1
|
Dushianthan A, Bracegirdle L, Cusack R, Cumpstey AF, Postle AD, Grocott MPW. Alveolar Hyperoxia and Exacerbation of Lung Injury in Critically Ill SARS-CoV-2 Pneumonia. Med Sci (Basel) 2023; 11:70. [PMID: 37987325 PMCID: PMC10660857 DOI: 10.3390/medsci11040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, systemic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombosis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment, alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Luke Bracegirdle
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Rebecca Cusack
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Andrew F. Cumpstey
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D. Postle
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Teape D, Peterson A, Ahsan N, Ellis K, Correia N, Luo R, Hegarty K, Yao H, Dennery P. Hyperoxia impairs intraflagellar transport and causes dysregulated metabolism with resultant decreased cilia length. Am J Physiol Lung Cell Mol Physiol 2023; 324:L325-L334. [PMID: 36719084 PMCID: PMC9988522 DOI: 10.1152/ajplung.00522.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Supplemental oxygen is a lifesaving measure in infants born premature to facilitate oxygenation. Unfortunately, it may lead to alveolar simplification and loss of proximal airway epithelial cilia. Little is known about the mechanism by which hyperoxia causes ciliary dysfunction in the proximal respiratory tract. We hypothesized that hyperoxia causes intraflagellar transport (IFT) dysfunction with resultant decreased cilia length. Differentiated basal human airway epithelial cells (HAEC) were exposed to hyperoxia or air for up to 48 h. Neonatal mice (<12 h old) were exposed to hyperoxia for 72 h and recovered in room air until postnatal day (PND) 60. Cilia length was measured from scanning electron microscopy images using a MATLAB-derived program. Proteomics and metabolomics were carried out in cells after hyperoxia. After hyperoxia, there was a significant time-dependent reduction in cilia length after hyperoxia in HAEC. Proteomic analysis showed decreased abundance of multiple proteins related to IFT including dynein motor proteins. In neonatal mice exposed to hyperoxia, there was a significant decrease in acetylated α tubulin at PND10 followed by recovery to normal levels at PND60. In HAEC, hyperoxia decreased the abundance of multiple proteins associated with complex I of the electron transport chain. In HAEC, hyperoxia increased levels of malate, fumarate, and citrate, and reduced the ATP/ADP ratio at 24 h with a subsequent increase at 36 h. Exposure to hyperoxia reduced cilia length, and this was associated with aberrant IFT protein expression and dysregulated metabolism. This suggests that hyperoxic exposure leads to aberrant IFT protein expression in the respiratory epithelium resulting in shortened cilia.
Collapse
Affiliation(s)
- Daniella Teape
- Department of Pediatrics, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Abigail Peterson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development at Rhode Island Hospital, Proteomics Core Facility, Division of Surgical Research, Brown University, Providence, Rhode Island, United States
| | - Kimberlyn Ellis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nicholas Correia
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Ryan Luo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Katy Hegarty
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Phyllis Dennery
- Department of Pediatrics, Alpert Medical School, Brown University, Providence, Rhode Island, United States
- Department of Molecular Biology, Cell Biology, and Biochemistry, Alpert Medical School, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
3
|
Ghalibaf MHE, Kianian F, Beigoli S, Behrouz S, Marefati N, Boskabady M, Boskabady MH. The effects of vitamin C on respiratory, allergic and immunological diseases: an experimental and clinical-based review. Inflammopharmacology 2023; 31:653-672. [PMID: 36849854 PMCID: PMC9970132 DOI: 10.1007/s10787-023-01169-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Vitamin C is used in modern medicine supplements for treatment of various disorders associated with oxidative stress, inflammation and immune dysregulation. In this review article, experimental and clinical results regarding the effects of vitamin C on respiratory immunologic, and allergic diseases are reviewed. Various databases and appropriate keywords are used to search the effect of vitamin C on respiratory diseases until the end of May 2022. Books, theses and articles were included. These studies assessed the effects of vitamin C on respiratory disorders including asthma, chronic obstructive pulmonary disease (COPD), lung infection and lung cancer. Vitamin C showed relaxant effect on tracheal smooth muscle via various mechanisms. The preventive effects of vitamin C were mediated by antioxidant, immunomodulatory and anti-inflammatory mechanisms in the experimental animal models of different respiratory diseases. Some clinical studies also indicated the effect of vitamin C on lung cancer and lung infections. Therefore, vitamin C could be used a preventive and/or relieving therapy in respiratory diseases.
Collapse
Affiliation(s)
- Mohammad Hossein Eshaghi Ghalibaf
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzie Boskabady
- Dental Materials Research Center and Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Post Code 9177948564, IR, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
5
|
Adams PS, Corcoran TE, Lin JH, Weiner DJ, Sanchez-de-Toledo J, Lo CW. Mucociliary Clearance Scans Show Infants Undergoing Congenital Cardiac Surgery Have Poor Airway Clearance Function. Front Cardiovasc Med 2021; 8:652158. [PMID: 33969015 PMCID: PMC8102682 DOI: 10.3389/fcvm.2021.652158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Infants undergoing congenital cardiac surgery with cardiopulmonary bypass are at high risk for respiratory complications. As impaired airway mucociliary clearance (MCC) can potentially contribute to pulmonary morbidity, our study objective was to measure airway clearance in infants undergoing congenital cardiac surgery and examine correlation with clinical covariables that may impair airway clearance function. Materials and Methods: Airway clearance in infants was measured over 30 min using inhaled nebulized Technetium 99m sulfur colloid administered either via a nasal cannula or the endotracheal tube in intubated infants. This was conducted bedside with a portable gamma camera. No difficulty was encountered in positioning the gamma camera over the patient, and neither the camera nor the MCC scan interfered with routine medical care or caused any adverse events. Patient and perioperative variables were examined relative to the MCC measurements. Results: We prospectively enrolled 57 infants undergoing congenital cardiac surgery and conducted a single MCC scan per patient. MCC data from 42 patients were analyzable, including five pre-operative, 15 (40.5%) in the immediate post-operative period (days 1-2), and 22 (59.5%) were later post-operative (≥3 days). Pre-operative MCC was inversely proportional to days requiring post-operative mechanical ventilation (p = 0.006) and non-invasive positive pressure ventilation (p = 0.017). MCC was higher at later post-operative days (p = 0.002) with immediate post-operative MCC being lower (3%; 0-13%) than either pre-operative (21%; 4-25%) (p = 0.091) or later post-operative MCC (18%; 0-29%) (p = 0.054). Among the infants with low post-operative MCC, significantly more were pre-mature [5/19 (26%) vs. 0/18 (0%); p = 0.046], were intubated [14/19 (75%) vs. only 7/18 (39%); p = 0.033] and were receiving higher FiO2 (40%, 27-47% vs. 26%, 21-37%; p = 0.015). Conclusions: This is the first study to show that infants undergoing congenital cardiac surgery have impaired MCC. MCC appeared lowest in the immediate post-operative period. Worse MCC was associated with pre-maturity, mechanical ventilation, or receiving higher FiO2. These findings suggest MCC scans should be further explored for informing clinical decision making to improve post-surgical respiratory outcomes. The possible therapeutic benefit of airway clearance maneuvers for infants with poor MCC function should also be investigated.
Collapse
Affiliation(s)
- Phillip S Adams
- Division of Pediatric Anesthesiology, Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Timothy E Corcoran
- Division of Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jiuann-Huey Lin
- Division of Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daniel J Weiner
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joan Sanchez-de-Toledo
- Division of Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Price ME, Sisson JH. Redox regulation of motile cilia in airway disease. Redox Biol 2019; 27:101146. [PMID: 30833143 PMCID: PMC6859573 DOI: 10.1016/j.redox.2019.101146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Motile cilia on airway cells are necessary for clearance of mucus-trapped particles out of the lung. Ciliated airway epithelial cells are uniquely exposed to oxidants through trapping of particles, debris and pathogens in mucus and the direct exposure to inhaled oxidant gases. Dynein ATPases, the motors driving ciliary motility, are sensitive to the local redox environment within each cilium. Several redox-sensitive cilia-localized proteins modulate dynein activity and include Protein Kinase A, Protein Kinase C, and Protein Phosphatase 1. Moreover, cilia are rich in known redox regulatory proteins and thioredoxin domain-containing proteins that are critical in maintaining a balanced redox environment. Importantly, a nonsense mutation in TXNDC3, which contains a thioredoxin motif, has recently been identified as disease-causing in Primary Ciliary Dyskinesia, a hereditary motile cilia disease resulting in impaired mucociliary clearance. Here we review current understanding of the role(s) oxidant species play in modifying airway ciliary function. We focus on oxidants generated in the airways, cilia redox targets that modulate ciliary beating and imbalances in redox state that impact health and disease. Finally, we review disease models such as smoking, asthma, alcohol drinking, and infections as well as the direct application of oxidants that implicate redox balance as a modulator of cilia motility.
Collapse
Affiliation(s)
- Michael E Price
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, NE, USA; University of Nebraska Medical Center, Department of Cellular & Integrative Physiology, Omaha, NE, USA.
| | - Joseph H Sisson
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, NE, USA.
| |
Collapse
|
7
|
The mechanistic role of oxidative stress in cigarette smoke-induced cardiac stem cell dysfunction and prevention by ascorbic acid. Cell Biol Toxicol 2018; 35:111-127. [DOI: 10.1007/s10565-018-9437-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
|
8
|
Li J, Zheng CQ, Li Y, Yang C, Lin H, Duan HG. Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing. Stem Cells Dev 2015; 24:1817-30. [PMID: 25835956 DOI: 10.1089/scd.2014.0521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer.
Collapse
Affiliation(s)
- Jing Li
- 1 Department of Otolaryngology, Eye and ENT Hospital of Fudan University , Shanghai, China .,2 Department of Otolaryngology, First Hospital of Hangzhou City , Hangzhou, Zhejiang Province, China
| | - Chun-Quan Zheng
- 1 Department of Otolaryngology, Eye and ENT Hospital of Fudan University , Shanghai, China
| | - Yong Li
- 2 Department of Otolaryngology, First Hospital of Hangzhou City , Hangzhou, Zhejiang Province, China
| | - Chen Yang
- 1 Department of Otolaryngology, Eye and ENT Hospital of Fudan University , Shanghai, China
| | - Hai Lin
- 1 Department of Otolaryngology, Eye and ENT Hospital of Fudan University , Shanghai, China
| | - Hong-Gang Duan
- 3 Department of Otolaryngology, Second Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, China
| |
Collapse
|
9
|
Al-Shmgani HS, Moate RM, Macnaughton PD, Sneyd JR, Moody AJ. Effects of hyperoxia on the permeability of 16HBE14o- cell monolayers--the protective role of antioxidant vitamins E and C. FEBS J 2013; 280:4512-21. [PMID: 23809212 DOI: 10.1111/febs.12413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 12/29/2022]
Abstract
The use of hyperoxia for critically ill patients is associated with adverse impacts resulting in lung injury accompanied by inflammation. The aim of this study was to evaluate aspects of mechanisms that contribute to hyperoxia-induced disruption of the epithelial permeability barrier, and also the protective effects of the antioxidants α-tocopherol and ascorbate. 16HBE14o- cells were cultured as monolayers at an air-liquid interface for 6 days, after which transepithelial electrical resistance reached 251.2 ± 4.1 Ω.cm(2) (mean ± standard error of the mean). They were then exposed for 24 h to normoxia (21% O2, 5% CO2), hyperoxia (95% O2, 5% CO2), hyperoxia with 10(-7) M α-tocopherol, hyperoxia with 10(-7) M ascorbate, hyperoxia with 10(-6) M ascorbate, and hyperoxia with a combination of α-tocopherol and ascorbate (10(-7) M and 10(-6) M, respectively). Significant reductions (P < 0.05) in transepithelial electrical resistance seen after hyperoxia (with or without antioxidants) were associated with reductions in the levels of zona occludens-1 (ZO-1) observed by immunohistochemistry, and downregulation of ZO-1 expression (P < 0.01) as compared with normoxia. In contrast, the expression levels of interleukin (IL)-8, IL-6 and tumour necrosis factor-α (TNF-α) were increased after hyperoxia (P < 0.01), and marked increases in the levels of these cytokines (ELISA) were seen in the medium (P < 0.001) as compared with normoxia. The antioxidant vitamins E and C had a partial protective effect against the hyperoxia-induced reduction in ZO-1 levels and the increase in levels of the proinflammatory cytokines IL-8, IL-6, and TNF-α. In conclusion, hyperoxia-induced epithelial disruption is associated with tight junction weakening, and induction of a proinflammatory environment.
Collapse
|