibitors DCC-2036 (Rebastinib) and GZD824, specific for Bcr-Abl kinase, showed the most severe reduction of IL-18 and lactate dehydrogenase release at all concentrations used. The suggested kinase target, cAbl kinase, was then deleted in THP-1 cells by CRISPR/Cas9 editing and then tested for its role in inflammasome function and potential to phosphorylate the inflammasome adaptor ASC. The cABL knockout not only significantly inhibited inflammasome function but also decreased release of phosphorylated ASC after LPS/ATP stimulation. One predicted target of cAbl kinase is tyrosine 146 in ASC. Complementation of ASC knockout THP-1 cells with mutated Y146A ASC significantly abrogated inflammasome activation and ASC oligomerization as compared with wild-type ASC complementation. Thus, these findings support cAbl kinase as a positive regulator of inflammasome activity and pyroptosis, likely via phosphorylation of ASC.
Collapse
Affiliation(s)
- Mikhail A Gavrilin
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; and .,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Evan R Prather
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; and.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Alex D Vompe
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Christian C McAndrew
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Mark D Wewers
- Pulmonary, Critical Care, and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; and .,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
5
|
Dessouki FBA, Kukreja RC, Singla DK. Stem Cell-Derived Exosomes Ameliorate Doxorubicin-Induced Muscle Toxicity through Counteracting Pyroptosis. Pharmaceuticals (Basel) 2020; 13:ph13120450. [PMID: 33316945 PMCID: PMC7764639 DOI: 10.3390/ph13120450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (Dox)-induced muscle toxicity (DIMT) is a common occurrence in cancer patients; however, the cause of its development and progression is not established. We tested whether inflammation-triggered cell death, “pyroptosis” plays a role in DIMT. We also examined the potential role of exosomes derived from embryonic stem cells (ES-Exos) in attenuating DIMT. C57BL/6J mice (10 ± 2 wks age) underwent the following treatments: Control (saline), Dox, Dox+ES-Exos, and Dox+MEF-Exos (mouse-embryonic fibroblast-derived exosomes, negative control). Our results demonstrated that Dox significantly reduced muscle function in mice, which was associated with a significant increase in NLRP3 inflammasome and initiation marker TLR4 as compared with controls. Pyroptosis activator, ASC, was significantly increased compared to controls with an upregulation of specific markers (caspase-1, IL-1β, and IL-18). Treatment with ES-Exos but not MEF-Exos showed a significant reduction in inflammasome and pyroptosis along with improved muscle function. Additionally, we detected a significant increase in pro-inflammatory cytokines (TNF-α and IL-6) and inflammatory M1 macrophages in Dox-treated animals. Treatment with ES-Exos decreased M1 macrophages and upregulated anti-inflammatory M2 macrophages. Furthermore, ES-Exos showed a significant reduction in muscular atrophy and fibrosis. In conclusion, these results suggest that DIMT is mediated through inflammation and pyroptosis, which is attenuated following treatment with ES-Exos.
Collapse
Affiliation(s)
- Fatima Bianca A. Dessouki
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| | - Rakesh C. Kukreja
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
- Correspondence: ; Tel.: +1-401-823-0953
| |
Collapse
|
6
|
Spalinger MR, Schwarzfischer M, Scharl M. The Role of Protein Tyrosine Phosphatases in Inflammasome Activation. Int J Mol Sci 2020; 21:E5481. [PMID: 32751912 PMCID: PMC7432435 DOI: 10.3390/ijms21155481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are multi-protein complexes that mediate the activation and secretion of the inflammatory cytokines IL-1β and IL-18. More than half a decade ago, it has been shown that the inflammasome adaptor molecule, ASC requires tyrosine phosphorylation to allow effective inflammasome assembly and sustained IL-1β/IL-18 release. This finding provided evidence that the tyrosine phosphorylation status of inflammasome components affects inflammasome assembly and that inflammasomes are subjected to regulation via kinases and phosphatases. In the subsequent years, it was reported that activation of the inflammasome receptor molecule, NLRP3, is modulated via tyrosine phosphorylation as well, and that NLRP3 de-phosphorylation at specific tyrosine residues was required for inflammasome assembly and sustained IL-1β/IL-18 release. These findings demonstrated the importance of tyrosine phosphorylation as a key modulator of inflammasome activity. Following these initial reports, additional work elucidated that the activity of several inflammasome components is dictated via their phosphorylation status. Particularly, the action of specific tyrosine kinases and phosphatases are of critical importance for the regulation of inflammasome assembly and activity. By summarizing the currently available literature on the interaction of tyrosine phosphatases with inflammasome components we here provide an overview how tyrosine phosphatases affect the activation status of inflammasomes.
Collapse
Affiliation(s)
- Marianne R. Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
7
|
Bai Z, Liu W, He D, Wang Y, Yi W, Luo C, Shen J, Hu Z. Protective effects of autophagy and NFE2L2 on reactive oxygen species-induced pyroptosis of human nucleus pulposus cells. Aging (Albany NY) 2020; 12:7534-7548. [PMID: 32320383 PMCID: PMC7202523 DOI: 10.18632/aging.103109] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Intervertebral disc degeneration (IDD) is characterized by the decrease of nucleus pulposus cells (NPCs). With the increase of the degree of degeneration, the reactive oxygen species (ROS) in nucleus pulposus tissue increases. Pyroptosis is a newly discovered form of cell death and its relationship with oxidative stress in NPCs remains unclear. This study was performed to investigate the mechanisms of pyroptosis of NPCs under oxidative stress. NPCs were isolated from IDD patients by surgical treatment. Pyroptosis related proteins like NLR family pyrin domain containing 3(NLRP3) and PYD and CARD domain containing (PYCARD) were detected by western blot, and membrane pore formation was observed by hochest33342/PI double staining or scanning electron microscope. The results showed that ROS induced the pyroptosis of NPCs and it depended on the expression of NLRP3 and PYCARD. The increased ROS level also increased transcription factor nuclear factor, erythroid 2 like 2 (NFE2L2, Nrf2) and the autophagy of NPCs, both of which attenuated the pyroptosis. In summary, ROS induces the pyroptosis of NPCs through the NLRP3/ PYCARD pathway, and establishes negative regulation by increasing autophagy and NFE2L2. These findings may provide a better understanding of the mechanism of IDD and potential therapeutic approaches for IDD treatment.
Collapse
Affiliation(s)
- Zhibiao Bai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Wei Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Danshuang He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Yiyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Weiwei Yi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Changqi Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Jieliang Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| | - Zhenming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong 400016, Chongqing, China
| |
Collapse
|
8
|
Gavrilin MA, McAndrew CC, Prather ER, Tsai M, Spitzer CR, Song MA, Mitra S, Sarkar A, Shields PG, Diaz PT, Wewers MD. Inflammasome Adaptor ASC Is Highly Elevated in Lung Over Plasma and Relates to Inflammation and Lung Diffusion in the Absence of Speck Formation. Front Immunol 2020; 11:461. [PMID: 32265920 PMCID: PMC7096349 DOI: 10.3389/fimmu.2020.00461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: Caspase-1 is a zymogen whose activation predominantly depends upon the assembly of ASC monomers into insoluble prion-like polymers (specks). ASC polymers support caspase-1 dimer formation inducing a proximity mediated auto-activation of caspase-1. Therefore, the amount and nature of ASC monomers and polymers in lung bronchoalveolar lavage fluid (BALF) might serve as a marker of lung inflammasome activity. Objectives: To determine whether lung ASC concentrations or oligomerization status predicts lung function or activity of lung inflammation. Methods: BALF ASC amount and oligomerization status was studied in three distinct cohorts: (1) young healthy non-smokers, vapers and smokers; (2) healthy HIV+ smokers who underwent detailed lung function studies; and (3) hospitalized patients with suspected pneumonia. We quantified cell free BALF ASC levels by ELISA and immunoblot. Oligomers (i.e., ASC specks) were identified by chemical crosslinking and ability to sediment with centrifugation. Measurement and Main Results: ASC levels are significantly higher in lung lining fluid than in plasma as well as higher in smoker lungs compared to non-smoker lungs. In this context, ASC levels correlate with macrophage numbers, smoking intensity and loss of lung diffusion capacity in a well-characterized cohort of healthy HIV+ smokers. However, only monomeric ASC was found in our BALF samples from all subjects, including patients with lung infections. Conclusions: Even though, most, if not all, extracellular ASC in BALF exists in the soluble, monomeric form, monomeric ASC concentrations still reflect the inflammatory status of the lung microenvironment and correlate with loss of lung function.
Collapse
Affiliation(s)
- Mikhail A Gavrilin
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| | - Christian C McAndrew
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| | - Evan R Prather
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| | - MuChun Tsai
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| | - Carleen R Spitzer
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, James Cancer Hospital, The Ohio State University, Columbus, OH, United States
| | - Srabani Mitra
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| | - Anasuya Sarkar
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| | - Peter G Shields
- Comprehensive Cancer Center, James Cancer Hospital, The Ohio State University, Columbus, OH, United States
| | - Philip T Diaz
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| | - Mark D Wewers
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Yu ZW, Zhang J, Li X, Wang Y, Fu YH, Gao XY. A new research hot spot: The role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications. Life Sci 2019; 240:117138. [PMID: 31809715 DOI: 10.1016/j.lfs.2019.117138] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 01/06/2023]
Abstract
Pyroptosis is a form of cell death mediated by gasdermin D (GSDMD); it is characterised by NLRP3 inflammasome activation, caspase activation, cell membrane pore formation, and the release of interleukin-1β and interleukin-18. NLRP3 inflammasome activation plays a central role in pyroptosis. Recent research has suggested that NLRP3 inflammasome activation may be involved in the occurrence and development of diabetes mellitus and its associated complications. This finding provided the impetus for us to clarify the significance of pyroptosis in diabetes. In this review, we summarise the current understanding of the molecular mechanisms involved in pyroptosis, as well as recent advances in the role of NLRP3 inflammasome activation and pyroptosis in the development of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Zi-Wei Yu
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Jing Zhang
- Department of Endocrinology, The Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Xin Li
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Ying Wang
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Yu-Hong Fu
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin-Yuan Gao
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
10
|
Mambwe B, Neo K, Javanmard Khameneh H, Leong KWK, Colantuoni M, Vacca M, Muimo R, Mortellaro A. Tyrosine Dephosphorylation of ASC Modulates the Activation of the NLRP3 and AIM2 Inflammasomes. Front Immunol 2019; 10:1556. [PMID: 31333677 PMCID: PMC6624653 DOI: 10.3389/fimmu.2019.01556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
The inflammasome is an intracellular multi-protein complex that orchestrates the release of the pro-inflammatory cytokines IL-1β and IL-18, and a form of cell death known as pyroptosis. Tyrosine phosphorylation of the inflammasome sensors NLRP3, AIM2, NLRC4, and the adaptor protein, apoptosis-associated speck-like protein (ASC) has previously been demonstrated to be essential in the regulation of the inflammasome. By using the pharmacological protein tyrosine phosphatase (PTPase) inhibitor, phenylarsine oxide (PAO), we have demonstrated that tyrosine dephosphorylation is an essential step for the activation of the NLRP3 and AIM2 inflammasomes in human and murine macrophages. We have also shown that PTPase activity is required for ASC nucleation leading to caspase-1 activation, IL-1β, and IL-18 processing and release, and cell death. Furthermore, by site-directed mutagenesis of ASC tyrosine residues, we have identified the phosphorylation of tyrosine Y60 and Y137 of ASC as critical for inflammasome assembly and function. Therefore, we report that ASC tyrosine dephosphorylation and phosphorylation are crucial events for inflammasome activation.
Collapse
Affiliation(s)
- Bezaleel Mambwe
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, United Kingdom
| | - Kurt Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Keith Weng Kit Leong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Mariasilvia Colantuoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,International PhD Program in Molecular Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Vacca
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, United Kingdom
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis. Mediators Inflamm 2018; 2018:5823823. [PMID: 29706799 PMCID: PMC5863298 DOI: 10.1155/2018/5823823] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022] Open
Abstract
Sepsis is recognized as a life-threatening organ dysfunctional disease that is caused by dysregulated host responses to infection. Up to now, sepsis still remains a dominant cause of multiple organ dysfunction syndrome (MODS) and death among severe condition patients. Pyroptosis, originally named after the Greek words “pyro” and “ptosis” in 2001, has been defined as a specific programmed cell death characterized by release of inflammatory cytokines. During sepsis, pyroptosis is required for defense against bacterial infection because appropriate pyroptosis can minimize tissue damage. Even so, pyroptosis when overactivated can result in septic shock, MODS, or increased risk of secondary infection. Proteolytic cleavage of gasdermin D (GSDMD) by caspase-1, caspase-4, caspase-5, and caspase-11 is an essential step for the execution of pyroptosis in activated innate immune cells and endothelial cells stimulated by cytosolic lipopolysaccharide (LPS). Cleaved GSDMD also triggers NACHT, LRR, and PYD domain-containing protein (NLRP) 3-mediated activation of caspase-1 via an intrinsic pathway, while the precise mechanism underlying GSDMD-induced NLRP 3 activation remains unclear. Hence, this study provides an overview of the recent advances in the molecular mechanisms underlying pyroptosis in sepsis.
Collapse
|
12
|
Hoyt LR, Ather JL, Randall MJ, DePuccio DP, Landry CC, Wewers MD, Gavrilin MA, Poynter ME. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1322-34. [PMID: 27421477 DOI: 10.4049/jimmunol.1600406] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/12/2016] [Indexed: 11/19/2022]
Abstract
Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols.
Collapse
Affiliation(s)
- Laura R Hoyt
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Jennifer L Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew J Randall
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Daniel P DePuccio
- Department of Chemistry, University of Vermont, Burlington, VT 05405
| | - Christopher C Landry
- Department of Chemistry, University of Vermont, Burlington, VT 05405; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405; and
| | - Mark D Wewers
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Mikhail A Gavrilin
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Matthew E Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405; and
| |
Collapse
|
13
|
Shamaa OR, Mitra S, Gavrilin MA, Wewers MD. Monocyte Caspase-1 Is Released in a Stable, Active High Molecular Weight Complex Distinct from the Unstable Cell Lysate-Activated Caspase-1. PLoS One 2015; 10:e0142203. [PMID: 26599267 PMCID: PMC4657934 DOI: 10.1371/journal.pone.0142203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/18/2015] [Indexed: 11/18/2022] Open
Abstract
Mononuclear phagocytes utilize caspase-1 activation as a means to respond to danger signals. Although caspase-1 was discovered using highly concentrated cell extracts that spontaneously activate caspase-1, it is now clear that in live cell models caspase-1 activation occurs in the process of its cellular release and is not an intracellular event. Therefore, we compared the characteristics of caspase-1 activation in the cell lysate model to that of caspase-1 that is released in response to exogenous inflammasome activation. Whereas both models generated active caspase-1, the cell-lysate induced caspase-1 required highly concentrated cell lysates and had a short half-life (~15 min) whereas, the activation induced released caspase-1 required 2-3 log fold fewer cells and was stable for greater than 12 h. Both forms were able to cleave proIL-1beta but unexpectedly, the released activity was unable to be immunodepleted by caspase-1 antibodies. Size exclusion chromatography identified two antigenic forms of p20 caspase-1 in the activation induced released caspase-1: one at the predicted size of tetrameric, p20/p10 caspase-1 and the other at >200 kDa. However, only the high molecular weight form had stable functional activity. These results suggest that released caspase-1 exists in a unique complex that is functionally stable and protected from immunodepletion whereas cell-extract generated active caspase-1 is rapidly inhibited in the cytosolic milieu.
Collapse
Affiliation(s)
- Obada R. Shamaa
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, 473 W. 12 Avenue, 201 DHLRI, Columbus, OH, United States of America
| | - Srabani Mitra
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, 473 W. 12 Avenue, 201 DHLRI, Columbus, OH, United States of America
| | - Mikhail A. Gavrilin
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, 473 W. 12 Avenue, 201 DHLRI, Columbus, OH, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, 473 W. 12 Avenue, 201 DHLRI, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
14
|
Rahman MA, Mitra S, Sarkar A, Wewers MD. Alpha 1-antitrypsin does not inhibit human monocyte caspase-1. PLoS One 2015; 10:e0117330. [PMID: 25658455 PMCID: PMC4319913 DOI: 10.1371/journal.pone.0117330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022] Open
Abstract
Background Alpha 1-antitrypsin (A1AT) is a 52 kDa serine protease inhibitor produced largely by hepatocytes but also by mononuclear phagocytes. A1AT chiefly inhibits neutrophil elastase and proteinase-3 but has also been reported to have immune modulatory functions including the ability to inhibit caspases. Its clinical availability for infusion suggests that A1AT therapy might modulate caspase related inflammation. Here we tested the ability of A1AT to modulate caspase-1 function in human mononuclear phagocytes. Methods Purified plasma derived A1AT was added to active caspase-1 in a cell-free system (THP-1 lysates) as well as added exogenously to cell-culture models and human whole blood models of caspase-1 activation. Functional caspase-1 activity was quantified by the cleavage of the caspase-1 specific fluorogenic tetrapeptide substrate (WEHD-afc) and the release of processed IL-18 and IL-1β. Results THP-1 cell lysates generated spontaneous activation of caspase-1 both by WEHD-afc cleavage and the generation of p20 caspase-1. A1AT added to this cell free system was unable to inhibit caspase-1 activity. Release of processed IL-18 by THP-1 cells was also unaffected by the addition of exogenous A1AT prior to stimulation with LPS/ATP, a standard caspase-1 activating signal. Importantly, the A1AT exhibited potent neutrophil elastase inhibitory capacity. Furthermore, A1AT complexed to NE (and hence conformationally modified) also did not affect THP-1 cell caspase-1 activation. Finally, exogenous A1AT did not inhibit the ability of human whole blood samples to process and release IL-1β. Conclusions A1AT does not inhibit human monocyte caspase-1.
Collapse
Affiliation(s)
- Mohd. Akhlakur Rahman
- Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, United States of America
| | - Srabani Mitra
- Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, United States of America
| | - Anasuya Sarkar
- Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, United States of America
| | - Mark D. Wewers
- Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ghonime MG, Shamaa OR, Das S, Eldomany RA, Fernandes-Alnemri T, Alnemri ES, Gavrilin MA, Wewers MD. Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function. THE JOURNAL OF IMMUNOLOGY 2014; 192:3881-8. [PMID: 24623131 DOI: 10.4049/jimmunol.1301974] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Caspase-1 activation is a central event in innate immune responses to many pathogenic infections and tissue damage. The NLRP3 inflammasome, a multiprotein scaffolding complex that assembles in response to two distinct steps, priming and activation, is required for caspase-1 activation. However, the detailed mechanisms of these steps remain poorly characterized. To investigate the process of LPS-mediated NLRP3 inflammasome priming, we used constitutively present pro-IL-18 as the caspase-1-specific substrate to allow study of the early events. We analyzed human monocyte caspase-1 activity in response to LPS priming, followed by activation with ATP. Within minutes of endotoxin priming, the NLRP3 inflammasome is licensed for ATP-induced release of processed IL-18, apoptosis-associated speck-forming complex containing CARD, and active caspase-1, independent of new mRNA or protein synthesis. Moreover, extracellular signal-regulated kinase 1 (ERK1) phosphorylation is central to the priming process. ERK inhibition and small interfering RNA-mediated ERK1 knockdown profoundly impair priming. In addition, proteasome inhibition prevents ERK phosphorylation and blocks priming. Scavenging reactive oxygen species with diphenylene iodonium also blocks both priming and ERK phosphorylation. These findings suggest that ERK1-mediated posttranslational modifications license the NLRP3 inflammasome to respond to the second signal ATP by inducing posttranslational events that are independent of new production of pro-IL-1β and NOD-like receptor components.
Collapse
Affiliation(s)
- Mohammed G Ghonime
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | | | |
Collapse
|