1
|
Agca S, Domaniku-Waraich A, Bilgic SN, Sucuoglu M, Dag M, Dogan SA, Kir S. Tumour-induced alterations in single-nucleus transcriptome of atrophying muscles indicate enhanced protein degradation and reduced oxidative metabolism. J Cachexia Sarcopenia Muscle 2024; 15:1898-1914. [PMID: 39001644 PMCID: PMC11446705 DOI: 10.1002/jcsm.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Tumour-induced skeletal muscle wasting in the context of cancer cachexia is a condition with profound implications for patient survival. The loss of muscle mass is a significant clinical obstacle and is linked to reduced tolerance to chemotherapy and increased frailty. Understanding the molecular mechanisms driving muscle atrophy is crucial for the design of new therapeutics. METHODS Lewis lung carcinoma tumours were utilized to induce cachexia and muscle atrophy in mice. Single-nucleus libraries of the tibialis anterior (TA) muscle from tumour-bearing mice and their non-tumour-bearing controls were constructed using 10X Genomics applications following the manufacturer's guidelines. RNA sequencing results were analysed with Cell Ranger software and the Seurat R package. Oxygen consumption of mitochondria isolated from TA muscle was measured using an Oroboros O2k-FluoRespirometer. Mouse primary myotubes were treated with a recombinant ectodysplasin A2 (EDA-A2) protein to activate EDA-A2 receptor (EDA2R) signalling and study changes in gene expression and oxygen consumption. RESULTS Tumour-bearing mice were sacrificed while exhibiting moderate cachexia. Average TA muscle weight was reduced by 11% (P = 0.0207) in these mice. A total of 12 335 nuclei, comprising 6422 nuclei from the control group and 5892 nuclei from atrophying muscles, were studied. The analysis of single-nucleus transcriptomes identified distinct myonuclear gene signatures and a shift towards type IIb myonuclei. Muscle atrophy-related genes, including Atrogin1, MuRF1 and Eda2r, were upregulated in these myonuclei, emphasizing their crucial roles in muscle wasting. Gene set enrichment analysis demonstrated that EDA2R activation and tumour inoculation led to similar expression patterns in muscle cells, including the stimulation of nuclear factor-kappa B, Janus kinase-signal transducer and activator of transcription and transforming growth factor-beta pathways and the suppression of myogenesis and oxidative phosphorylation. Muscle oxidative metabolism was suppressed by both tumours and EDA2R activation. CONCLUSIONS This study identified tumour-induced transcriptional changes in muscle tissue at single-nucleus resolution and highlighted the negative impact of tumours on oxidative metabolism. These findings contribute to a deeper understanding of the molecular mechanisms underlying muscle wasting.
Collapse
Affiliation(s)
- Samet Agca
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | | | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | - Melis Sucuoglu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | - Meric Dag
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Boğaziçi University, Istanbul, Turkey
| | - Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Boğaziçi University, Istanbul, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
2
|
Kim H, Ranjit R, Claflin DR, Georgescu C, Wren JD, Brooks SV, Miller BF, Ahn B. Unacylated Ghrelin Protects Against Age-Related Loss of Muscle Mass and Contractile Dysfunction in Skeletal Muscle. Aging Cell 2024:e14323. [PMID: 39223708 DOI: 10.1111/acel.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcopenia, the progressive loss of muscle mass and function, universally affects older adults and is closely associated with frailty and reduced quality of life. Despite the inevitable consequences of sarcopenia and its relevance to healthspan, no pharmacological therapies are currently available. Ghrelin is a gut-released hormone that increases appetite and body weight through acylation. Acylated ghrelin activates its receptor, growth hormone secretagogue receptor 1a (GHSR1a), in the brain by binding to it. Studies have demonstrated that acyl and unacylated ghrelin (UnAG) both have protective effects against acute pathological conditions independent of receptor activation. Here, we investigated the long-term effects of UnAG in age-associated muscle atrophy and contractile dysfunction in mice. Four-month-old and 18-month-old mice were subjected to either UnAG or control treatment for 10 months. UnAG did not affect food consumption or body weight. Gastrocnemius and quadriceps muscle weights were reduced by 20%-30% with age, which was partially protected against by UnAG. Specific force, force per cross-sectional area, measured in isolated extensor digitorum longus muscle was diminished by 30% in old mice; however, UnAG prevented the loss of specific force. UnAG also protected from decreases in mitochondrial respiration and increases in hydrogen peroxide generation of skeletal muscle of old mice. Results of bulk mRNA-seq analysis and our contractile function data show that UnAG reversed neuromuscular junction impairment that occurs with age. Collectively, our data revealed the direct role of UnAG in mitigating sarcopenia in mice, independent of food consumption or body weight, implicating UnAG treatment as a potential therapy against sarcopenia.
Collapse
Affiliation(s)
- Hyunyoung Kim
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dennis R Claflin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Susan V Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, USA
| | - Bumsoo Ahn
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Swalsingh G, Pani P, Senapati U, Sahu B, Pani S, Pati B, Rout S, Bal NC. Intramuscular administration of fractalkine modulates mitochondrial properties and promotes fast glycolytic phenotype. Biofactors 2024. [PMID: 39052304 DOI: 10.1002/biof.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
A newly categorized myokine called fractalkine (CX3CL1) has been associated with divergent conditions such as obesity, tissue inflammation, and exercise. CX3CL1 works through specific membrane-bound receptors (CX3CR1) found in various tissues including skeletal muscles. Studies indicate CX3CL1 induces muscles to uptake energy substrates thereby improving glucose utilization and countering diabetes. Here, we tested if the administration of purified CX3CL1 directly into mice skeletal muscles affects its histoarchitecture, mitochondrial activity, and expression of metabolic proteins. We analyzed four muscles: two upper-limb (quadriceps, hamstrings) and two lower-limb (tibialis anterior, gastrocnemius), contralateral leg muscles were taken as controls. The effects of CX3CL1 treatment on histoarchitecture, mitochondrial activity, and expression of metabolic proteins in muscles were characterized. We used histochemical staining succinate dehydrogenase (SDH)/cytochrome c oxidase (COX), myosin ATPase, alkaline phosphatase (ALP) to evaluate the mitochondrial activity, fiber types, and vascularization in the muscles, respectively. Western blotting was used to evaluate the expression of proteins associated with mitochondrial metabolism (OXPHOS), glycolysis, and vascularization. Overall, this study indicates CX3CL1 primarily modulates mitochondrial metabolism and shifts substrate preference toward glucose in the skeletal muscle. Evidence also supports that CX3CL1 stimulates the relative composition of fast fiber types, influencing selection of energy substrates in the skeletal muscle.
Collapse
Affiliation(s)
| | - Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Unmod Senapati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Sunil Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Benudhara Pati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Subhasmita Rout
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Shorter E, Engman V, Lanner JT. Cancer-associated muscle weakness - From triggers to molecular mechanisms. Mol Aspects Med 2024; 97:101260. [PMID: 38457901 DOI: 10.1016/j.mam.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Skeletal muscle weakness is a debilitating consequence of many malignancies. Muscle weakness has a negative impact on both patient wellbeing and outcome in a range of cancer types and can be the result of loss of muscle mass (i.e. muscle atrophy, cachexia) and occur independently of muscle atrophy or cachexia. There are multiple cancer specific triggers that can initiate the progression of muscle weakness, including the malignancy itself and the tumour environment, as well as chemotherapy, radiotherapy and malnutrition. This can induce weakness via different routes: 1) impaired intrinsic capacity (i.e., contractile dysfunction and intramuscular impairments in excitation-contraction coupling or crossbridge cycling), 2) neuromuscular disconnection and/or 3) muscle atrophy. The mechanisms that underlie these pathways are a complex interplay of inflammation, autophagy, disrupted protein synthesis/degradation, and mitochondrial dysfunction. The current lack of therapies to treat cancer-associated muscle weakness highlight the critical need for novel interventions (both pharmacological and non-pharmacological) and mechanistic insight. Moreover, most research in the field has placed emphasis on directly improving muscle mass to improve muscle strength. However, accumulating evidence suggests that loss of muscle function precedes atrophy. This review primarily focuses on cancer-associated muscle weakness, independent of cachexia, and provides a solid background on the underlying mechanisms, methodology, current interventions, gaps in knowledge, and limitations of research in the field. Moreover, we have performed a mini-systematic review of recent research into the mechanisms behind muscle weakness in specific cancer types, along with the main pathways implicated.
Collapse
Affiliation(s)
- Emily Shorter
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden
| | - Viktor Engman
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Biomedicum, Stockholm, Sweden.
| |
Collapse
|
5
|
Polat K, Karadibak D, Güç ZGS, Yavuzşen T, Öztop İ. The Relationship between Exercise Capacity and Muscle Strength, Physical Activity, Fatigue and Quality of Life in Patients with Cancer Cachexia. Nutr Cancer 2023; 76:55-62. [PMID: 37917566 DOI: 10.1080/01635581.2023.2276486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Exercise capacity is a significant determinant of mortality for cancer patients, so knowing the possible determinants of exercise capacity will produce physical and psychological benefits for individuals with cancer cachexia. PURPOSE To investigate the relationship between exercise capacity on peripheric and respiratory muscle strength, physical activity, fatigue and quality of life in subjects with cancer cachexia. METHODS The study included 31 patients diagnosed with cancer cachexia. Functional capacity was assessed by 6-Minute Walk Test, hand grip strength and proximal muscle mass by hand dynamometer, respiratory muscle strength by the Maximum Expiratory Pressure and Maximum Inspiratory Pressure measurements, physical activity by International Physical Activity Questionnaire Short Form, fatigue by Brief Fatigue Inventory, and quality of life by EORT-QLQ-C30. The relationship between functional capacity and continuous independent variables was determined using Spearman's or Pearson's tests. RESULTS A strong positive correlation was observed between exercise capacity and expiratory muscle strength (r = 0.75, p < 0.001), activity level (r = 0.68, p < 0.001), and quality of life global health status (r = 0.74, p < 0.001). Conversely, a strong negative correlation was found between exercise capacity and fatigue severity (r = -0.64, p < 0.001). CONCLUSION Higher exercise capacity in cancer cachexia patients is linked to reduced fatigue, improved respiratory muscle strength, increased physical activity levels, and enhanced quality of life. When designing rehabilitation programs or exercise interventions for individuals with cancer cachexia, it is crucial to assess their exercise capacity and tailor the programs accordingly.
Collapse
Affiliation(s)
- Karya Polat
- Health Science Institute, Katip Celebi University, İzmir, Turkey
| | - Didem Karadibak
- School of Physical Therapy and Rehabilitation, Dokuz Eylul University, İzmir, Turkey
| | | | - Tuğba Yavuzşen
- Medicine Faculty Medical Oncology Subdivision, Dokuz Eylul University, İzmir, Turkey
| | - İlhan Öztop
- Medicine Faculty Medical Oncology Subdivision, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
6
|
Snoke DB, Bellefleur E, Rehman HT, Carson JA, Poynter ME, Dittus KL, Toth MJ. Skeletal muscle adaptations in patients with lung cancer: Longitudinal observations from the whole body to cellular level. J Cachexia Sarcopenia Muscle 2023; 14:2579-2590. [PMID: 37727010 PMCID: PMC10751417 DOI: 10.1002/jcsm.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Cancer and its treatment can adversely affect skeletal muscle, impacting physical function, treatment response and survival. No studies, however, have comprehensively characterized these muscle adaptations longitudinally in human patients at the cellular level. METHODS We examined skeletal muscle size and function from the whole body to the sub-cellular level in 11 patients with non-small cell lung cancer (NSCLC; 6 male/5 female, mean age 58 ± 3 years) studied over a 2-month observation period starting during their first cycle of standard of care cancer treatment and in 11 age- and sex-matched healthy controls (HC) without a current or past history of cancer. Biopsies of the vastus lateralis were performed to assess muscle fibre size, contractility and mitochondrial content, along with assessments of physical function, whole muscle size and function, and circulating cytokines. RESULTS Body weight, composition and thigh muscle area and density were unaltered over time in patients with NSCLC, while muscle density was lower in patients with NSCLC versus HC (P = 0.03). Skeletal muscle fibre size decreased by 18% over time in patients (all P = 0.02) and was lower than HC (P = 0.02). Mitochondrial fractional area and density did not change over time in patients, but fractional area was lower in patients with NSCLC compared with HC (subsarcolemmal, P = 0.04; intermyofibrillar, P = 0.03). Patients with NSCLC had higher plasma concentrations of IL-6 (HC 1.40 ± 0.50; NSCLC 4.71 ± 4.22; P < 0.01), GDF-15 (HC 569 ± 166; NSCLC 2071 ± 1168; P < 0.01) and IL-8/CXCL8 (HC 4.9 ± 1.8; NSCLC 10.1 ± 6.0; P = 0.02) compared with HC, but there were no changes in inflammatory markers in patients with NSCLC over time. No changes were observed in markers of satellite cell activation or DNA damage in patients and no group differences were noted with HC. Whole-muscle strength was preserved over time in patients with NSCLC coincident with improved single fibre contractility. CONCLUSIONS This study is the first to comprehensively examine longitudinal alterations in skeletal muscle fibre size and function in patients with NSCLC and suggests that muscle fibre atrophy occurs during cancer treatment despite weight stability and no changes in conventional clinical measurements of whole body or thigh muscle size over this period.
Collapse
Affiliation(s)
- Deena B. Snoke
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Emma Bellefleur
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Hibba Tul Rehman
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- University of Vermont Cancer CenterUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - James A. Carson
- Department of Physical TherapyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Matthew E. Poynter
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Kim L. Dittus
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- University of Vermont Cancer CenterUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Michael J. Toth
- Department of MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- University of Vermont Cancer CenterUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
7
|
Cosentino M, Forcina L, Zouhair M, Apa L, Genovese D, Boccia C, Rizzuto E, Musarò A. Modelling three-dimensional cancer-associated cachexia and therapy: The molecular basis and therapeutic potential of interleukin-6 transignalling blockade. J Cachexia Sarcopenia Muscle 2023; 14:2550-2568. [PMID: 37727078 PMCID: PMC10751446 DOI: 10.1002/jcsm.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Causes and mechanisms underlying cancer cachexia are not fully understood, and currently, no therapeutic approaches are available to completely reverse the cachectic phenotype. Interleukin-6 (IL-6) has been extensively described as a key factor in skeletal muscle physiopathology, exerting opposite roles through different signalling pathways. METHODS We employed a three-dimensional ex vivo muscle engineered tissue (X-MET) to model cancer-associated cachexia and to study the effectiveness of selective inhibition of IL-6 transignalling in counteracting the cachectic phenotype. Conditioned medium (CM) derived from C26 adenocarcinoma cells was used as a source of soluble factors contributing to the establishment of cancer cachexia in the X-MET model. A dose of 1.2 ng/mL of glycoprotein-130 fused chimaera (gp130Fc) was added to cachectic culture medium to neutralize IL-6 transignalling. RESULTS C26-conditioned medium induced a cachectic-like phenotype in the X-MET, leading to a decline of muscle mass (-60%; P < 0.001), a reduction in myosin expression (-92.4%; P < 0.005) and a reduction of the contraction frequency spectrum (-94%). C26-conditioned medium contains elevated amounts of IL-6 (8.61 ± 4.09 pg/mL) and IL6R (56.85 ± 10.96 pg/mL). These released factors activated the signal transducer and activator of transcription 3 (STAT3) signalling in the C26_CM X-MET system (phosphorylated STAT3/TOTAL +54.6%; P < 0.005), which in turn promote an enhancement of Il-6 (+69.2%; P < 0.05) and Il6r (+43%; P < 0.05) gene expression, suggesting the induction of a feed-forward loop. The selective neutralization of IL-6 transignalling, by gp130Fc, in C26_CM X-MET prevented the hyperactivation of STAT3 (-55.8%; P < 0.005), countered the reduction of cross-sectional area (+28.2%; P < 0.05) and reduced the expression of proteolytic factors including muscle ring finger-1 (-88%; P < 0.005) and ATROGIN1 (-92%; P < 0.05), thus preserving the robustness and increasing the contractile force (+20%) of the three-dimensional muscle system. Interestingly, the selective inhibition of IL-6 transignalling modulated gene regulatory networks involved in myogenesis and apoptosis, normalizing the expression of pro-apoptotic miRNAs, including miR-31 (-53.2%; P < 0.05) and miR-34c (-65%; P < 0.005), and resulting in the reduction of apoptotic pathways highlighted by the sensible reduction of cleaved caspase 3 (-92.5%; P < 0.005) in gp130Fc-treated C26_CM X-MET. CONCLUSIONS IL-6 transignalling appeared as a promising target to counter cancer cachexia-related alterations. The X-MET model has proven to be a reliable drug-screening tool to identify novel therapeutic approaches and to test them in preclinical studies, significantly reducing the use of animal models.
Collapse
Affiliation(s)
- Marianna Cosentino
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Laura Forcina
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Mariam Zouhair
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Ludovica Apa
- Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
| | - Desirèe Genovese
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Caterina Boccia
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Scuola Superiore di Studi Avanzati Sapienza (SSAS)Sapienza University of RomeRomeItaly
| |
Collapse
|
8
|
Esteves M, Duarte M, Oliveira PA, Gil da Costa RM, Monteiro MP, Duarte JA. SKELETAL MUSCLE SENSITIVITY TO WASTING INDUCED BY UROTHELIAL CARCINOMA. Exp Oncol 2023; 45:107-119. [PMID: 37417276 DOI: 10.15407/exp-oncology.2023.01.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Skeletal muscle wasting is a common phenotypic feature of several types of cancer, and it is associated with functional impairment, respiratory complications, and fatigue. However, equivocal evidence remains regarding the impact of cancer-induced muscle wasting on the different fiber types. AIM The aim of this study was to investigate the impact of urothelial carcinoma induced in mice on the histomorphometric features and collagen deposition in different skeletal muscles. MATERIALS AND METHODS Thirteen ICR (CD1) male mice were randomly assigned into two groups: exposed to 0.05% N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) in drinking water for 12 weeks, plus 8 weeks of tap water (BBN, n = 8) or with access to tap water for 20 weeks (CONT, n = 5). Tibialis anterior, soleus, and diaphragm muscles were collected from all animals. For cross-sectional area and myonuclear domain analysis, muscle sections were stained with hematoxylin and eosin, and for collagen deposition assessment, muscle sections were stained with picrosirius red. RESULTS All animals from the BBN group developed urothelial preneoplastic and neoplastic lesions, and the tibialis anterior from these animals presented a reduced cross-sectional area (p < 0.001), with a decreased proportion of fibers with a higher cross-sectional area, increased collagen deposition (p = 0.017), and higher myonuclear domain (p = 0.031). BBN mice also showed a higher myonuclear domain in the diaphragm (p = 0.015). CONCLUSION Urothelial carcinoma induced muscle wasting of the tibialis anterior, expressed by a decreased cross-sectional area, higher infiltration of fibrotic tissue, and increased myonuclear domain, which also increased in the diaphragm, suggesting that fast glycolytic muscle fibers are more susceptible to be affected by cancer development.
Collapse
Affiliation(s)
- M Esteves
- FP-I3ID, FP-BHS, Escola Superior de Saúde Fernando Pessoa, Porto 4200-450, Portugal
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - M Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - P A Oliveira
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB): Clinical Academic Centre, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - R M Gil da Costa
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB): Clinical Academic Centre, Vila Real, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, Brazil
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - M P Monteiro
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- ITR - Laboratory of Integrative and Translocation Research in Population Health, Porto, Portugal
| | - J A Duarte
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
9
|
Schmich SKP, Keck J, Bonaterra GA, Bertoune M, Adam A, Wilhelm B, Slater EP, Schwarzbach H, Fendrich V, Kinscherf R, Hildebrandt W. Effects of Monoamino-Oxidase-A (MAO-A) Inhibition on Skeletal Muscle Inflammation and Wasting through Pancreatic Ductal Adenocarcinoma in Triple Transgenic Mice. Biomedicines 2023; 11:biomedicines11030912. [PMID: 36979889 PMCID: PMC10046345 DOI: 10.3390/biomedicines11030912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer cachexia describes a syndrome of muscle wasting and lipolysis that is still largely untreatable and negatively impacts prognosis, mobility, and healthcare costs. Since upregulation of skeletal muscle monoamine-oxidase-A (MAO-A), a source of reactive oxygen species, may contribute to cachexia, we investigated the effects of the MAO-inhibitor harmine-hydrochloride (HH, intraperitoneal, 8 weeks) on muscle wasting in a triple-transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC) and wild type (WT) mice. Gastrocnemius and soleus muscle cryo-cross-sections were analyzed for fiber type-specific cross-sectional area (CSA), fraction and capillarization using ATPase- and lectin-stainings. Transcripts of pro-apoptotic, -atrophic, and -inflammatory signals were determined by RT-qPCR. Furthermore, we evaluated the integrity of neuromuscular junction (NMJ, pre-/post-synaptic co-staining) and mitochondrial ultrastructure (transmission electron microscopy). MAO-A expression in gastrocnemius muscle was increased with PDAC vs. WT (immunohistochemistry: p < 0.05; Western blot: by trend). PDAC expectedly reduced fiber CSA and upregulated IL-1β in both calf muscles, while MuRF1 expression increased in soleus muscle only. Although IL-1β decreased, HH caused an additional 38.65% (p < 0.001) decrease in gastrocnemius muscle (IIBX) fiber CSA. Moreover, soleus muscle CSA remained unchanged despite the downregulation of E3-ligases FBXO32 (p < 0.05) and MuRF1 (p < 0.01) through HH. Notably, HH significantly decreased the post-synaptic NMJ area (quadriceps muscle) and glutathione levels (gastrocnemius muscle), thereby increasing mitochondrial damage and centronucleation in soleus and gastrocnemius type IIBX fibers. Moreover, although pro-atrophic/-inflammatory signals are reversed, HH unfortunately fails to stop and rather promotes PDAC-related muscle wasting, possibly via denervation or mitochondrial damage. These differential adverse vs. therapeutic effects warrant studies regarding dose-dependent benefits and risks with consideration of other targets of HH, such as the dual-specificity tyrosine phosphorylation regulated kinases 1A and B (DYRK1A/B).
Collapse
Affiliation(s)
- Simon K. P. Schmich
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Jan Keck
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Gabriel A. Bonaterra
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Mirjam Bertoune
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Anna Adam
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Beate Wilhelm
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Hans Schwarzbach
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Volker Fendrich
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, 35043 Marburg, Germany
| | - Ralf Kinscherf
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
| | - Wulf Hildebrandt
- Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-2864042; Fax: +49-6421-2868983
| |
Collapse
|
10
|
Murphy BT, Mackrill JJ, O'Halloran KD. Impact of cancer cachexia on respiratory muscle function and the therapeutic potential of exercise. J Physiol 2022; 600:4979-5004. [PMID: 36251564 PMCID: PMC10091733 DOI: 10.1113/jp283569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer cachexia is defined as a multi-factorial syndrome characterised by an ongoing loss of skeletal muscle mass and progressive functional impairment, estimated to affect 50-80% of patients and responsible for 20% of cancer deaths. Elevations in the morbidity and mortality rates of cachectic cancer patients has been linked to respiratory failure due to atrophy and dysfunction of the ventilatory muscles. Despite this, there is a distinct scarcity of research investigating the structural and functional condition of the respiratory musculature in cancer, with the majority of studies exclusively focusing on limb muscle. Treatment strategies are largely ineffective in mitigating the cachectic state. It is now widely accepted that an efficacious intervention will likely combine elements of pharmacology, nutrition and exercise. However, of these approaches, exercise has received comparatively little attention. Therefore, it is unlikely to be implemented optimally, whether in isolation or combination. In consideration of these limitations, the current review describes the mechanistic basis of cancer cachexia and subsequently explores the available respiratory- and exercise-focused literature within this context. The molecular basis of cachexia is thoroughly reviewed. The pivotal role of inflammatory mediators is described. Unravelling the mechanisms of exercise-induced support of muscle via antioxidant and anti-inflammatory effects in addition to promoting efficient energy metabolism via increased mitochondrial biogenesis, mitochondrial function and muscle glucose uptake provide avenues for interventional studies. Currently available pre-clinical mouse models including novel transgenic animals provide a platform for the development of multi-modal therapeutic strategies to protect respiratory muscles in people with cancer.
Collapse
Affiliation(s)
- Ben T. Murphy
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - John J. Mackrill
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - Ken D. O'Halloran
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
11
|
Wang R, Kumar B, Doud EH, Mosley AL, Alexander MS, Kunkel LM, Nakshatri H. Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:231-248. [PMID: 35402076 PMCID: PMC8971682 DOI: 10.1016/j.omtn.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
miR-486 is a myogenic microRNA, and its reduced skeletal muscle expression is observed in muscular dystrophy. Transgenic overexpression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues muscular dystrophy phenotype. We had previously demonstrated reduced circulating and skeletal muscle miR-486 levels with accompanying skeletal muscle defects in mammary tumor models. To determine whether skeletal muscle miR-486 is functionally similar in dystrophies and cancer, we performed functional limitations and biochemical studies of skeletal muscles of MMTV-Neu mice that mimic HER2+ breast cancer and MMTV-PyMT mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu mice. In this model, miR-486 reversed cancer-induced skeletal muscle changes, including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of hnRNPA0 and SRSF10 phosphorylation. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss of function causes congenital muscular dystrophy. Complementing these beneficial effects on muscle, miR-486 indirectly reduced tumor growth and improved survival, which is likely due to systemic effects of miR-486 on production of pro-inflammatory cytokines such as IL-6. Thus, similar to dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Louis M. Kunkel
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Fu L, Chen L, Li R, Xu W, Fu J, Ye X. Metabolomics studies on cachexia in patients with cancer: a scoping review protocol. BMJ Open 2022; 12:e052125. [PMID: 35414542 PMCID: PMC9006824 DOI: 10.1136/bmjopen-2021-052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Cancer seriously threatens human health worldwide. Cancer cachexia is one of the life-threatening consequences that occurs commonly in patients with cancer, and severely worsens patient survival, prognosis and quality of life. Previous studies have demonstrated that cancer cachexia is closely related to differential metabolites and metabolic pathways based on metabolomics analysis. This scoping review protocol, therefore, aims to provide the strategy for a formal scoping review that will summarise the differential metabolites and related metabolic pathways of cachexia in patients with cancer. METHODS AND ANALYSIS The proposed scoping review will follow the Arksey and O'Malley's methodological framework, Levac et al's recommendations for applying this framework, and Peters' enhancements of the framework. The key information from the selected studies will be extracted, including author, year of publication, cachexia definition, country/origin, study design, setting, population and sample size, biological specimens, independent variables, independent variables' measure and statistical analysis. A summary of metabolites will be divided into several sections depending on the biological specimen. Differential metabolites will be compared between paired groups, and the number and names of related metabolic pathways will be counted and described. The reporting of this scoping review will be in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews checklist. This is a scoping review protocol and describes the planned review process and provides data examples extracted from a pilot study to confirm the feasibility of further investigation of the subject. ETHICS AND DISSEMINATION An ethical approval is not required for this scoping review protocol, nor for the scoping review. The results of this scoping review will be disseminated through publication in a peer-reviewed journal, or presentation at a national or international conference.
Collapse
Affiliation(s)
- Liang Fu
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Lin Chen
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Rufang Li
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfei Fu
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xianghong Ye
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
13
|
Rich MM, Housley SN, Nardelli P, Powers RK, Cope TC. Imbalanced Subthreshold Currents Following Sepsis and Chemotherapy: A Shared Mechanism Offering a New Therapeutic Target? Neuroscientist 2022; 28:103-120. [PMID: 33345706 PMCID: PMC8215085 DOI: 10.1177/1073858420981866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Both sepsis and treatment of cancer with chemotherapy are known to cause neurologic dysfunction. The primary defects seen in both groups of patients are neuropathy and encephalopathy; the underlying mechanisms are poorly understood. Analysis of preclinical models of these disparate conditions reveal similar defects in ion channel function contributing to peripheral neuropathy. The defects in ion channel function extend to the central nervous system where lower motoneurons are affected. In motoneurons the defect involves ion channels responsible for subthreshold currents that convert steady depolarization into repetitive firing. The inability to correctly translate depolarization into steady, repetitive firing has profound effects on motor function, and could be an important contributor to weakness and fatigue experienced by both groups of patients. The possibility that disruption of function, either instead of, or in addition to neurodegeneration, may underlie weakness and fatigue leads to a novel approach to therapy. Activation of serotonin (5HT) receptors in a rat model of sepsis restores the normal balance of subthreshold currents and normal motoneuron firing. If an imbalance of subthreshold currents also occurs in other central nervous system neurons, it could contribute to encephalopathy. We hypothesize that pharmacologically restoring the proper balance of subthreshold currents might provide effective therapy for both neuropathy and encephalopathy in patients recovering from sepsis or treatment with chemotherapy.
Collapse
Affiliation(s)
- Mark M. Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Stephen N. Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA,Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randall K. Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Timothy C. Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA,Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
14
|
Sahinyan K, Blackburn DM, Simon MM, Lazure F, Kwan T, Bourque G, Soleimani VD. Application of ATAC-Seq for genome-wide analysis of the chromatin state at single myofiber resolution. eLife 2022; 11:72792. [PMID: 35188098 PMCID: PMC8901173 DOI: 10.7554/elife.72792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Myofibers are the main components of skeletal muscle, which is the largest tissue in the body. Myofibers are highly adaptive and can be altered under different biological and disease conditions. Therefore, transcriptional and epigenetic studies on myofibers are crucial to discover how chromatin alterations occur in the skeletal muscle under different conditions. However, due to the heterogenous nature of skeletal muscle, studying myofibers in isolation proves to be a challenging task. Single-cell sequencing has permitted the study of the epigenome of isolated myonuclei. While this provides sequencing with high dimensionality, the sequencing depth is lacking, which makes comparisons between different biological conditions difficult. Here, we report the first implementation of single myofiber ATAC-Seq, which allows for the sequencing of an individual myofiber at a depth sufficient for peak calling and for comparative analysis of chromatin accessibility under various physiological and disease conditions. Application of this technique revealed significant differences in chromatin accessibility between resting and regenerating myofibers, as well as between myofibers from a mouse model of Duchenne Muscular Dystrophy (mdx) and wild-type (WT) counterparts. This technique can lead to a wide application in the identification of chromatin regulatory elements and epigenetic mechanisms in muscle fibers during development and in muscle-wasting diseases.
Collapse
Affiliation(s)
- Korin Sahinyan
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Marie-Michelle Simon
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada.,Canadian Centre for Computational Genomics, Montreal, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
15
|
van der Ende M, Plas RLC, van Dijk M, Dwarkasing JT, van Gemerden F, Sarokhani A, Swarts HJM, van Schothorst EM, Grefte S, Witkamp RF, van Norren K. Effects of whole-body vibration training in a cachectic C26 mouse model. Sci Rep 2021; 11:21563. [PMID: 34732809 PMCID: PMC8566567 DOI: 10.1038/s41598-021-98665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Targeted exercise combined with nutritional and pharmacological strategies is commonly considered to be the most optimal strategy to reduce the development and progression of cachexia. For COPD patients, this multi-targeted treatment has shown beneficial effects. However, in many, physical activity is seriously hampered by frailty and fatigue. In the present study, effects of whole-body-vibration-training (WBV) were investigated, as potential alternative to active exercise, on body mass, muscle mass and function in tumour bearing mice. Twenty-four male CD2F1-mice (6–8 weeks, 21.5 ± 0.2 g) were stratified into four groups: control, control + WBV, C26 tumour-bearing, and C26 tumour-bearing + WBV. From day 1, whole-body-vibration was daily performed for 19 days (15 min, 45 Hz, 1.0 g acceleration). General outcome measures included body mass and composition, daily activity, blood analysis, assessments of muscle histology, function, and whole genome gene expression in m. soleus (SOL), m. extensor digitorum longus (EDL), and heart. Body mass, lean and fat mass and EDL mass were all lower in tumour bearing mice compared to controls. Except from improved contractility in SOL, no effects of vibration training were found on cachexia related general outcomes in control or tumour groups, as PCA analysis did not result in a distinction between corresponding groups. However, analysis of transcriptome data clearly revealed a distinction between tumour and trained tumour groups. WBV reduced the tumour-related effects on muscle gene expression in EDL, SOL and heart. Gene Set Enrichment Analysis showed that these effects were associated with attenuation of the upregulation of the proteasome pathway in SOL. These data suggest that WBV had minor effects on cachexia related general outcomes in the present experimental set-up, while muscle transcriptome showed changes associated with positive effects. This calls for follow-up studies applying longer treatment periods of WBV as component of a multiple-target intervention.
Collapse
Affiliation(s)
- Miranda van der Ende
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.,Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rogier L C Plas
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Miriam van Dijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jvalini T Dwarkasing
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Frans van Gemerden
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Attusa Sarokhani
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Hans J M Swarts
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaske van Norren
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Miller SG, Hafen PS, Law AS, Springer CB, Logsdon DL, O'Connell TM, Witczak CA, Brault JJ. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle. Metabolism 2021; 123:154864. [PMID: 34400216 PMCID: PMC8453098 DOI: 10.1016/j.metabol.2021.154864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Skeletal muscle atrophy, whether caused by chronic disease, acute critical illness, disuse or aging, is characterized by tissue-specific decrease in oxidative capacity and broad alterations in metabolism that contribute to functional decline. However, the underlying mechanisms responsible for these metabolic changes are largely unknown. One of the most highly upregulated genes in atrophic muscle is AMP deaminase 3 (AMPD3: AMP → IMP + NH3), which controls the content of intracellular adenine nucleotides (AdN; ATP + ADP + AMP). Given the central role of AdN in signaling mitochondrial gene expression and directly regulating metabolism, we hypothesized that overexpressing AMPD3 in muscle cells would be sufficient to alter their metabolic phenotype similar to that of atrophic muscle. METHODS AMPD3 and GFP (control) were overexpressed in mouse tibialis anterior (TA) muscles via plasmid electroporation and in C2C12 myotubes using adenovirus vectors. TA muscles were excised one week later, and AdN were quantified by UPLC. In myotubes, targeted measures of AdN, AMPK/PGC-1α/mitochondrial protein synthesis rates, unbiased metabolomics, and transcriptomics by RNA sequencing were measured after 24 h of AMPD3 overexpression. Media metabolites were measured as an indicator of net metabolic flux. At 48 h, the AMPK/PGC-1α/mitochondrial protein synthesis rates, and myotube respiratory function/capacity were measured. RESULTS TA muscles overexpressing AMPD3 had significantly less ATP than contralateral controls (-25%). In myotubes, increasing AMPD3 expression for 24 h was sufficient to significantly decrease ATP concentrations (-16%), increase IMP, and increase efflux of IMP catabolites into the culture media, without decreasing the ATP/ADP or ATP/AMP ratios. When myotubes were treated with dinitrophenol (mitochondrial uncoupler), AMPD3 overexpression blunted decreases in ATP/ADP and ATP/AMP ratios but exacerbated AdN degradation. As such, pAMPK/AMPK, pACC/ACC, and phosphorylation of AMPK substrates, were unchanged by AMPD3 at this timepoint. AMPD3 significantly altered 191 out of 639 detected intracellular metabolites, but only 30 transcripts, none of which encoded metabolic enzymes. The most altered metabolites were those within purine nucleotide, BCAA, glycolysis, and ceramide metabolic pathways. After 48 h, AMPD3 overexpression significantly reduced pAMPK/AMPK (-24%), phosphorylation of AMPK substrates (-14%), and PGC-1α protein (-22%). Moreover, AMPD3 significantly reduced myotube mitochondrial protein synthesis rates (-55%), basal ATP synthase-dependent (-13%), and maximal uncoupled oxygen consumption (-15%). CONCLUSIONS Increased expression of AMPD3 significantly decreased mitochondrial protein synthesis rates and broadly altered cellular metabolites in a manner similar to that of atrophic muscle. Importantly, the changes in metabolites occurred prior to reductions in AMPK signaling, gene expression, and mitochondrial protein synthesis, suggesting metabolism is not dependent on reductions in oxidative capacity, but may be consequence of increased AMP deamination. Therefore, AMP deamination in skeletal muscle may be a mechanism that alters the metabolic phenotype of skeletal muscle during atrophy and could be a target to improve muscle function during muscle wasting.
Collapse
Affiliation(s)
- Spencer G Miller
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Paul S Hafen
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew S Law
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David L Logsdon
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas M O'Connell
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carol A Witczak
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey J Brault
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
18
|
Halle JL, Counts-Franch BR, Prince RM, Carson JA. The Effect of Mechanical Stretch on Myotube Growth Suppression by Colon-26 Tumor-Derived Factors. Front Cell Dev Biol 2021; 9:690452. [PMID: 34395422 PMCID: PMC8363303 DOI: 10.3389/fcell.2021.690452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Preclinical models and in vitro experiments have provided valuable insight into the regulation of cancer-induced muscle wasting. Colon-26 (C26) tumor cells induce cachexia in mice, and conditioned media (CM) from these cells promotes myotube atrophy and catabolic signaling. While mechanical stimuli can prevent some effects of tumor-derived factors on myotubes, the impact of mechanical signaling on tumor-derived factor regulation of myosin heavy chain (MyHC) expression is not well understood. Therefore, we examined the effects of stretch-induced mechanical signaling on C2C12 myotube growth and MyHC expression after C26 CM exposure. C26 CM was administered to myotubes on day 5 of differentiation for 48 h. During the last 4 or 24 h of C26 CM exposure, 5% static uniaxial stretch was administered. C26 CM suppressed myotube growth and MyHC protein and mRNA expression. Stretch for 24 h increased myotube size and prevented the C26 CM suppression of MyHC-Fast protein expression. Stretch did not change suppressed MyHC mRNA expression. Stretch for 24 h reduced Atrogin-1/MAFbx, MuRF-1, and LC3B II/I ratio and increased integrin β1D protein expression and the myogenin-to-MyoD protein ratio. Stretch in the last 4 h of CM increased ERK1/2 phosphorylation but did not alter the CM induction of STAT3 or p38 phosphorylation. These results provide evidence that in myotubes pre-incubated with CM, the induction of mechanical signaling can still provide a growth stimulus and preserve MyHC-Fast protein expression independent of changes in mRNA expression.
Collapse
Affiliation(s)
| | | | | | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
19
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
20
|
Schroder EA, Wang L, Wen Y, Callahan LAP, Supinski GS. Skeletal muscle-specific calpastatin overexpression mitigates muscle weakness in aging and extends life span. J Appl Physiol (1985) 2021; 131:630-642. [PMID: 34197232 DOI: 10.1152/japplphysiol.00883.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calpain activation has been postulated as a potential contributor to the loss of muscle mass and function associated with both aging and disease, but limitations of previous experimental approaches have failed to completely examine this issue. We hypothesized that mice overexpressing calpastatin (CalpOX), an endogenous inhibitor of calpain, solely in skeletal muscle would show an amelioration of the aging muscle phenotype. We assessed four groups of mice (age in months): 1) young wild type (WT; 5.71 ± 0.43), 2) young CalpOX (5.6 ± 0.5), 3) old WT (25.81 ± 0.56), and 4) old CalpOX (25.91 ± 0.60) for diaphragm and limb muscle (extensor digitorum longus, EDL) force frequency relations. Aging significantly reduced diaphragm and EDL peak force in old WT mice, and decreased the force-time integral during a fatiguing protocol by 48% and 23% in aged WT diaphragm and EDL, respectively. In contrast, we found that CalpOX mice had significantly increased diaphragm and EDL peak force in old mice, similar to that observed in young mice. The impact of aging on the force-time integral during a fatiguing protocol was abolished in the diaphragm and EDL of old CalpOX animals. Surprisingly, we found that CalpOX had a significant impact on longevity, increasing median survival from 20.55 mo in WT mice to 24 mo in CalpOX mice (P = 0.0006).NEW & NOTEWORTHY This is the first study to investigate the role of calpastatin overexpression on skeletal muscle specific force in aging rodents. Muscle-specific overexpression of calpastatin, the endogenous calpain inhibitor, prevented aging-induced reductions in both EDL and diaphragm specific force and, remarkably, increased life span. These data suggest that diaphragm dysfunction in aging may be a major factor in determining longevity. Targeting the calpain/calpastatin pathway may elucidate novel therapies to combat skeletal muscle weakness in aging.
Collapse
Affiliation(s)
- Elizabeth A Schroder
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Gerald S Supinski
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
21
|
Fogarty MJ, Losbanos LL, Craig TA, Reynolds CJ, Brown AD, Kumar R, Sieck GC. Muscle-specific deletion of the vitamin D receptor in mice is associated with diaphragm muscle weakness. J Appl Physiol (1985) 2021; 131:95-106. [PMID: 34013750 PMCID: PMC8325609 DOI: 10.1152/japplphysiol.00194.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
Diseases or conditions where diaphragm muscle (DIAm) function is impaired, including chronic obstructive pulmonary disease, cachexia, asthma, and aging, are associated with an increased risk of pulmonary symptoms, longer duration of hospitalizations, and increasing requirements for mechanical ventilation. Vitamin D deficiency is associated with proximal muscle weakness that resolves following therapy with vitamin D3. Skeletal muscle expresses the vitamin D receptor (VDR), which responds to the active form of vitamin D, 1,25-dihydroxyvitamin D3 by altering gene expression in target cells. In knockout mice without skeletal muscle VDRs, there is marked atrophy of muscle fibers and a change in skeletal muscle biochemistry. We used a tamoxifen-inducible skeletal muscle Cre recombinase in Vdrfl/fl mice (Vdrfl/fl actin.iCre+) to assess the role of muscle-specific VDR signaling on DIAm-specific force, fatigability, and fiber type-dependent morphology. Vdrfl/fl actin.iCre+ mice treated with vehicle and Vdrfl/fl mice treated with tamoxifen served as controls. Seven days following the final treatment, mice were euthanized, the DIAm was removed, and isometric force and fatigue were assessed in DIAm strips using direct muscle stimulation. The proportion and cross-sectional areas of DIAm fiber types were evaluated by immunolabeling with myosin heavy chain antibodies differentiating type I, IIa and IIx, and/or IIb fibers. We show that in mice with skeletal muscle-specific VDR deletion, maximum specific force and residual force following fatigue are impaired, along with a selective atrophy of type IIx and/or IIb fibers. These results show that the VDR has a significant biological effect on DIAm function independent of systemic effects on mineral metabolism.NEW & NOTEWORTHY Vitamin D deficiency and vitamin D receptor (VDR) polymorphisms are associated with adverse pulmonary and diaphragm muscle (DIAm)-associated respiratory outcomes. We used a skeletal muscle-specific tamoxifen-inducible VDR knockout to investigate DIAm dysfunction following reduced VDR signaling. Marked DIAm weakness and atrophy of type IIx and/or IIb fibers are present in muscle-specific tamoxifen-induced VDR knockout mice compared with controls. These results show that the VDR has a significant biological effect on DIAm function independent of systemic effects on mineral metabolism.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Louis L Losbanos
- Division of Nephrology & Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Theodore A Craig
- Division of Nephrology & Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carmen J Reynolds
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Alyssa D Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Kumar
- Division of Nephrology & Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Vanderveen BN, Fix DK, Counts BR, Carson JA. The Effect of Wheel Exercise on Functional Indices of Cachexia in Tumor-bearing Mice. Med Sci Sports Exerc 2021; 52:2320-2330. [PMID: 33064407 DOI: 10.1249/mss.0000000000002393] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cancer-related fatigue and muscle wasting have received significant attention over the last few decades with the goal of establishing interventions that can improve cancer patient life quality and survival. Increased physical activity has shown to reduce cancer-associated fatigue and has been proposed as a promising therapeutic to attenuate cancer-induced wasting. However, significant gaps remain in our understanding of how physical activity affects the compositional and functional changes that initiate muscle wasting. The purpose of the current study was to determine the effect of wheel exercise on body composition and functional indices of cancer cachexia before the development of significant wasting. METHODS Thirteen-week-old male Apc (MIN) and C57BL/6 (B6) mice were given free wheel access (W) or a locked wheel (Sed) for 5 wk. RESULTS Wheel activity was reduced in the MIN compared with B6; however, wheel access increased complex II expression in isolated skeletal muscle mitochondria regardless of genotype. Wheel access had no effect on tumor burden or plasma interleukin-6 in the MIN. MIN-W increased body weight and lean mass compared with MIN-Sed, and there was a direct correlation between wheel distance and lean mass change. MIN-W increased grip strength and treadmill time to fatigue compared with MIN-Sed. Within MIN-W mice, skeletal muscle fatigability was only improved in high runners (>60 min·d). CONCLUSIONS Our results suggest that there were therapeutic benefits of increased activity related to body composition, behavior, and whole-body function that were not dependent on exercise duration; however, there was an exercise threshold needed to improve skeletal muscle fatigability in tumor-bearing mice. Interestingly, wheel access was able to improve compositional and functional outcomes without mitigating tumor number or size.
Collapse
Affiliation(s)
| | - Dennis K Fix
- Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Brittany R Counts
- Department of Physical Therapy, College of Health Professions, The University of Tennessee Health Sciences Center, Memphis, TN
| | - James A Carson
- Department of Physical Therapy, College of Health Professions, The University of Tennessee Health Sciences Center, Memphis, TN
| |
Collapse
|
23
|
Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021; 12:252-273. [PMID: 33783983 PMCID: PMC8061402 DOI: 10.1002/jcsm.12678] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia is a complex multi-organ catabolic syndrome that reduces mobility, increases fatigue, decreases the efficiency of therapeutic strategies, diminishes the quality of life, and increases the mortality of cancer patients. This review provides an exhaustive and comprehensive analysis of cancer cachexia-related phenotypic changes in skeletal muscle at both the cellular and subcellular levels in human cancer patients, as well as in animal models of cancer cachexia. Cancer cachexia is characterized by a major decrease in skeletal muscle mass in human and animals that depends on the severity of the disease/model and the localization of the tumour. It affects both type 1 and type 2 muscle fibres, even if some animal studies suggest that type 2 muscle fibres would be more prone to atrophy. Animal studies indicate an impairment in mitochondrial oxidative metabolism resulting from a decrease in mitochondrial content, an alteration in mitochondria morphology, and a reduction in mitochondrial metabolic fluxes. Immuno-histological analyses in human and animal models also suggest that a faulty mechanism of skeletal muscle repair would contribute to muscle mass loss. An increase in collagen deposit, an accumulation of fat depot outside and inside the muscle fibre, and a disrupted contractile machinery structure are also phenotypic features that have been consistently reported in cachectic skeletal muscle. Muscle function is also profoundly altered during cancer cachexia with a strong reduction in skeletal muscle force. Even though the loss of skeletal muscle mass largely contributes to the loss of muscle function, other factors such as muscle-nerve interaction and calcium handling are probably involved in the decrease in muscle force. Longitudinal analyses of skeletal muscle mass by imaging technics and skeletal muscle force in cancer patients, but also in animal models of cancer cachexia, are necessary to determine the respective kinetics and functional involvements of these factors. Our analysis also emphasizes that measuring skeletal muscle force through standardized tests could provide a simple and robust mean to early diagnose cachexia in cancer patients. That would be of great benefit to cancer patient's quality of life and health care systems.
Collapse
Affiliation(s)
- Agnès Martin
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| | - Damien Freyssenet
- Inter‐university Laboratory of Human Movement BiologyUniversité de Lyon, University Jean Monnet Saint‐EtienneSaint‐ÉtienneFrance
| |
Collapse
|
24
|
Neyroud D, Nosacka RL, Callaway CS, Trevino JG, Hu H, Judge SM, Judge AR. FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness. J Cachexia Sarcopenia Muscle 2021; 12:421-442. [PMID: 33527776 PMCID: PMC8061399 DOI: 10.1002/jcsm.12666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Skeletal muscle wasting is a devastating consequence of cancer that affects up to 80% of cancer patients and associates with reduced survival. Herein, we investigated the biological significance of Forkhead box P1 (FoxP1), a transcriptional repressor that we demonstrate is up-regulated in skeletal muscle in multiple models of cancer cachexia and in cachectic cancer patients. METHODS Inducible, skeletal muscle-specific FoxP1 over-expressing (FoxP1iSkmTg/Tg ) mice were generated through crossing conditional Foxp1a transgenic mice with HSA-MCM mice that express tamoxifen-inducible Cre recombinase under control of the skeletal muscle actin promoter. To determine the requirement of FoxP1 for cancer-induced skeletal muscle wasting, FoxP1-shRNA was packaged and targeted to muscles using AAV9 delivery prior to inoculation of mice with Colon-26 Adenocarcinoma (C26) cells. RESULTS Up-regulation of FoxP1 in adult skeletal muscle was sufficient to induce features of cachexia, including 15% reduction in body mass (P < 0.05), and a 16-27% reduction in skeletal muscle mass (P < 0.05) that was characterized by a 20% reduction in muscle fibre cross-sectional area of type IIX/B muscle fibres (P = 0.020). Skeletal muscles from FoxP1iSkmTg/Tg mice also showed significant damage and myopathy characterized by the presence of centrally nucleated myofibres, extracellular matrix expansion, and were 19-26% weaker than controls (P < 0.05). Transcriptomic analysis revealed FoxP1 as a potent transcriptional repressor of skeletal muscle gene expression, with enrichment of pathways related to skeletal muscle structure and function, growth signalling, and cell quality control. Because FoxP1 functions, at least in part, as a transcriptional repressor through its interaction with histone deacetylase proteins, we treated FoxP1iSkmTg/Tg mice with Trichostatin A, and found that this completely prevented the loss of muscle mass (p = 0.007) and fibre atrophy (P < 0.001) in the tibialis anterior. In the context of cancer, FoxP1 knockdown blocked the cancer-induced repression of myocyte enhancer factor 2 (MEF2)-target genes critical to muscle differentiation and repair, improved muscle ultrastructure, and attenuated muscle fibre atrophy by 50% (P < 0.05). CONCLUSIONS In summary, we identify FoxP1 as a novel repressor of skeletal muscle gene expression that is increased in cancer cachexia, whose up-regulation is sufficient to induce skeletal muscle wasting and weakness, and required for the normal wasting response to cancer.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
| | | | | | | | - Hui Hu
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Sarah M. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
| | - Andrew R. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
25
|
Hiroux C, Dalle S, Koppo K, Hespel P. Voluntary exercise does not improve muscular properties or functional capacity during C26-induced cancer cachexia in mice. J Muscle Res Cell Motil 2021; 42:169-181. [PMID: 33606189 DOI: 10.1007/s10974-021-09599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
Exercise training is considered as a potential intervention to counteract muscle degeneration in cancer cachexia. However, evidence to support such intervention is equivocal. Therefore, we investigated the effect of exercise training, i.e. voluntary wheel running, on muscle wasting, functional capacity, fiber type composition and vascularization during experimental cancer cachexia in mice. Balb/c mice were injected with PBS (CON) or C26 colon carcinoma cells to induce cancer cachexia (C26). Mice had free access to a running wheel in their home cage (CONEX and C26EX, n = 8-9) or were sedentary (CONS and C26S, n = 8-9). Mice were sacrificed 18 days upon tumor cell injection. Immunohistochemical analyes were performed on m. gastrocnemius and quadriceps, and ex vivo contractile properties were assessed in m. soleus and extensor digitorum longus (EDL). Compared with CON, C26 mice exhibited body weight loss (~ 20 %), muscle atrophy (~ 25 %), reduced grip strength (~ 25 %), and lower twitch and tetanic force (~ 20 %) production in EDL but not in m. soleus. Furthermore, muscle of C26 mice were characterizd by a slow-to-fast fiber type shift (type IIx fibers: +57 %) and increased capillary density (~ 30 %). In C26 mice, wheel running affect neither body weight loss, nor muscle atrophy or functional capacity, nor inhibited tumor growth. However, wheel running induced a type IIb to type IIa fiber shift in m. quadriceps from both CON and C26, but not in m. gastrocnemius. Wheel running does not exacerbate muscular degeneration in cachexic mice, but, when voluntary, is insufficient to improve the muscle phenotype.
Collapse
Affiliation(s)
- Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium.
| |
Collapse
|
26
|
Brown JL, Lawrence MM, Ahn B, Kneis P, Piekarz KM, Qaisar R, Ranjit R, Bian J, Pharaoh G, Brown C, Peelor FF, Kinter MT, Miller BF, Richardson A, Van Remmen H. Cancer cachexia in a mouse model of oxidative stress. J Cachexia Sarcopenia Muscle 2020; 11:1688-1704. [PMID: 32918528 PMCID: PMC7749559 DOI: 10.1002/jcsm.12615] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cancer is associated with muscle atrophy (cancer cachexia) that is linked to up to 40% of cancer-related deaths. Oxidative stress is a critical player in the induction and progression of age-related loss of muscle mass and weakness (sarcopenia); however, the role of oxidative stress in cancer cachexia has not been defined. The purpose of this study was to examine if elevated oxidative stress exacerbates cancer cachexia. METHODS Cu/Zn superoxide dismutase knockout (Sod1KO) mice were used as an established mouse model of elevated oxidative stress. Cancer cachexia was induced by injection of one million Lewis lung carcinoma (LLC) cells or phosphate-buffered saline (saline) into the hind flank of female wild-type mice or Sod1KO mice at approximately 4 months of age. The tumour developed for 3 weeks. Muscle mass, contractile function, neuromuscular junction (NMJ) fragmentation, metabolic proteins, mitochondrial function, and motor neuron function were measured in wild-type and Sod1KO saline and tumour-bearing mice. Data were analysed by two-way ANOVA with Tukey-Kramer post hoc test when significant F ratios were determined and α was set at 0.05. Unless otherwise noted, results in abstract are mean ±SEM. RESULTS Muscle mass and cross-sectional area were significantly reduced, in tumour-bearing mice. Metabolic enzymes were dysregulated in Sod1KO mice and cancer exacerbated this phenotype. NMJ fragmentation was exacerbated in tumour-bearing Sod1KO mice. Myofibrillar protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.00847 ± 0.00205; wildtype LLC, 0.0211 ± 0.00184) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0180 ± 0.00118; Sod1KO LLC, 0.0490 ± 0.00132). Muscle mitochondrial oxygen consumption was reduced in tumour-bearing mice compared with saline-injected wild-type mice. Mitochondrial protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.0204 ± 0.00159; wild-type LLC, 0.167 ± 0.00157) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0231 ± 0.00108; Sod1 KO LLC, 0.0645 ± 0.000631). Sciatic nerve conduction velocity was decreased in tumour-bearing wild-type mice (wild-type saline, 38.2 ± 0.861; wild-type LLC, 28.8 ± 0.772). Three out of eleven of the tumour-bearing Sod1KO mice did not survive the 3-week period following tumour implantation. CONCLUSIONS Oxidative stress does not exacerbate cancer-induced muscle loss; however, cancer cachexia may accelerate NMJ disruption.
Collapse
Affiliation(s)
- Jacob L Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Parker Kneis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna M Piekarz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jan Bian
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chase Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fredrick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Reynolds Center for Aging Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
27
|
Huertas AM, Morton AB, Hinkey JM, Ichinoseki-Sekine N, Smuder AJ. Modification of Neuromuscular Junction Protein Expression by Exercise and Doxorubicin. Med Sci Sports Exerc 2020; 52:1477-1484. [PMID: 31985575 DOI: 10.1249/mss.0000000000002286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Doxorubicin (DOX) is a highly effective antitumor agent widely used in cancer treatment. However, it is well established that DOX induces muscular atrophy and impairs force production. Although no therapeutic interventions exist to combat DOX-induced muscle weakness, endurance exercise training has been shown to reduce skeletal muscle damage caused by DOX administration. Numerous studies have attempted to identify molecular mechanisms responsible for exercise-induced protection against DOX myotoxicity. Nevertheless, the mechanisms by which endurance exercise protects against DOX-induced muscle weakness remain elusive. In this regard, impairments to the neuromuscular junction (NMJ) are associated with muscle wasting, and studies indicate that physical exercise can rescue NMJ fragmentation. Therefore, we tested the hypothesis that exercise protects against DOX-induced myopathy by preventing detrimental changes to key proteins responsible for maintenance of the NMJ. METHODS Female Sprague-Dawley rats were assigned to sedentary or exercise-trained groups. Exercise training consisted of a 5-d treadmill habituation period followed by 10 d of running (60 min·d, 30 m·min, 0% grade). After the last training bout, exercise-trained and sedentary animals were paired with either placebo (saline) or DOX (20 mg·kg i.p.) treatment. Two days after drug treatment, the soleus muscle was excised for subsequent analyses. RESULTS Our results indicate that endurance exercise training prevents soleus muscle atrophy and contractile dysfunction in DOX-treated animals. These adaptations were associated with the increased expression of the following neurotrophic factors: brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, nerve growth factor, and neurotrophin-3. In addition, exercise enhanced the expression of receptor-associated protein of the synapse and the acetylcholine receptor (AChR) subunits AChRβ, AChRδ, and AChRγ in DOX-treated animals. CONCLUSION Therefore, upregulating neurotrophic factor and NMJ protein expression may be an effective strategy to prevent DOX-induced skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Andres Mor Huertas
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | | | | | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| |
Collapse
|
28
|
Pharmacological targeting of mitochondrial function and reactive oxygen species production prevents colon 26 cancer-induced cardiorespiratory muscle weakness. Oncotarget 2020; 11:3502-3514. [PMID: 33014286 PMCID: PMC7517961 DOI: 10.18632/oncotarget.27748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome characterized by profound cardiac and diaphragm muscle wasting, which increase the risk of morbidity in cancer patients due to failure of the cardiorespiratory system. In this regard, muscle relies greatly on mitochondria to meet energy requirements for contraction and mitochondrial dysfunction can result in muscle weakness and fatigue. In addition, mitochondria are a major source of reactive oxygen species (ROS) production, which can stimulate increased rates of muscle protein degradation. Therefore, it has been suggested that mitochondrial dysfunction may be an underlying factor that contributes to the pathology of cancer cachexia. To determine if pharmacologically targeting mitochondrial dysfunction via treatment with the mitochondria-targeting peptide SS-31 would prevent cardiorespiratory muscle dysfunction, colon 26 (C26) adenocarcinoma tumor-bearing mice were administered either saline or SS-31 daily (3 mg/kg/day) following inoculation. C26 mice treated with saline demonstrated greater ROS production and mitochondrial uncoupling compared to C26 mice receiving SS-31 in both the heart and diaphragm muscle. In addition, saline-treated C26 mice exhibited a decline in left ventricular function which was significantly rescued in C26 mice treated with SS-31. In the diaphragm, muscle fiber cross-sectional area of C26 mice treated with saline was significantly reduced and force production was impaired compared to C26, SS-31-treated animals. Finally, ventilatory deficits were also attenuated in C26 mice treated with SS-31, compared to saline treatment. These data demonstrate that C26 tumors promote severe cardiac and respiratory myopathy, and that prevention of mitochondrial dysfunction is sufficient to preclude cancer cachexia-induced cardiorespiratory dysfunction.
Collapse
|
29
|
Mallard J, Hucteau E, Schott R, Petit T, Demarchi M, Belletier C, Ben Abdelghani M, Carinato H, Chiappa P, Fischbach C, Kalish-Weindling M, Bousinière A, Dufour S, Favret F, Pivot X, Hureau TJ, Pagano AF. Evolution of Physical Status From Diagnosis to the End of First-Line Treatment in Breast, Lung, and Colorectal Cancer Patients: The PROTECT-01 Cohort Study Protocol. Front Oncol 2020; 10:1304. [PMID: 32903594 PMCID: PMC7438727 DOI: 10.3389/fonc.2020.01304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Cancer cachexia and exacerbated fatigue represent two hallmarks in cancer patients, negatively impacting their exercise tolerance and ultimately their quality of life. However, the characterization of patients' physical status and exercise tolerance and, most importantly, their evolution throughout cancer treatment may represent the first step in efficiently counteracting their development with prescribed and tailored exercise training. In this context, the aim of the PROTECT-01 study will be to investigate the evolution of physical status, from diagnosis to the end of first-line treatment, of patients with one of the three most common cancers (i.e., lung, breast, and colorectal). Methods: The PROTECT-01 cohort study will include 300 patients equally divided between lung, breast and colorectal cancer. Patients will perform a series of assessments at three visits throughout the treatment: (1) between the date of diagnosis and the start of treatment, (2) 8 weeks after the start of treatment, and (3) after the completion of first-line treatment or at the 6-months mark, whichever occurs first. For each of the three visits, subjective and objective fatigue, maximal voluntary force, body composition, cachexia, physical activity level, quality of life, respiratory function, overall physical performance, and exercise tolerance will be assessed. Discussion: The present study is aimed at identifying the nature and severity of maladaptation related to exercise intolerance in the three most common cancers. Therefore, our results should contribute to the delineation of the needs of each group of patients and to the determination of the most valuable exercise interventions in order to counteract these maladaptations. This descriptive and comprehensive approach is a prerequisite in order to elaborate, through future interventional research projects, tailored exercise strategies to counteract specific symptoms that are potentially cancer type-dependent and, in fine, to improve the health and quality of life of cancer patients. Moreover, our concomitant focus on fatigue and cachexia will provide insightful information about two factors that may have substantial interaction but require further investigation. Trial registration: This prospective study has been registered at ClinicalTrials.gov (NCT03956641), May, 2019.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Roland Schott
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Thierry Petit
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Martin Demarchi
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | | | | | - Hélène Carinato
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Pascale Chiappa
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Cathie Fischbach
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | | | - Audren Bousinière
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Stéphane Dufour
- EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Fabrice Favret
- EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Thomas J Hureau
- EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| | - Allan F Pagano
- EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Faculty of Medicine, Faculty of Sports Sciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Chartogne M, Rahmani A, Nicolon L, Jubeau M, Morel B. Neuromuscular fatigability amplitude and aetiology are interrelated across muscles. Exp Physiol 2020; 105:1758-1766. [PMID: 32822076 DOI: 10.1113/ep088682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is neuromuscular fatigability interrelated between different muscle groups from the same individual during isometric all-out exercise? What is the main finding and its importance? Although the average decrease can vary between muscles, an individual demonstrates interrelated fatigability aetiology regardless of the muscle group tested. The inter-individual variability provides evidence of different profiles common between muscles, which can be regarded as an individual characteristic. ABSTRACT Neuromuscular fatigability is commonly attributed to central and peripheral origins. However, there is strong evidence of interactions between these two mechanisms. According to the idea that peripheral fatigability might be centrally regulated, one can hypothesize that neuromuscular fatigability would be correlated between different muscle groups at the individual level. Thirty-two healthy participants (16 women and 16 men) completed two 5 min fatiguing exercises [60 isometric maximal voluntary contractions (MVCs)] with finger flexors (FFs) and ankle plantar flexors (PFs) in two randomized sessions. Neuromuscular testing was conducted before, during (every six MVCs) and directly after the fatigue procedure. The force asymptote (FA ) was calculated as the asymptote of the force-time relationship. Changes (post- vs. pre-fatigue) in the exercise-evoked force (ΔDb100 ), voluntary activation (ΔVA) and central activation ratio (∆CAR) were also investigated. Significant correlations were found between FFs and PFs for FA , ΔDb100 and ΔVA (r = 0.65, r = 0.63 and r = 0.50, respectively). A significant negative correlation between ∆CAR and ∆Db100 was evidenced for both PFs (r = -0.82) and FFs (r = -0.57). Neuromuscular fatigability is correlated between different muscle groups at the individual level. The results support the idea that a restrained motor drive prevents large peripheral perturbations and that individuals exhibit correlated fatigability aetiology regardless of the muscle group tested. Widely different central/peripheral profiles can be found amongst individuals, and a part of the fatigability aetiology can be regarded as an individual characteristic.
Collapse
Affiliation(s)
- Martin Chartogne
- Movement, Interactions, Performance Laboratory, Le Mans University, Le Mans, France
| | - Abderrahmane Rahmani
- Movement, Interactions, Performance Laboratory, Le Mans University, Le Mans, France
| | - Lucie Nicolon
- Movement, Interactions, Performance Laboratory, Le Mans University, Le Mans, France
| | - Marc Jubeau
- Movement, Interactions, Performance Laboratory, Nantes University, Nantes, France
| | - Baptiste Morel
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
31
|
VanderVeen BN, Murphy EA, Carson JA. The Impact of Immune Cells on the Skeletal Muscle Microenvironment During Cancer Cachexia. Front Physiol 2020; 11:1037. [PMID: 32982782 PMCID: PMC7489038 DOI: 10.3389/fphys.2020.01037] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Progressive weight loss combined with skeletal muscle atrophy, termed cachexia, is a common comorbidity associated with cancer that results in adverse consequences for the patient related to decreased chemotherapy responsiveness and increased mortality. Cachexia's complexity has provided a barrier for developing successful therapies to prevent or treat the condition, since a large number of systemic disruptions that can regulate muscle mass are often present. Furthermore, considerable effort has focused on investigating how tumor derived factors and inflammatory mediators directly signal skeletal muscle to disrupt protein turnover regulation. Currently, there is developing appreciation for understanding how cancer alters skeletal muscle's complex microenvironment and the tightly regulated interactions between multiple cell types. Skeletal muscle microenvironment interactions have established functions in muscle response to regeneration from injury, growth, aging, overload-induced hypertrophy, and exercise. This review explores the growing body of evidence for immune cell modulation of the skeletal muscle microenvironment during cancer-induced muscle wasting. Emphasis is placed on the regulatory network that integrates physiological responses between immune cells with other muscle cell types including satellite cells, fibroblast cells, and endothelial cells to regulate myofiber size and plasticity. The overall goal of this review is to provide an understanding of how different cell types that constitute the muscle microenvironment and their signaling mediators contribute to cancer and chemotherapy-induced muscle wasting.
Collapse
Affiliation(s)
- Brandon N. VanderVeen
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
- AcePre, LLC, Columbia, SC, United States
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
32
|
Vohra R, Campbell MD, Park J, Whang S, Gravelle K, Wang YN, Hwang JH, Marcinek DJ, Lee D. Increased tumour burden alters skeletal muscle properties in the KPC mouse model of pancreatic cancer. JCSM RAPID COMMUNICATIONS 2020; 3:44-55. [PMID: 33073264 PMCID: PMC7566781 DOI: 10.1002/rco2.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cancer cachexia is a multifactorial wasting syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. We address these issues in a novel transgenic mouse model Kras, Trp53 and Pdx-1-Cre (KPC) of pancreatic ductal adenocarcinoma (PDA) using multi-parametric magnetic resonance (mp-MR) measures. METHODS KPC mice (n = 10) were divided equally into two groups (n = 5/group) depending on the size of the tumor i.e. tumor size <250 mm3 and >250 mm3. Using mp-MR measures, we demonstrated the changes in the gastrocnemius muscle at the microstructural level. In addition, we evaluated skeletal muscle contractile function in KPC mice using an in vivo approach. RESULTS Increase in tumor size resulted in decrease in gastrocnemius maximum cross sectional area, decrease in T2 relaxation time, increase in magnetization transfer ratio, decrease in mean diffusivity, and decrease in radial diffusivity of water across the muscle fibers. Finally, we detected significant decrease in absolute and specific force production of gastrocnemius muscle with increase in tumor size. CONCLUSIONS Our findings indicate that increase in tumor size may cause alterations in structural and functional parameters of skeletal muscles and that MR parameters may be used as sensitive biomarkers to noninvasively detect structural changes in cachectic muscles.
Collapse
Affiliation(s)
- Ravneet Vohra
- Department of Radiology, University of Washington, Seattle,
USA
| | | | - Joshua Park
- Department of Radiology, University of Washington, Seattle,
USA
| | - Stella Whang
- Department of Medicine, University of Washington, Seattle,
USA
| | - Kayla Gravelle
- Department of Medicine, University of Washington, Seattle,
USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington,
Seattle, USA
| | - Joo-Ha Hwang
- Division of Gastroenterology and Hepatology, Stanford
University, Stanford, USA
| | | | - Donghoon Lee
- Department of Radiology, University of Washington, Seattle,
USA
| |
Collapse
|
33
|
Dalise S, Tropea P, Galli L, Sbrana A, Chisari C. Muscle function impairment in cancer patients in pre-cachexia stage. Eur J Transl Myol 2020; 30:8931. [PMID: 32782760 PMCID: PMC7385693 DOI: 10.4081/ejtm.2019.8931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia has been reported to be directly responsible for at least 20% of cancer deaths. Management of muscle wasting in cancer-associated cachexia appears to be of pivotal importance for survival of patients. In this regard, it would be interesting to identify before its patent appearance eventual functional markers of muscle damage, to plan specific exercise protocols to counteract cachexia. The muscle function of 13 oncologic patients and 15 controls was analyzed through: i) analysis of the oxidative metabolism, indirectly evaluated trough dosage of blood lactate levels before and after a submaximal incremental exercise on a treadmill; ii) analysis of strength and, iii) endurance, in both lower and upper limbs muscles, employing an isokinetic dynamometer. Statistical analyses were carried out to compare the muscle activities between groups. Analysis of oxidative metabolism during the incremental exercise on a treadmill showed that patients performed a shorter exercise than controls. Lactate levels were significantly higher in patients both at baseline and after the task. Muscle strength analysis in patients group showed a reduction of Maximum Voluntary Contraction during the isometric contraction and, a tendency to fatigue during endurance task. Data emerging from this study highlight an impairment of muscle oxidative metabolism in subjects affected by a pre-cachexia stage of cancer. A trend of precocious fatigability and an impairment of muscle strength production were also observed. This evidence underlines the relevance of assessing muscle function in order to develop novel rehabilitative approaches able to counteract motor impairment and eventually to prevent cachexia in these patients.
Collapse
Affiliation(s)
- Stefania Dalise
- Unit of Neurorehabilitation, University Hospital of Pisa, Pisa, Italy
| | - Peppino Tropea
- Department of Neurorehabilitation Sciences Casa Cura Policlinico, Milan, Italy
| | - Luca Galli
- Unit of Oncology 2, University Hospital of Pisa, Pisa, Italy
| | - Andrea Sbrana
- Unit of Oncology 2, University Hospital of Pisa, Pisa, Italy
| | - Carmelo Chisari
- Unit of Neurorehabilitation, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Dalise S, Tropea P, Galli L, Sbrana A, Chisari C. Muscle function impairment in cancer patients in pre-cachexia stage. Eur J Transl Myol 2020. [DOI: 10.4081/ejtm.2020.8931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cancer cachexia has been reported to be directly responsible for at least 20% of cancer deaths. Management of muscle wasting in cancer-associated cachexia appears to be of pivotal importance for survival of patients. In this regard, it would be interesting to identify before its patent appearance eventual functional markers of muscle damage, to plan specific exercise protocols to counteract cachexia. The muscle function of 13 oncologic patients and 15 controls was analyzed through: i) analysis of the oxidative metabolism, indirectly evaluated trough dosage of blood lactate levels before and after a submaximal incremental exercise on a treadmill; ii) analysis of strength and, iii) endurance, in both lower and upper limbs muscles, employing an isokinetic dynamometer. Statistical analyses were carried out to compare the muscle activities between groups. Analysis of oxidative metabolism during the incremental exercise on a treadmill showed that patients performed a shorter exercise than controls. Lactate levels were significantly higher in patients both at baseline and after the task. Muscle strength analysis in patients group showed a reduction of Maximum Voluntary Contraction during the isometric contraction and, a tendency to fatigue during endurance task. Data emerging from this study highlight an impairment of muscle oxidative metabolism in subjects affected by a pre-cachexia stage of cancer. A trend of precocious fatigability and an impairment of muscle strength production were also observed. This evidence underlines the relevance of assessing muscle function in order to develop novel rehabilitative approaches able to counteract motor impairment and eventually to prevent cachexia in these patients.
Collapse
|
35
|
Nosacka RL, Delitto AE, Delitto D, Patel R, Judge SM, Trevino JG, Judge AR. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J Cachexia Sarcopenia Muscle 2020; 11:820-837. [PMID: 32039571 PMCID: PMC7296265 DOI: 10.1002/jcsm.12550] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer cachexia is a life-threatening metabolic syndrome that causes significant loss of skeletal muscle mass and significantly increases mortality in cancer patients. Currently, there is an urgent need for better understanding of the molecular pathophysiology of this disease so that effective therapies can be developed. The majority of pre-clinical studies evaluating skeletal muscle's response to cancer have focused on one or two pre-clinical models, and almost all have focused specifically on limb muscles. In the current study, we reveal key differences in the histology and transcriptomic signatures of a limb muscle and a respiratory muscle in orthotopic pancreatic cancer patient-derived xenograft (PDX) mice. METHODS To create four cohorts of PDX mice evaluated in this study, tumours resected from four pancreatic ductal adenocarcinoma patients were portioned and attached to the pancreas of immunodeficient NSG mice. RESULTS Body weight, muscle mass, and fat mass were significantly decreased in each PDX line. Histological assessment of cryosections taken from the tibialis anterior (TA) and diaphragm (DIA) revealed differential effects of tumour burden on their morphology. Subsequent genome-wide microarray analysis on TA and DIA also revealed key differences between their transcriptomes in response to cancer. Genes up-regulated in the DIA were enriched for extracellular matrix protein-encoding genes and genes related to the inflammatory response, while down-regulated genes were enriched for mitochondria related protein-encoding genes. Conversely, the TA showed up-regulation of canonical atrophy-associated pathways such as ubiquitin-mediated protein degradation and apoptosis, and down-regulation of genes encoding extracellular matrix proteins. CONCLUSIONS These data suggest that distinct biological processes may account for wasting in different skeletal muscles in response to the same tumour burden. Further investigation into these differences will be critical for the future development of effective clinical strategies to counter cancer cachexia.
Collapse
Affiliation(s)
- Rachel L Nosacka
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Andrea E Delitto
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Dan Delitto
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, USA
| | - Rohan Patel
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| | - Jose G Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, USA
| |
Collapse
|
36
|
Greenman AC, Albrecht DM, Halberg RB, Diffee GM. Sex differences in skeletal muscle alterations in a model of colorectal cancer. Physiol Rep 2020; 8:e14391. [PMID: 32170841 PMCID: PMC7070158 DOI: 10.14814/phy2.14391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is the loss of lean muscle mass with or without loss of fat mass that is often highlighted by a progressive loss of skeletal muscle mass and function. The mechanisms behind the cachexia-related loss of skeletal muscle are poorly understood, including cachexia-related muscle functional impairments. Existing models have revealed some potential mechanisms, but appear limited to how the cancer develops and the type of tumors that form. We studied the C57BL6/J (B6) ApcMin/+ Tg::Fabp1-Cre TG::PIK3ca* (CANCER) mouse. In this model, mice develop highly aggressive intestinal cancers. We tested whether CANCER mice develop cancer cachexia, if muscle function is altered and if sex differences are present. Both female and male mice, B6 (CONTROL) and CANCER mice, were analyzed to determine body weight, hindlimb muscle mass, protein concentration, specific force, and fatigability. Female CANCER mice had reduced body weight and hindlimb muscle mass compared with female CONTROL mice, but lacked changes in protein concentration and specific force. Male CANCER mice had reduced protein concentration and reduced specific force, but lacked altered body weight and muscle mass. There were no changes in fatigability in either group. Our study demonstrates that CANCER mice present an early stage of cachexia, have reduced specific force in male CANCER mice and develop a sex-dependent cachexia phenotype. However, CANCER mice lack certain aspects of the syndrome seen in the human scenario and, therefore, using the CANCER mice as a preclinical model does not seem sufficient in order to maximize the translation of preclinical findings to humans.
Collapse
Affiliation(s)
- Angela C. Greenman
- Balke Biodynamics LaboratoryDepartment of KinesiologyUniversity of WisconsinMadisonWIUSA
| | - Dawn M. Albrecht
- McArdle Laboratory for Cancer ResearchDepartment of OncologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Richard B. Halberg
- McArdle Laboratory for Cancer ResearchDepartment of OncologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Gary M. Diffee
- Balke Biodynamics LaboratoryDepartment of KinesiologyUniversity of WisconsinMadisonWIUSA
| |
Collapse
|
37
|
Wang R, Nakshatri H. Systemic Actions of Breast Cancer Facilitate Functional Limitations. Cancers (Basel) 2020; 12:cancers12010194. [PMID: 31941005 PMCID: PMC7016719 DOI: 10.3390/cancers12010194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a disease of a specific organ, but its effects are felt throughout the body. The systemic effects of breast cancer can lead to functional limitations in patients who suffer from muscle weakness, fatigue, pain, fibromyalgia, or many other dysfunctions, which hasten cancer-associated death. Mechanistic studies have identified quite a few molecular defects in skeletal muscles that are associated with functional limitations in breast cancer. These include circulating cytokines such as TNF-α, IL-1, IL-6, and TGF-β altering the levels or function of myogenic molecules including PAX7, MyoD, and microRNAs through transcriptional regulators such as NF-κB, STAT3, and SMADs. Molecular defects in breast cancer may also include reduced muscle mitochondrial content and increased extracellular matrix deposition leading to energy imbalance and skeletal muscle fibrosis. This review highlights recent evidence that breast cancer-associated molecular defects mechanistically contribute to functional limitations and further provides insights into therapeutic interventions in managing functional limitations, which in turn may help to improve quality of life in breast cancer patients.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-2238
| |
Collapse
|
38
|
Abstract
Breathing is achieved without thought despite being controlled by a complex neural network. The diaphragm is the predominant muscle responsible for force/pressure generation during breathing, but it is also involved in other non-ventilatory expulsive behaviors. This review considers alterations in diaphragm muscle fiber types and the neural control of the diaphragm across our lifespan and in various disease conditions.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
39
|
Rosa-Caldwell ME, Fix DK, Washington TA, Greene NP. Muscle alterations in the development and progression of cancer-induced muscle atrophy: a review. J Appl Physiol (1985) 2019; 128:25-41. [PMID: 31725360 DOI: 10.1152/japplphysiol.00622.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia-cancer-associated body weight and muscle loss-is a significant predictor of mortality and morbidity in cancer patients across a variety of cancer types. However, despite the negative prognosis associated with cachexia onset, there are no clinical therapies approved to treat or prevent cachexia. This lack of treatment may be partially due to the relative dearth of literature on mechanisms occurring within the muscle before the onset of muscle wasting. Therefore, the purpose of this review is to compile the current scientific literature on mechanisms contributing to the development and progression of cancer cachexia, including protein turnover, inflammatory signaling, and mitochondrial dysfunction. We define "development" as changes in cell function occurring before the onset of cachexia and "progression" as alterations to cell function that coincide with the exacerbation of muscle wasting. Overall, the current literature suggests that multiple aspects of cellular function, such as protein turnover, inflammatory signaling, and mitochondrial quality, are altered before the onset of muscle loss during cancer cachexia and clearly highlights the need to study more thoroughly the developmental stages of cachexia. The studying of these early aberrations will allow for the development of effective therapeutics to prevent the onset of cachexia and improve health outcomes in cancer patients.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Dennis K Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
40
|
Talbert EE, Cuitiño MC, Ladner KJ, Rajasekerea PV, Siebert M, Shakya R, Leone GW, Ostrowski MC, Paleo B, Weisleder N, Reiser PJ, Webb A, Timmers CD, Eiferman DS, Evans DC, Dillhoff ME, Schmidt CR, Guttridge DC. Modeling Human Cancer-induced Cachexia. Cell Rep 2019; 28:1612-1622.e4. [PMID: 31390573 PMCID: PMC6733019 DOI: 10.1016/j.celrep.2019.07.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023] Open
Abstract
Cachexia is a wasting syndrome characterized by pronounced skeletal muscle loss. In cancer, cachexia is associated with increased morbidity and mortality and decreased treatment tolerance. Although advances have been made in understanding the mechanisms of cachexia, translating these advances to the clinic has been challenging. One reason for this shortcoming may be the current animal models, which fail to fully recapitulate the etiology of human cancer-induced tissue wasting. Because pancreatic ductal adenocarcinoma (PDA) presents with a high incidence of cachexia, we engineered a mouse model of PDA that we named KPP. KPP mice, similar to PDA patients, progressively lose skeletal and adipose mass as a consequence of their tumors. In addition, KPP muscles exhibit a similar gene ontology as cachectic patients. We envision that the KPP model will be a useful resource for advancing our mechanistic understanding and ability to treat cancer cachexia.
Collapse
Affiliation(s)
- Erin E Talbert
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria C Cuitiño
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Katherine J Ladner
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
| | - Priyani V Rajasekerea
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
| | - Melissa Siebert
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
| | - Reena Shakya
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
| | - Gustavo W Leone
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael C Ostrowski
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian Paleo
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J Reiser
- Division of Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amy Webb
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cynthia D Timmers
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel S Eiferman
- Division of Trauma, Critical Care, and Burn, The Ohio State University, Columbus, OH 43210, USA
| | - David C Evans
- Division of Trauma, Critical Care, and Burn, The Ohio State University, Columbus, OH 43210, USA
| | - Mary E Dillhoff
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA; Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Carl R Schmidt
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA; Division of Surgical Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Arthur G. James Comprehensive Cancer Center Cancer Cachexia Program, The Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
41
|
Hahn D, Kumar RA, Ryan TE, Ferreira LF. Mitochondrial respiration and H 2O 2 emission in saponin-permeabilized murine diaphragm fibers: optimization of fiber separation and comparison to limb muscle. Am J Physiol Cell Physiol 2019; 317:C665-C673. [PMID: 31314583 DOI: 10.1152/ajpcell.00184.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diaphragm abnormalities in aging or chronic diseases include impaired mitochondrial respiration and H2O2 emission, which can be measured using saponin-permeabilized muscle fibers. Mouse diaphragm presents a challenge for isolation of fibers due to relatively high abundance of connective tissue in healthy muscle that is exacerbated in disease states. We tested a new approach to process mouse diaphragm for assessment of intact mitochondria respiration and ROS emission in saponin-permeabilized fibers. We used the red gastrocnemius (RG) as "standard" limb muscle. Markers of mitochondrial content were two- to fourfold higher in diaphragm (Dia) than in RG (P < 0.05). Maximal O2 consumption (JO2: pmol·s-1·mg-1) in Dia was higher with glutamate, malate, and succinate (Dia 399 ± 127, RG 148 ± 60; P < 0.05) and palmitoyl-CoA + carnitine (Dia 15 ± 5, RG 7 ± 1; P < 0.05) than in RG, but not different between muscles when JO2 was normalized to citrate synthase activity. Absolute JO2 for Dia was two- to fourfold higher than reported in previous studies. Mitochondrial JH2O2 was higher in Dia than in RG (P < 0.05), but lower in Dia than in RG when JH2O2 was normalized to citrate synthase activity. Our findings are consistent with an optimized diaphragm preparation for assessment of intact mitochondria in permeabilized fiber bundles. The data also suggest that higher mitochondrial content potentially makes the diaphragm more susceptible to "mitochondrial onset" myopathy. Overall, the new approach will facilitate testing and understanding of diaphragm mitochondrial function in mouse models that are used to advance biomedical research and human health.
Collapse
Affiliation(s)
- Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| |
Collapse
|
42
|
Fogarty MJ, Mantilla CB, Sieck GC. Impact of sarcopenia on diaphragm muscle fatigue. Exp Physiol 2019; 104:1090-1099. [PMID: 30924589 DOI: 10.1113/ep087558] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the residual force generated by the diaphragm muscle after repeated activation reduced with sarcopenia, and is the residual force generated after fatiguing activation sufficient to sustain ventilatory behaviours of diaphragm muscle in young and old rats? What is the main finding and its importance? After diaphragm muscle fatigue, the residual specific force after 120 s of repeated stimulation was unaffected by ageing and was sufficient to accomplish ventilatory behaviours, but not expulsive manoeuvres (e.g. coughing). The inability to perform expulsive behaviours might underlie the increased susceptibility of older individuals to respiratory tract infections. ABSTRACT Type IIx and/or IIb diaphragm muscle (DIAm) fibres make up more fatigable motor units that are more vulnerable to sarcopenia, i.e. age-associated reductions of specific force and cross-sectional area. In contrast, type I and IIa DIAm fibres form fatigue-resistant motor units that are relatively unchanged with age. The fatigue resistance of the DIAm is assessed by normalizing the residual force generated after a period of repeated supramaximal stimulation (e.g. 120 s) to the initial maximal force. Given that sarcopenia primarily affects more fatigable DIAm motor units, apparent fatigue resistance improves with ageing. However, the central question is whether there is an ageing-related difference in the residual force generated by the DIAm after repeated stimulation and whether this force is sufficient to sustain ventilatory behaviours of DIAm. In 6- and 24-month-old Fischer 344 rats, we assessed the loss of ex vivo DIAm force throughout 120 s of repeated supramaximal stimulation at 10, 40 and 75 Hz. We found that relative fatigue resistance improved in older rats at 40 and 75 Hz stimulation. Across all stimulation frequencies, DIAm residual force was unchanged with age (∼5 N cm-2 ). We conclude that ageing increases the relative contribution of type I and IIa fibres to DIAm force, with decreased contributions of type IIx and/or IIb fibres. The residual force generated by the DIAm after repeated stimulation is sufficient to accomplish ventilatory behaviours, regardless of age.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Neyroud D, Nosacka RL, Judge AR, Hepple RT. Colon 26 adenocarcinoma (C26)-induced cancer cachexia impairs skeletal muscle mitochondrial function and content. J Muscle Res Cell Motil 2019; 40:59-65. [PMID: 30945134 DOI: 10.1007/s10974-019-09510-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/23/2019] [Indexed: 01/06/2023]
Abstract
The present study aimed to determine the impact of colon 26 adenocarcinoma (C26)-induced cancer cachexia on skeletal muscle mitochondrial respiration and content. Twelve male CD2F1 mice were injected with C26-cells (tumor bearing (TB) group), whereas 12 age-matched mice received PBS vehicle injection (non-tumor bearing (N-TB) group). Mitochondrial respiration was studied in saponin-permeabilized soleus myofibers. TB mice showed lower body weight (~ 20%) as well as lower soleus, gastrocnemius-plantaris complex and tibialis anterior masses versus N-TB mice (p < 0.05). Soleus maximal state III mitochondrial respiration was 20% lower (10 mM glutamate, 5 mM malate, 5 mM adenosine diphosphate; p < 0.05) and acceptor control ratio (state III/state II) was 15% lower in the TB vs. N-TB (p < 0.05), with the latter suggesting uncoupling. Lower VDAC protein content suggested reduced mitochondrial content in TB versus N-TB (p < 0.05). Skeletal muscle in C26-induced cancer cachexia exhibits reductions in: maximal mitochondrial respiration capacity, mitochondrial coupling and mitochondrial content.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical Therapy, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA.
| | - Rachel L Nosacka
- Department of Physical Therapy, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| |
Collapse
|
44
|
VanderVeen BN, Fix DK, Montalvo RN, Counts BR, Smuder AJ, Murphy EA, Koh HJ, Carson JA. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp Physiol 2019; 104:385-397. [PMID: 30576589 DOI: 10.1113/ep087429] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Interleukin-6 has been associated with muscle mass and metabolism in both physiological and pathological conditions. A causal role for interleukin-6 in the induction of fatigue and disruption of mitochondrial function has not been determined. What is the main finding and its importance? We demonstrate that chronically elevated interleukin-6 increased skeletal muscle fatigability and disrupted mitochondrial content and function independent of changes in fibre type and mass. ABSTRACT Interleukin-6 (IL-6) can initiate intracellular signalling in skeletal muscle by binding to the IL-6-receptor and interacting with the transmembrane gp130 protein. Circulating IL-6 has established effects on skeletal muscle mass and metabolism in both physiological and pathological conditions. However, the effects of circulating IL-6 on skeletal muscle function are not well understood. The purpose of this study was to determine whether chronically elevated systemic IL-6 was sufficient to disrupt skeletal muscle force, fatigue and mitochondrial function. Additionally, we examined the role of muscle gp130 signalling during overexpression of IL-6. Systemic IL-6 overexpression for 2 weeks was achieved by electroporation of an IL-6 overexpression plasmid or empty vector into the quadriceps of either C57BL/6 (WT) or skeletal muscle gp130 knockout (KO) male mice. Tibialis anterior muscle in situ functional properties and mitochondrial respiration were determined. Interleukin-6 accelerated in situ skeletal muscle fatigue in the WT, with a 18.5% reduction in force within 90 s of repeated submaximal contractions and a 7% reduction in maximal tetanic force after 5 min. There was no difference between fatigue in the KO and KO+IL-6. Interleukin-6 reduced WT muscle mitochondrial respiratory control ratio by 36% and cytochrome c oxidase activity by 42%. Interleukin-6 had no effect on either KO respiratory control ratio or cytochrome c oxidase activity. Interleukin-6 also had no effect on body weight, muscle mass or tetanic force in either genotype. These results provide evidence that 2 weeks of elevated systemic IL-6 is sufficient to increase skeletal muscle fatigability and decrease muscle mitochondrial content and function, and these effects require muscle gp130 signalling.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Dennis K Fix
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ryan N Montalvo
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Brittany R Counts
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ashley J Smuder
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Ho-Jin Koh
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - James A Carson
- College of Health Professions, Department of Physical Therapy, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| |
Collapse
|
45
|
Hardee JP, Counts BR, Carson JA. Understanding the Role of Exercise in Cancer Cachexia Therapy. Am J Lifestyle Med 2019; 13:46-60. [PMID: 30627079 PMCID: PMC6311610 DOI: 10.1177/1559827617725283] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cachexia, the unintentional loss of body weight, is prevalent in many cancer types, and the associated skeletal muscle mass depletion increases patient morbidity and mortality. While anorexia can be present, cachexia is not reversible with nutritional therapies alone. Pharmacological agents have been proposed to treat this condition, but there are currently no approved treatments. Nonetheless, the hallmark characteristics associated with cancer cachexia remain viable foundations for future therapies. Regular physical activity holds a promising future as a nonpharmacological alternative to improve patient survival through cachexia prevention. Evidence suggests exercise training is beneficial during cancer treatment and survival. However, the mechanistic examination of cachectic skeletal muscle's response to exercise is both needed and justified. The primary objective of this review is to discuss the role of exercise for the prevention and treatment of cancer-associated muscle wasting. Initially, we provide an overview of systemic alterations induced by cancer and their role in the regulation of wasting processes during cachexia progression. We then discuss how exercise could alter disrupted regulatory pathways related to growth and metabolism during cancer-induced muscle atrophy. Last, we outline current exercise prescription guidelines and how exercise could be a potential behavioral therapy to curtail cachexia development in cancer patients.
Collapse
Affiliation(s)
- Justin P. Hardee
- Department of Exercise Science (JPH, BRC, JAC), University of South Carolina, Columbia, South Carolina
- Center for Colon Cancer Research (JAC), University of South Carolina, Columbia, South Carolina
| | - Brittany R. Counts
- Department of Exercise Science (JPH, BRC, JAC), University of South Carolina, Columbia, South Carolina
- Center for Colon Cancer Research (JAC), University of South Carolina, Columbia, South Carolina
| | - James A. Carson
- James A. Carson, PhD, Department of Exercise Science, University of South Carolina, 921 Assembly Street, Public Health Research Center, Rm 301, Columbia, SC 29208; e-mail:
| |
Collapse
|
46
|
Exercise improves functional capacity and lean body mass in patients with gastrointestinal cancer during chemotherapy: a single-blind RCT. Support Care Cancer 2018; 27:2159-2169. [DOI: 10.1007/s00520-018-4478-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/18/2018] [Indexed: 02/02/2023]
|
47
|
Qaisar R, Bhaskaran S, Premkumar P, Ranjit R, Natarajan KS, Ahn B, Riddle K, Claflin DR, Richardson A, Brooks SV, Van Remmen H. Oxidative stress-induced dysregulation of excitation-contraction coupling contributes to muscle weakness. J Cachexia Sarcopenia Muscle 2018; 9:1003-1017. [PMID: 30073804 PMCID: PMC6204588 DOI: 10.1002/jcsm.12339] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We have previously shown that the deletion of the superoxide scavenger, CuZn superoxide dismutase, in mice (Sod1-/- mice) results in increased oxidative stress and an accelerated loss of skeletal muscle mass and force that mirror the changes seen in old control mice. The goal of this study is to define the effect of oxidative stress and ageing on muscle weakness and the Excitation Contraction (EC) coupling machinery in age-matched adult (8-10 months) wild-type (WT) and Sod1-/- mice in comparison with old (25-28 months) WT mice. METHODS In vitro contractile assays were used to measure muscle contractile parameters. The activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump was measured using an NADH-linked enzyme assay. Immunoblotting and immunofluorescence techniques were used to measure protein expression, and real-time reverse transcription PCR was used to measure gene expression. RESULTS The specific force generated by the extensor digitorum longus muscle was reduced in the Sod1-/- and old WT mice compared with young WT mice along with significant prolongation of time to peak force, increased half relaxation time, and disruption of intracellular calcium handling. The maximal activity of the SERCA calcium uptake pump was significantly reduced in gastrocnemius muscle from both old WT (≈14%) and adult Sod1-/- (≈33%) mice compared with young WT mice along with increased expression of sarcolipin, a known inhibitor of SERCA activity. Protein levels of the voltage sensor and calcium uptake channel proteins dihydropyridine receptor α1 and SERCA2 were significantly elevated (≈45% and ≈57%, respectively), while the ratio of calstabin, a channel stabilizing protein, to ryanodine receptor was significantly reduced (≈21%) in Sod1-/- mice compared with young WT mice. The changes in calcium handling were accompanied by substantially elevated levels of global protein carbonylation and lipid peroxidation. CONCLUSIONS Our data suggest that the muscle weakness in Sod1-/- and old WT mice is in part driven by reactive oxygen species-mediated EC uncoupling and supports a role for reduced SERCA pump activity in compromised muscle function. The novel quantitative mechanistic data provided here can lead to potential therapeutic interventions of SERCA dysfunction for sarcopenia and muscle diseases.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Pavithra Premkumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kaitlyn Riddle
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dennis R Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Arlan Richardson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA.,Department of Geriatric Medicine and the Reynolds Oklahoma Center of Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
48
|
van der Ende M, Grefte S, Plas R, Meijerink J, Witkamp RF, Keijer J, van Norren K. Mitochondrial dynamics in cancer-induced cachexia. Biochim Biophys Acta Rev Cancer 2018; 1870:137-150. [PMID: 30059724 DOI: 10.1016/j.bbcan.2018.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
Abstract
Cancer-induced cachexia has a negative impact on quality of life and adversely affects therapeutic outcomes and survival rates. It is characterized by, often severe, loss of muscle, with or without loss of fat mass. Insight in the pathophysiology of this complex metabolic syndrome and direct treatment options are still limited, which creates a research demand. Results from recent studies point towards a significant involvement of muscle mitochondrial networks. However, data are scattered and a comprehensive overview is lacking. This paper aims to fill existing knowledge gaps by integrating published data sets on muscle protein or gene expression from cancer-induced cachexia animal models. To this end, a database was compiled from 94 research papers, comprising 11 different rodent models. This was combined with four genome-wide transcriptome datasets of cancer-induced cachexia rodent models. Analysis showed that the expression of genes involved in mitochondrial fusion, fission, ATP production and mitochondrial density is decreased, while that of genes involved ROS detoxification and mitophagy is increased. Our results underline the relevance of including post-translational modifications of key proteins involved in mitochondrial functioning in future studies on cancer-induced cachexia.
Collapse
Affiliation(s)
- Miranda van der Ende
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands; Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Rogier Plas
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Klaske van Norren
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands.
| |
Collapse
|
49
|
Ahn B, Pharaoh G, Premkumar P, Huseman K, Ranjit R, Kinter M, Szweda L, Kiss T, Fulop G, Tarantini S, Csiszar A, Ungvari Z, Van Remmen H. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol 2018; 17:47-58. [PMID: 29673700 PMCID: PMC6006677 DOI: 10.1016/j.redox.2018.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Bumsoo Ahn
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gavin Pharaoh
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pavithra Premkumar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kendra Huseman
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rojina Ranjit
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Luke Szweda
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gabor Fulop
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
50
|
VanderVeen BN, Hardee JP, Fix DK, Carson JA. Skeletal muscle function during the progression of cancer cachexia in the male Apc Min/+ mouse. J Appl Physiol (1985) 2017; 124:684-695. [PMID: 29122966 DOI: 10.1152/japplphysiol.00897.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
While cancer-induced skeletal muscle wasting has been widely investigated, the drivers of cancer-induced muscle functional decrements are only beginning to be understood. Decreased muscle function impacts cancer patient quality of life and health status, and several potential therapeutics have failed in clinical trials due to a lack of functional improvement. Furthermore, systemic inflammation and intrinsic inflammatory signaling's role in the cachectic disruption of muscle function requires further investigation. We examined skeletal muscle functional properties during cancer cachexia and determined their relationship to systemic and intrinsic cachexia indices. Male ApcMin/+ (MIN) mice were stratified by percent body weight loss into weight stable (WS; <5% loss) or cachectic (CX; >5% loss). Age-matched C57BL/6 littermates served as controls. Tibialis anterior (TA) twitch properties, tetanic force, and fatigability were examined in situ. TA protein and mRNA expression were examined in the nonstimulated leg. CX decreased muscle mass, tetanic force (Po), and specific tetanic force (sPo). Whole body and muscle fatigability were increased in WS and CX. CX had slower contraction rates, +dP/d t and -dP/d t, which were inversely associated with muscle signal transducer and activator of transcription 3 ( STAT3) and p65 activation. STAT3 and p65 activation were also inversely associated with Po. However, STAT3 was not related to sPo or fatigue. Muscle suppressor of cytokine signaling 3 mRNA expression was negatively associated with TA weight, Po, and sPo but not fatigue. Our study demonstrates that multiple functional deficits that occur with cancer cachexia are associated with increased muscle inflammatory signaling. Notably, muscle fatigability is increased in the MIN mouse before cachexia development. NEW & NOTEWORTHY Recent studies have identified decrements in skeletal muscle function during cachexia. We have extended these studies by directly relating decrements in muscle function to established cachexia indices. Our results demonstrate that a slow-fatigable contractile phenotype is developed during the progression of cachexia that coincides with increased muscle inflammatory signaling. Furthermore, regression analysis identified predictors of cancer-induced muscle dysfunction. Last, we report the novel finding that whole body and muscle fatigability were increased before cachexia development.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, University of South Carolina , Columbia, South Carolina
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, University of South Carolina , Columbia, South Carolina
| | - Dennis K Fix
- Integrative Muscle Biology Laboratory, University of South Carolina , Columbia, South Carolina
| | - James A Carson
- Integrative Muscle Biology Laboratory, University of South Carolina , Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina , Columbia, South Carolina
| |
Collapse
|