1
|
Yang Q, Wei S, Qiu C, Han C, Du Z, Wu N. KDM1A epigenetically enhances RAD51 expression to suppress the STING-associated anti-tumor immunity in esophageal squamous cell carcinoma. Cell Death Dis 2024; 15:882. [PMID: 39638799 PMCID: PMC11621790 DOI: 10.1038/s41419-024-07275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Histone lysine demethylase LSD1, also known as KDM1A, has been found to regulate multiple cancer hallmarks since it was first identified in 2004. Recently, it has emerged as a promising target for stimulating anti-tumor immunity, specifically boosting T cell activity. However, it remains unclear whether and how it remodels the tumor microenvironment to drive oncogenic processes in esophageal squamous cell carcinoma (ESCC). In this study, protein levels in ESCC tissues were evaluated by immunostaining of tissue microarrays. Cell growth was assessed by colony formation assays in vitro and subcutaneous xenograft models in vivo. High-throughput transcriptomics and spatial immune proteomics were performed using bulk RNA sequencing and digital spatial profiling techniques, respectively. Epigenetic regulation of RAD51 by methylated histone proteins was analyzed using chromatin immunoprecipitated quantitative PCR assays. Finally, our clinical data indicate that KDM1A precisely predicts the overall survival of patients with early-stage ESCC. Inhibition of KDM1A blocked the growth of ESCC cells in vitro and in vivo. Mechanistically, our transcriptomics and spatial immune proteomics data, together with rescue assays, demonstrated that KDM1A specifically removes methyl residues from the histone protein H3K9me2, a transcription repressive marker, thus reducing its enrichment at the promoter of RAD51 to epigenetically reactivate its transcription. Additionally, it significantly inhibits the expression of NF-κB signaling-dependent proinflammatory genes IL-6 and IL-1B through RAD51, thus blocking the STING-associated anti-tumor immunity in stromal tumor-infiltrating lymphocytes (sTIL). Overall, our findings not only indicate that KDM1A is a promising target for ESCC patients at early stages but also provide novel mechanistic insights into its spatial regulation of STING-associated anti-tumor immunity in sTILs to drive the oncogenic processes in ESCC. The translation of these findings will ultimately guide more appropriate combinations of spatial immunotherapies with KDM1A inhibitors to improve the overall survival of specific subgroups in ESCC.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi, China
| | - Cen Qiu
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjie Han
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Hua Shan Hospital of Fudan University, Shanghai, China
| | - Ning Wu
- Department of Cardiothoracic Surgery, Hua Shan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Stitzlein LM, Adams JT, Stitzlein EN, Dudley RW, Chandra J. Current and future therapeutic strategies for high-grade gliomas leveraging the interplay between epigenetic regulators and kinase signaling networks. J Exp Clin Cancer Res 2024; 43:12. [PMID: 38183103 PMCID: PMC10768151 DOI: 10.1186/s13046-023-02923-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Targeted therapies, including small molecule inhibitors directed against aberrant kinase signaling and chromatin regulators, are emerging treatment options for high-grade gliomas (HGG). However, when translating these inhibitors into the clinic, their efficacy is generally limited to partial and transient responses. Recent studies in models of high-grade gliomas reveal a convergence of epigenetic regulators and kinase signaling networks that often cooperate to promote malignant properties and drug resistance. This review examines the interplay between five well-characterized groups of chromatin regulators, including the histone deacetylase (HDAC) family, bromodomain and extraterminal (BET)-containing proteins, protein arginine methyltransferase (PRMT) family, Enhancer of zeste homolog 2 (EZH2), and lysine-specific demethylase 1 (LSD1), and various signaling pathways essential for cancer cell growth and progression. These specific epigenetic regulators were chosen for review due to their targetability via pharmacological intervention and clinical relevance. Several studies have demonstrated improved efficacy from the dual inhibition of the epigenetic regulators and signaling kinases. Overall, the interactions between epigenetic regulators and kinase signaling pathways are likely influenced by several factors, including individual glioma subtypes, preexisting mutations, and overlapping/interdependent functions of the chromatin regulators. The insights gained by understanding how the genome and epigenome cooperate in high-grade gliomas will guide the design of future therapeutic strategies that utilize dual inhibition with improved efficacy and overall survival.
Collapse
Affiliation(s)
- Lea M Stitzlein
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jack T Adams
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Richard W Dudley
- Department of Pharmaceutical Sciences, University of Findlay, Findlay, OH, USA
| | - Joya Chandra
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Xu Y, Fan B, Gao Y, Chen Y, Han D, Lu J, Liu T, Gao Q, Zhang JZ, Wang M. Design Two Novel Tetrahydroquinoline Derivatives against Anticancer Target LSD1 with 3D-QSAR Model and Molecular Simulation. Molecules 2022; 27:molecules27238358. [PMID: 36500451 PMCID: PMC9739212 DOI: 10.3390/molecules27238358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone-modifying enzyme, which is a significant target for anticancer drug research. In this work, 40 reported tetrahydroquinoline-derivative inhibitors targeting LSD1 were studied to establish the three-dimensional quantitative structure-activity relationship (3D-QSAR). The established models CoMFA (Comparative Molecular Field Analysis (q2 = 0.778, Rpred2 = 0.709)) and CoMSIA (Comparative Molecular Similarity Index Analysis (q2 = 0.764, Rpred2 = 0.713)) yielded good statistical and predictive properties. Based on the corresponding contour maps, seven novel tetrahydroquinoline derivatives were designed. For more information, three of the compounds (D1, D4, and Z17) and the template molecule 18x were explored with molecular dynamics simulations, binding free energy calculations by MM/PBSA method as well as the ADME (absorption, distribution, metabolism, and excretion) prediction. The results suggested that D1, D4, and Z17 performed better than template molecule 18x due to the introduction of the amino and hydrophobic groups, especially for the D1 and D4, which will provide guidance for the design of LSD1 inhibitors.
Collapse
Affiliation(s)
- Yongtao Xu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Baoyi Fan
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Yunlong Gao
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Yifan Chen
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Di Han
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiarui Lu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Taigang Liu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - John Zenghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Meiting Wang
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
- Department of Theoretical Chemistry, Chemical Centre, Lund University, SE-221 00 Lund, Sweden
- Correspondence:
| |
Collapse
|
5
|
Antitumor Effect of Demethylzeylasteral (T-96) on Triple-Negative Breast Cancer via LSD1-Mediate Epigenetic Mechanisms. Anal Cell Pathol (Amst) 2022; 2022:2522597. [PMID: 36276611 PMCID: PMC9581660 DOI: 10.1155/2022/2522597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose. Breast cancer ranks first in the incidence of female tumors. Triple-negative breast cancer (TNBC), one type of breast cancer, is more aggressive and has a worse prognosis. Demethylzeylasteral (T-96) is isolated from Tripterygium wilfordii Hook F. Our previous study found that T96 could inhibit TNBC invasion via suppressing the canonical and noncanonical TGF-β signaling pathways. However, the antitumor effects and mechanisms of T-96 on TNBC have not been studied. This study is aimed at investigating the antitumor effect and mechanism of T-96 on breast cancer. Experimental approach. MTT assay, Live and Dead cell assay, and TUNEL were used to observe the antitumor effect of breast cancer cells treated with T-96. siRNA of LSD1, Co-IP, and molecular docking were used to explore the direct target and mechanism of T-96. Subcutaneous murine xenograft models were used to detect the efficacy of T-96 antitumor activity in vivo. Key Results. T-96 was more susceptible to inducing the apoptosis of highly metastatic TNBC cell lines (SUM-1315). An abnormal level of histone methylation is a crucial characteristic of metastatic cancer cells. LSD1 is a histone demethylase. We found that T-96 could significantly decrease the protein expression of LSD1, increase its target protein PTEN expression and enhance histone methylation. T-96 could also down-regulate the PI3K/AKT signaling pathway, which could be blocked by PTEN. Knockdown of LSD1 by siRNA blocked the pharmacological activity of T-96. And the molecular docking predicted T-96 processed affinity toward LSD1 through hydrogen bonding. Finally, T-96 was evaluated in a murine xenograft model of SUM-1315 cells. And T-96 could significantly inhibit tumor growth without showing marked toxicity. Conclusions & Implications. The results illustrated that T-96 exerted antitumor activity in highly metastatic TNBC by inactivating the LSD1 function.
Collapse
|
6
|
Grundy EE, Diab N, Chiappinelli KB. Transposable element regulation and expression in cancer. FEBS J 2022; 289:1160-1179. [PMID: 33471418 PMCID: PMC11577309 DOI: 10.1111/febs.15722] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Approximately 45% of the human genome is composed of transposable elements (TEs). Expression of these elements is tightly regulated during normal development. TEs may be expressed at high levels in embryonic stem cells but are epigenetically silenced in terminally differentiated cells. As part of the global 'epigenetic dysregulation' that cells undergo during transformation from normal to cancer, TEs can lose epigenetic silencing and become transcribed, and, in some cases, active. Here, we summarize recent advances detailing the consequences of TE activation in cancer and describe how these understudied residents of our genome can both aid tumorigenesis and potentially be harnessed for anticancer therapies.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at The George Washington University, Washington, DC, USA
| | - Noor Diab
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Han J, Ye S, Chen J, Wang K, Jin J, Zeng Z, Xue S. Lysine-Specific Histone Demethylase 1 Promotes Oncogenesis of the Esophageal Squamous Cell Carcinoma by Upregulating DUSP4. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1624-1634. [PMID: 34937541 DOI: 10.1134/s0006297921120117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of esophageal cancer (EC) and has a poor prognosis due to its aggressive nature. Accordingly, it is necessary to find novel prognostic biomarkers and therapeutic targets for ESCC. Lysine-specific histone demethylase 1 (LSD1) plays a core role in the regulation of ESCC oncogenesis. However, the detailed mechanism of LSD1-regulated ESCC growth has not been elucidated. This study aims to explore molecular mechanism underlying the LSD1-regulated ESCC's oncogenesis. After LSD1 silencing, we detected differentially expressed genes (DEGs) in human ESCC cell line, TE-1, by transcriptome sequencing. Subsequently, we investigated expression pattern of the selected molecules in the ESCC tissues and cell lines by qRT-PCR and Western blotting. Furthermore, we explored the roles of selected molecules in ESCC using gene silencing and overexpression assays. Transcriptome sequencing showed that the expression of dual specificity phosphatase 4 (DUSP4) in TE-1 was significantly attenuated after the LSD1 silencing. In addition, the DUSP4 mRNA expression level was significantly higher in the ESCC tissues, especially in those derived from patients with invasion or metastasis. Moreover, the DUSP4 expression was positively associated with the LSD1 expression in the ESCC tissues. DUSP4 overexpression promoted proliferation, invasion, and migration of the ESCC cells, while DUSP4 silencing had an opposite effect. DUSP4 overexpression also enhanced tumorigenicity of the ESCC cells in vivo, while DUSP4 silencing inhibited tumor growth. Importantly, inhibition of cell proliferation, invasion, and migration by the LSD1 inhibitor (ZY0511) was reversed by DUSP4 overexpression. Conclusively, we found that LSD1 promotes ESCC's oncogenesis by upregulating DUSP4, the potential therapeutic and diagnostic target in ESCC.
Collapse
Affiliation(s)
- Junyong Han
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Shixin Ye
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Jinyan Chen
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Kun Wang
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Jingjun Jin
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| | - Zhiyong Zeng
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian, 350025, China.
| | - Shijie Xue
- Department of Immunization, Fujian Academy of Medical Sciences, Fuzhou, Fujian, 350003, China. .,Fujian Institute of Medical Sciences, Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, Fujian, 350003, China
| |
Collapse
|
8
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Pervaiz W, Li D, Kang L, Ma X, Li J, Liu Z, Liu HM. Systematic Review and Meta-Analysis of Lysine-Specific Demethylase 1 Expression as a Prognostic Biomarker of Cancer Survival and Disease Progression. Cancer Control 2021; 28:10732748211051557. [PMID: 34802287 PMCID: PMC8727833 DOI: 10.1177/10732748211051557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Numerous studies on the prognostic significance of lysine-specific demethylase 1 (LSD1) up-regulation in tumors have different outcomes. The inconsistency originated from various studies looking into the association between LSD1 and tumor cells has prompted the decision of this quantitative systematic review to decipher how up-regulated LSD1 and overall survival (OS) or recurrence-free survival (RFS) or disease-free survival (DFS) are linked in tumor patients. Methods Articles were searched from online databases such as Embase, Web of Science Core, PubMed, Google Scholar, and Scopus. The extraction of the hazard ratios (HR) with their 95% confidence intervals (CIs) was attained and survival data of 3151 tumor patients from 17 pieces of related research were used for this meta-analysis. Results To shed light on the link between LSD1 up-regulation and the prognosis of diverse tumors, the pooled hazard ratios (HRs) with their 95% confidence intervals (CIs) were determined. In this meta-analysis, it was observed that LSD1 up-regulation is linked with poor OS (HR = 2.08, 95% CI: 1.66–2.61, P < .01) and RFS (HR = 3.09, 95% CI: 1.81–5.26, P < .01) in tumor patients. However, LSD1 up-regulation was not linked to DFS (HR = 1.49, 95% CI: .83–2.69, P = .18) in tumor patients. The subcategory examination grouped by tumor type and ethnicity showed that LSD1 up-regulation was linked with a poor outcome in the esophageal tumor and hepatocellular carcinoma and Asian patients, respectively. For clinical-pathological factors, up-regulated LSD1 was significantly linked with Lymph node status. Conclusion Despite the shortfall of the present work, this meta-analysis proposes that LSD1 up-regulation may be a prognostic biomarker for patients with tumors including esophageal tumors and hepatocellular carcinoma. We propose that large-scale studies are vital to substantiate these outcomes.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Clement Y Effah
- College of Public Health, 12636Zhengzhou University, Zhengzhou, China
| | - Emmanuel K Drokow
- Department of Oncology, 89632Zhengzhou University People's Hospital and Henan Provincial People's Hospital Henan, Zhengzhou, China
| | - Waqar Pervaiz
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Dié Li
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Lei Kang
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zhenzhen Liu
- 12636The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Design and identification of two novel resveratrol derivatives as potential LSD1 inhibitors. Future Med Chem 2021; 13:1415-1433. [PMID: 34232085 DOI: 10.4155/fmc-2021-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Overexpression of LSD1 is associated with the occurrence of many diseases, including cancers, which makes LSD1 a significant target for anticancer drug research. Methodology & Results: With the aid of 3D quantitative structure-activity relationship models established with 34 reported resveratrol derivative LSD1 inhibitors, derivatives 35-40 were designed. Absorption, distribution, metabolism and excretion calculations showed that they may have good bioavailability and drug likeness. Additionally, 35 and 37 presented good antitumor effects in an in vitro antiproliferative assay. Molecular docking and molecular dynamics simulation results indicated that 35 and 37 can establish extensive interactions with LSD1. Conclusion: The results of computational prediction and experimental validation suggest that 35 and 37 are effective antitumor inhibitors, which provides some ideas and directions for the development of new anticancer LSD1 inhibitors.
Collapse
|
10
|
Abdizadeh R, Heidarian E, Hadizadeh F, Abdizadeh T. QSAR Modeling, Molecular Docking and Molecular Dynamics Simulations Studies of Lysine-Specific Demethylase 1 (LSD1) Inhibitors as Anticancer Agents. Anticancer Agents Med Chem 2021; 21:987-1018. [PMID: 32698753 DOI: 10.2174/1871520620666200721134010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/07/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Histone Lysine Demetylases1 (LSD1) is a promising medication to treat cancer, which plays a crucial role in epigenetic modulation of gene expression. Inhibition of LSD1with small molecules has emerged as a vital mechanism to treat cancer. OBJECTIVE In the present research, molecular modeling investigations, such as CoMFA, CoMFA-RF, CoMSIA and HQSAR, molecular docking and Molecular Dynamics (MD) simulations were carried out on some tranylcypromine derivatives as LSD1 inhibitors. METHODS The QSAR models were carried out on a series of Tranylcypromine derivatives as data set via the SYBYL-X2.1.1 program. Molecular docking and MD simulations were carried out by the MOE software and the SYBYL program, respectively. The internal and external predictability performances related to the generated models for these LSD1 inhibitors were justified by evaluating cross-validated correlation coefficient (q2), noncross- validated correlation coefficient (r2ncv) and predicted correlation coefficient (r2pred) of the training and test set molecules, respectively. RESULTS The CoMFA (q2, 0.670; r2ncv, 0.930; r2pred, 0.968), CoMFA-RF (q2, 0.694; r2ncr, 0.926; r2pred, 0.927), CoMSIA (q2, 0.834; r2ncv, 0.956; r2pred, 0.958) and HQSAR models (q2, 0.854; r2ncv, 0.900; r2pred, 0.728) for training as well as the test set of LSD1 inhibition resulted in significant findings. CONCLUSION These QSAR models were found to be perfect and strong with better predictability. Contour maps of all models were generated and it was proven by molecular docking studies and molecular dynamics simulation that the hydrophobic, electrostatic and hydrogen bonding fields are crucial in these models for improving the binding affinity and determining the structure-activity relationship. These theoretical results are possibly beneficial to design new strong LSD1 inhibitors with enhanced activity to treat cancer.
Collapse
Affiliation(s)
- Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Sharekord University of Medical Sciences, Shahrekord, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Sharekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
LSD1 as a Biomarker and the Outcome of Its Inhibitors in the Clinical Trial: The Therapy Opportunity in Tumor. JOURNAL OF ONCOLOGY 2021; 2021:5512524. [PMID: 33833800 PMCID: PMC8018836 DOI: 10.1155/2021/5512524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/06/2023]
Abstract
Tumors are the foremost cause of death worldwide. As a result of that, there has been a significant enhancement in the investigation, treatment methods, and good maintenance practices on cancer. However, the sensitivity and specificity of a lot of tumor biomarkers are not adequate. Hence, it is of inordinate significance to ascertain novel biomarkers to forecast the prognosis and therapy targets for tumors. This review characterized LSD1 as a biomarker in different tumors. LSD1 inhibitors in clinical trials were also discussed. The recent pattern advocates that LSD1 is engaged at sauce chromatin zones linking with complexes of multi-protein having an exact DNA-binding transcription factor, establishing LSD1 as a favorable epigenetic target, and also gives a large selection of therapeutic targets to treat different tumors. This review sturdily backing the oncogenic probable of LSD1 in different tumors indicated that LSD1 levels can be used to monitor and identify different tumors and can be a useful biomarker of progression and fair diagnosis in tumor patients. The clinical trials showed that inhibitors of LSD1 have growing evidence of clinical efficacy which is very encouraging and promising. However, for some of the inhibitors such as GSK2879552, though selective, potent, and effective, its disease control was poor as the rate of adverse events (AEs) was high in tumor patients causing clinical trial termination, and continuation could not be supported by the risk-benefit profile. Therefore, we propose that, to attain excellent clinical results of inhibitors of LSD1, much attention is required in designing appropriate dosing regimens, developing in-depth in vitro/in vivo mechanistic works of LSD1 inhibitors, and developing inhibitors of LSD1 that are reversible, safe, potent, and selective which may offer safer profiles.
Collapse
|
12
|
Ma L, Wang H, You Y, Ma C, Liu Y, Yang F, Zheng Y, Liu H. Exploration of 5-cyano-6-phenylpyrimidin derivatives containing an 1,2,3-triazole moiety as potent FAD-based LSD1 inhibitors. Acta Pharm Sin B 2020; 10:1658-1668. [PMID: 33088686 PMCID: PMC7563019 DOI: 10.1016/j.apsb.2020.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has become a potential therapeutic target for the treatment of cancer. Discovery and develop novel and potent LSD1 inhibitors is a challenge, although several of them have already entered into clinical trials. Herein, for the first time, we reported the discovery of a series of 5-cyano-6-phenylpyrimidine derivatives as LSD1 inhibitors using flavin adenine dinucleotide (FAD) similarity-based designing strategy, of which compound 14q was finally identified to repress LSD1 with IC50 = 183 nmol/L. Docking analysis suggested that compound 14q fitted well into the FAD-binding pocket. Further mechanism studies showed that compound 14q may inhibit LSD1 activity competitively by occupying the FAD binding sites of LSD1 and inhibit cell migration and invasion by reversing epithelial to mesenchymal transition (EMT). Overall, these findings showed that compound 14q is a suitable candidate for further development of novel FAD similarity-based LSD1 inhibitors.
Collapse
Key Words
- AML, acute myeloid leukemia
- ANOVA, analysis of variance
- Anticancer
- EMT, epithelial to mesenchymal transition
- ESI, electrospray ionization
- FAD, flavin adenine dinucleotide
- FBS, fetal bovine serum
- Flavin adenine dinucleotide (FAD)
- Gastric cancer
- HRMS, high resolution mass spectra
- IC50, half maximal inhibitory concentration
- LSD1 inhibitors
- LSD1, histone lysine specific demethylase 1
- MOE, molecular operating environment
- PAINS, pan assay interference compounds
- PDB, the Protein Data Bank
- Pyrimidine
- RLU, relative light units
- SARs, structure–activity relationship studies
- TCP, tranylcypromine
- VDW, van der Waals
Collapse
Affiliation(s)
| | | | - Yinghua You
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chaoya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuejiao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Epigenetic Alterations in Oesophageal Cancer: Expression and Role of the Involved Enzymes. Int J Mol Sci 2020; 21:ijms21103522. [PMID: 32429269 PMCID: PMC7278932 DOI: 10.3390/ijms21103522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.
Collapse
|
14
|
Bouhaddou M, Yu LJ, Lunardi S, Stamatelos SK, Mack F, Gallo JM, Birtwistle MR, Walz AC. Predicting In Vivo Efficacy from In Vitro Data: Quantitative Systems Pharmacology Modeling for an Epigenetic Modifier Drug in Cancer. Clin Transl Sci 2020; 13:419-429. [PMID: 31729169 PMCID: PMC7070804 DOI: 10.1111/cts.12727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/16/2019] [Indexed: 02/04/2023] Open
Abstract
Reliably predicting in vivo efficacy from in vitro data would facilitate drug development by reducing animal usage and guiding drug dosing in human clinical trials. However, such prediction remains challenging. Here, we built a quantitative pharmacokinetic/pharmacodynamic (PK/PD) mathematical model capable of predicting in vivo efficacy in animal xenograft models of tumor growth while trained almost exclusively on in vitro cell culture data sets. We studied a chemical inhibitor of LSD1 (ORY‐1001), a lysine‐specific histone demethylase enzyme with epigenetic function, and drug‐induced regulation of target engagement, biomarker levels, and tumor cell growth across multiple doses administered in a pulsed and continuous fashion. A PK model of unbound plasma drug concentration was linked to the in vitro PD model, which enabled the prediction of in vivo tumor growth dynamics across a range of drug doses and regimens. Remarkably, only a change in a single parameter—the one controlling intrinsic cell/tumor growth in the absence of drug—was needed to scale the PD model from the in vitro to in vivo setting. These findings create a framework for using in vitro data to predict in vivo drug efficacy with clear benefits to reducing animal usage while enabling the collection of dense time course and dose response data in a highly controlled in vitro environment.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, New York, New York, USA.,Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA.,J. David Gladstone Institutes, San Francisco, California, USA
| | - Li J Yu
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, New York, New York, USA
| | | | - Spyros K Stamatelos
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, New York, New York, USA.,Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fiona Mack
- Roche Pharma Research and Early Development, Oncology, Roche Innovation Center, New York, New York, USA
| | - James M Gallo
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Marc R Birtwistle
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | - Antje-Christine Walz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
15
|
The Critical Role of Hypoxic Microenvironment and Epigenetic Deregulation in Esophageal Cancer Radioresistance. Genes (Basel) 2019; 10:genes10110927. [PMID: 31739546 PMCID: PMC6896142 DOI: 10.3390/genes10110927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide and the sixth leading cause of death, according to Globocan 2018. Despite efforts made for therapeutic advances, EC remains highly lethal, portending a five-year overall survival of just 15-20%. Hence, the discovery of new molecular targets that might improve therapeutic efficacy is urgently needed. Due to high proliferative rates and also the limited oxygen and nutrient diffusion in tumors, the development of hypoxic regions and consequent activation of hypoxia-inducible factors (HIFs) are a common characteristic of solid tumors, including EC. Accordingly, HIF-1α, involved in cell cycle deregulation, apoptosis, angiogenesis induction and proliferation in cancer, constitutes a predictive marker of resistance to radiotherapy (RT). Deregulation of epigenetic mechanisms, including aberrant DNA methylation and histone modifications, have emerged as critical factors in cancer development and progression. Recently, interactions between epigenetic enzymes and HIF-1α transcription factors have been reported. Thus, further insight into hypoxia-induced epigenetic alterations in EC may allow the identification of novel therapeutic targets and predictive biomarkers, impacting on patient survival and quality of life.
Collapse
|
16
|
Synthesis, structure-activity relationship studies and biological characterization of new [1,2,4]triazolo[1,5-a]pyrimidine-based LSD1/KDM1A inhibitors. Eur J Med Chem 2019; 167:388-401. [DOI: 10.1016/j.ejmech.2019.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/13/2019] [Accepted: 02/10/2019] [Indexed: 02/03/2023]
|
17
|
Han D, Huang M, Wang T, Li Z, Chen Y, Liu C, Lei Z, Chu X. Lysine methylation of transcription factors in cancer. Cell Death Dis 2019; 10:290. [PMID: 30926778 PMCID: PMC6441099 DOI: 10.1038/s41419-019-1524-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a critical and dynamic post-translational modification that can regulate protein stability and function. This post-translational modification is regulated by lysine methyltransferases and lysine demethylases. Recent studies using mass-spectrometric techniques have revealed that in addition to histones, a great number of transcription factors are also methylated, often at multiple sites and to different degrees (mono-, di-, trimethyl lysine). The biomedical significance of transcription factor methylation in human diseases, including cancer, has been explored recently. Some studies have demonstrated that interfering with transcription factor lysine methylation both in vitro and in vivo can inhibit cancer cell proliferation, thereby reversing tumor progression. The inhibitors targeting lysine methyltransferases and lysine demethylases have been under development for the past two decades, and may be used as potential anticancer agents in the clinic. In this review, we focus on the current findings of transcription factor lysine methylation, and the effects on both transcriptional activity and target gene expression. We outlined the biological significance of transcription factor lysine methylation on tumor progression and highlighted its clinical value in cancer therapy.
Collapse
Affiliation(s)
- Dong Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhiping Li
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China. .,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, China. .,Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
18
|
Abstract
The most common type of head and neck cancer, head and neck squamous cell carcinoma (HNSCC), can develop therapeutic resistance that complicates its treatment. The 5-y survival rate for HNSCC remains at ~50%, and improving these outcomes requires a better understanding of the pathogenesis of HNSCC. Studies of HNSCC using in vitro, ex vivo, and in vivo approaches provide a novel conceptual framework based on epigenetic mechanisms for developing future clinical applications. Normal oral tissues are influenced by environmental factors that induce pathological changes affecting the network of epigenetic enzymes and signaling pathways to induce HNSCC growth and metastasis. Although various epigenetic regulator families, such as DNA methyltransferases, ten-eleven translocation proteins, histone acetyltransferases, histone deacetylases, BET bromodomain proteins, protein arginine methyltransferases, histone lysine methyltransferases, and histone lysine demethylases, have a role in diverse cancers, specific members have a function in HNSCC. Recently, lysine-specific demethylases have been identified as a potential, attractive, and novel target of HNSCC. Lysine-specific demethylase 1 (LSD1) expression is inappropriately upregulated in HNSCC and an orthotopic HNSCC mouse model. LSD1 can demethylate lysine at specific histone positions to repress gene expression or stimulate transcription, indicating a dual and context-dependent role in transcriptional regulation. Our study showed that LSD1 promotes HNSCC growth and metastasis. Pharmacological attenuation of LSD1 inhibits orthotopic and patient-derived HNSCC xenograft growth-specific target genes and signaling pathways. This review provides recent evidence demonstrating the function of epigenetic regulator enzymes in HNSCC progression, including potential therapeutic applications for such enzymes in combination and immunotherapy.
Collapse
Affiliation(s)
- M.V. Bais
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Li ZR, Wang S, Yang L, Yuan XH, Suo FZ, Yu B, Liu HM. Experience-based discovery (EBD) of aryl hydrazines as new scaffolds for the development of LSD1/KDM1A inhibitors. Eur J Med Chem 2019; 166:432-444. [DOI: 10.1016/j.ejmech.2019.01.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/01/2019] [Accepted: 01/29/2019] [Indexed: 01/22/2023]
|
20
|
De Smedt E, Lui H, Maes K, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Front Oncol 2018; 8:566. [PMID: 30619733 PMCID: PMC6297718 DOI: 10.3389/fonc.2018.00566] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that develops primarily in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, growth, and drug resistance. MM cells furthermore reshape the BM to their own needs by affecting the different BM stromal cell types resulting in angiogenesis, bone destruction, and immune suppression. Despite recent advances in treatment modalities, MM remains most often incurable due to the development of drug resistance to all standard of care agents. This underscores the unmet need for these heavily treated relapsed/refractory patients. Disruptions in epigenetic regulation are a well-known hallmark of cancer cells, contributing to both cancer onset and progression. In MM, sequencing and gene expression profiling studies have also identified numerous epigenetic defects, including locus-specific DNA hypermethylation of cancer-related and B cell specific genes, genome-wide DNA hypomethylation and genetic defects, copy number variations and/or abnormal expression patterns of various chromatin modifying enzymes. Importantly, these so-called epimutations contribute to genomic instability, disease progression, and a worse outcome. Moreover, the frequency of mutations observed in genes encoding for histone methyltransferases and DNA methylation modifiers increases following treatment, indicating a role in the emergence of drug resistance. In support of this, accumulating evidence also suggest a role for the epigenetic machinery in MM cell plasticity, driving the differentiation of the malignant cells to a less mature and drug resistant state. This review discusses the current state of knowledge on the role of epigenetics in MM, with a focus on deregulated histone methylation modifiers and the impact on MM cell plasticity and drug resistance. We also provide insight into the potential of epigenetic modulating agents to enhance clinical drug responses and avoid disease relapse.
Collapse
Affiliation(s)
- Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Lui
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Lu Z, Guo Y, Zhang X, Li J, Li L, Zhang S, Shan C. ORY-1001 Suppresses Cell Growth and Induces Apoptosis in Lung Cancer Through Triggering HK2 Mediated Warburg Effect. Front Pharmacol 2018; 9:1411. [PMID: 30568590 PMCID: PMC6290890 DOI: 10.3389/fphar.2018.01411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023] Open
Abstract
ORY-1001, an inhibitor of covalent lysine (K)-specific demethylase 1A (KDM1A), has been used as a therapy for the treatment of acute leukemia. However, the underlying mechanisms of anticancer are still not fully elucidated. Here, we report that KDM1A is highly expressed in lung cancers, where it appears to drive aggressive growth. Furthermore, lung cancer patients with higher KDM1A levels have worse survival outcomes than patients with lower KDM1A levels. Interestingly, ORY-1001significantly inhibited the cell proliferation, colony formation, cell cycle, and induced apoptosis, by regulating the Warburg effect through controlling Hexokinases 2 (HK2) expression. In summary, these results indicate that ORY-1001 could inhibit the growth of lung cancer cells via regulating the Warburg effect by controlling HK2.
Collapse
Affiliation(s)
- Zhaoliang Lu
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yanke Guo
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Xiaoya Zhang
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Leilei Li
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Changliang Shan
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China.,State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Ota Y, Suzuki T. Drug Design Concepts for LSD1-Selective Inhibitors. CHEM REC 2018; 18:1782-1791. [PMID: 30277644 DOI: 10.1002/tcr.201810031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) is one of the flavin-dependent oxidases and is involved in many cellular processes by controlling the methylation of histone H3. Recently, it has been reported that LSD1 is associated with several diseases such as cancer, metabolic disorders, and psychiatric diseases. Thus, LSD1 is an attractive molecular target for the treatment of these diseases, and its inhibitors are predicted as therapeutic agents. Although a variety of LSD1 inhibitors have been reported to date, many of them show insufficient activities and selectivity toward LSD1. Meanwhile, we identified several LSD1-selective inhibitors using target-guided synthesis strategies based on our original ideas. Our LSD1 inhibitors show not only potent LSD1-selective inhibitory activities, but also unique bioactivities both in vitro and in vivo. This account highlights our drug design concepts for and identification of LSD1-selective inhibitors.
Collapse
Affiliation(s)
- Yosuke Ota
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan
| | - Takayoshi Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto, 606-0823, Japan.,CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
23
|
Pishas KI, Drenberg CD, Taslim C, Theisen ER, Johnson KM, Saund RS, Pop IL, Crompton BD, Lawlor ER, Tirode F, Mora J, Delattre O, Beckerle MC, Callen DF, Sharma S, Lessnick SL. Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic Reticulum Stress Response. Mol Cancer Ther 2018; 17:1902-1916. [PMID: 29997151 DOI: 10.1158/1535-7163.mct-18-0373] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 11/16/2022]
Abstract
Multi-agent chemotherapeutic regimes remain the cornerstone treatment for Ewing sarcoma, the second most common bone malignancy diagnosed in pediatric and young adolescent populations. We have reached a therapeutic ceiling with conventional cytotoxic agents, highlighting the need to adopt novel approaches that specifically target the drivers of Ewing sarcoma oncogenesis. As KDM1A/lysine-specific demethylase 1 (LSD1) is highly expressed in Ewing sarcoma cell lines and tumors, with elevated expression levels associated with worse overall survival (P = 0.033), this study has examined biomarkers of sensitivity and mechanisms of cytotoxicity to targeted KDM1A inhibition using SP-2509 (reversible KDM1A inhibitor). We report, that innate resistance to SP-2509 was not observed in our Ewing sarcoma cell line cohort (n = 17; IC50 range, 81 -1,593 nmol/L), in contrast resistance to the next-generation KDM1A irreversible inhibitor GSK-LSD1 was observed across multiple cell lines (IC50 > 300 μmol/L). Although TP53/STAG2/CDKN2A status and basal KDM1A mRNA and protein levels did not correlate with SP-2509 response, induction of KDM1B following SP-2509 treatment was strongly associated with SP-2509 hypersensitivity. We show that the transcriptional profile driven by SP-2509 strongly mirrors KDM1A genetic depletion. Mechanistically, RNA-seq analysis revealed that SP-2509 imparts robust apoptosis through engagement of the endoplasmic reticulum stress pathway. In addition, ETS1/HIST1H2BM were specifically induced/repressed, respectively following SP-2509 treatment only in our hypersensitive cell lines. Together, our findings provide key insights into the mechanisms of SP-2509 cytotoxicity as well as biomarkers that can be used to predict KDM1A inhibitor sensitivity in Ewing sarcoma. Mol Cancer Ther; 17(9); 1902-16. ©2018 AACR.
Collapse
Affiliation(s)
- Kathleen I Pishas
- Cancer Therapeutics Laboratory, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Christina D Drenberg
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Emily R Theisen
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kirsten M Johnson
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ranajeet S Saund
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ioana L Pop
- Huntsman Cancer Institute, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Brian D Crompton
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Elizabeth R Lawlor
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Franck Tirode
- Univ Lyon, Universite Claude Bernard Lyon, Centre Leon Berard, Cancer Research Center of Lyon, Lyon, France
| | - Jaume Mora
- Department of Pediatric Hemato-Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Olivier Delattre
- Institut Curie, PSL Research University, Service de Genetique, Pole de Medecine Diagnostique et Theranostique, Unité de Génétique Somatique, Paris, France
| | - Mary C Beckerle
- Huntsman Cancer Institute, School of Medicine, University of Utah, Salt Lake City, Utah
| | - David F Callen
- Cancer Therapeutics Laboratory, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sunil Sharma
- TGen Clinical Sciences, Applied Cancer Research and Drug Discovery, Phoenix, Arizona
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Disorders, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio. .,Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Ohio State University, Columbus, Ohio
| |
Collapse
|
24
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
25
|
LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood 2018; 131:1730-1742. [PMID: 29453291 DOI: 10.1182/blood-2017-09-807024] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/09/2018] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulators are recurrently mutated and aberrantly expressed in acute myeloid leukemia (AML). Targeted therapies designed to inhibit these chromatin-modifying enzymes, such as the histone demethylase lysine-specific demethylase 1 (LSD1) and the histone methyltransferase DOT1L, have been developed as novel treatment modalities for these often refractory diseases. A common feature of many of these targeted agents is their ability to induce myeloid differentiation, suggesting that multiple paths toward a myeloid gene expression program can be engaged to relieve the differentiation blockade that is uniformly seen in AML. We performed a comparative assessment of chromatin dynamics during the treatment of mixed lineage leukemia (MLL)-AF9-driven murine leukemias and MLL-rearranged patient-derived xenografts using 2 distinct but effective differentiation-inducing targeted epigenetic therapies, the LSD1 inhibitor GSK-LSD1 and the DOT1L inhibitor EPZ4777. Intriguingly, GSK-LSD1 treatment caused global gains in chromatin accessibility, whereas treatment with EPZ4777 caused global losses in accessibility. We captured PU.1 and C/EBPα motif signatures at LSD1 inhibitor-induced dynamic sites and chromatin immunoprecipitation coupled with high-throughput sequencing revealed co-occupancy of these myeloid transcription factors at these sites. Functionally, we confirmed that diminished expression of PU.1 or genetic deletion of C/EBPα in MLL-AF9 cells generates resistance of these leukemias to LSD1 inhibition. These findings reveal that pharmacologic inhibition of LSD1 represents a unique path to overcome the differentiation block in AML for therapeutic benefit.
Collapse
|
26
|
Hoang N, Zhang X, Zhang C, Vo V, Leng F, Saxena L, Yin F, Lu F, Zheng G, Bhowmik P, Zhang H. New histone demethylase LSD1 inhibitor selectively targets teratocarcinoma and embryonic carcinoma cells. Bioorg Med Chem 2018; 26:1523-1537. [PMID: 29439916 DOI: 10.1016/j.bmc.2018.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
LSD1/KDM1 is a histone demethylase that preferentially removes methyl groups from the mono- and di-methylated lysine 4 in histone H3 (H3K4), key marks for active chromatin for transcriptional activation. LSD1 is essential for pluripotent embryonic stem cells and embryonic teratocarcinoma/carcinoma cells and its expression is often elevated in various cancers. We developed a new LSD1 inhibitor, CBB3001, which potently inhibited LSD1 activity both in vitro and in vivo. CBB3001 also selectively inhibited the growth of human ovarian teratocarcinoma PA-1 and mouse embryonic carcinoma F9 cells, caused the downregulation of pluripotent stem cell proteins SOX2 and OCT4. However, CBB3001 does not have significant inhibition on the growth of human colorectal carcinoma HCT116 cells or mouse fibroblast NIH3T3 cells that do not express these stem cell proteins. Our studies strongly indicate that CBB3001 is a specific LSD1 inhibitor that selectively inhibits teratocarcinoma and embryonic carcinoma cells that express SOX2 and OCT4.
Collapse
Affiliation(s)
- Nam Hoang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Xuan Zhang
- Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chunxiao Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Van Vo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Feng Leng
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lovely Saxena
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Feng Yin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fei Lu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Guangrong Zheng
- Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pradip Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
27
|
Ji YY, Lin SD, Wang YJ, Su MB, Zhang W, Gunosewoyo H, Yang F, Li J, Tang J, Zhou YB, Yu LF. Tying up tranylcypromine: Novel selective histone lysine specific demethylase 1 (LSD1) inhibitors. Eur J Med Chem 2017; 141:101-112. [PMID: 29031059 DOI: 10.1016/j.ejmech.2017.09.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023]
Abstract
Aberrant expression of lysine specific histone demethylase 1 (LSD1) has been increasingly associated with numerous cancer cells and several proof-of-concept studies are strongly suggestive of its potential as a druggable target. Tranylcypromine (TCP) is an antidepressant originally known to target the monoamine oxidases A and B (MAO-A and MAO-B), which are structurally related to LSD1. A number of TCP derivatives have been identified as potent LSD1 inhibitors, with a handful of them currently being tested in clinical trials. However, thus far the majority of structure-activity relationship studies reported on these TCP derivatives have been mostly limited to the racemates. In this study, we present the SAR data for a novel series of conformationally-restricted TCP-based LSD1 inhibitors, both in their racemic and enantiomerically pure forms. Compounds 18b and 19b were identified as the most potent LSD1 inhibitors within this series, possessing excellent selectivity (>10,000-fold) against MAO-A and MAO-B. These compounds activated CD86 expression on the human MV4-11 AML cells following 10 days of exposure, accompanied with the apparent cytotoxicity. Taken together, these findings are consistent with the pharmacological inhibition of LSD1 and further provide structural insights on the binding modes of these TCP derivatives and their enantiomers at the LSD1.
Collapse
Affiliation(s)
- Yue-Yang Ji
- East China Normal University, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Sen-Dong Lin
- East China Normal University, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yu-Jie Wang
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Ming-Bo Su
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Wei Zhang
- East China Normal University, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Hendra Gunosewoyo
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Fan Yang
- East China Normal University, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Jia Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China.
| | - Li-Fang Yu
- East China Normal University, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
28
|
Takagi S, Ishikawa Y, Mizutani A, Iwasaki S, Matsumoto S, Kamada Y, Nomura T, Nakamura K. LSD1 Inhibitor T-3775440 Inhibits SCLC Cell Proliferation by Disrupting LSD1 Interactions with SNAG Domain Proteins INSM1 and GFI1B. Cancer Res 2017; 77:4652-4662. [PMID: 28667074 DOI: 10.1158/0008-5472.can-16-3502] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/13/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022]
Abstract
T-3775440 is an irreversible inhibitor of the chromatin demethylase LSD1, which exerts antiproliferative effects by disrupting the interaction between LSD1 and GFI1B, a SNAG domain transcription factor, inducing leukemia cell transdifferentiation. Here, we describe the anticancer effects and mechanism of action of T-3775440 in small-cell lung cancer (SCLC). T-3775440 inhibited proliferation of SCLC cells in vitro and retarded SCLC tumor growth in vivo T-3775440 disrupted the interaction between LSD1 and the transcriptional repressor INSM1, thereby inhibiting expression of neuroendocrine-associated genes, such as ASCL1 INSM1 silencing phenocopied the effects of T-3775440 on gene expression and cell proliferation, consistent with the likelihood T-3775440 mediated its effects in SCLC by inhibiting INSM1. T-3775440 also inhibited proliferation of an SCLC cell line that overexpressed GFI1B, rather than INSM1, by disrupting the interaction between LSD1 and GFI1B. Taken together, our results argue that LSD1 plays an important role in neuroendocrine-associated transcription and cell proliferation of SCLC via interactions with the SNAG domain proteins INSM1 and GFI1B. Targeting these critical interactions with LSD1 inhibitors offers a novel rational strategy to therapeutically manage SCLC. Cancer Res; 77(17); 4652-62. ©2017 AACR.
Collapse
Affiliation(s)
- Shinji Takagi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan.
| | - Yoshinori Ishikawa
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Akio Mizutani
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Shinji Iwasaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Satoru Matsumoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Yusuke Kamada
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Toshiyuki Nomura
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Kazuhide Nakamura
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan.
| |
Collapse
|
29
|
Voon DC, Huang RY, Jackson RA, Thiery JP. The EMT spectrum and therapeutic opportunities. Mol Oncol 2017; 11:878-891. [PMID: 28544151 PMCID: PMC5496500 DOI: 10.1002/1878-0261.12082] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022] Open
Abstract
Carcinomas are phenotypically arrayed along an epithelial–mesenchymal transition (EMT) spectrum, a developmental program currently exploited to understand the acquisition of drug resistance through a re‐routing of growth factor signaling. This review collates the current approaches employed in developing therapeutics against cancer‐associated EMT, and provides an assessment of their respective strengths and drawbacks. We reflect on the close relationship between EMT and chemoresistance against current targeted therapeutics, with a special focus on the epigenetic mechanisms that link these processes. This prompts the hypothesis that carcinoma‐associated EMT shares a common epigenetic pathway to cellular plasticity as somatic cell reprogramming during tissue repair and regeneration. Indeed, their striking resemblance suggests that EMT in carcinoma is a pathological adaptation of an intrinsic program of cellular plasticity that is crucial to tissue homeostasis. We thus propose a revised approach that targets the epigenetic mechanisms underlying pathogenic EMT to arrest cellular plasticity regardless of upstream cancer‐driving mutations.
Collapse
Affiliation(s)
- Dominic C Voon
- Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Ruby Y Huang
- Department of Obstetrics & Gynaecology, National University Hospital, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rebecca A Jackson
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jean P Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Inserm Unit 1186 Comprehensive Cancer Center, Institut Gustave Roussy, Villejuif, France.,CNRS UMR 7057 Matter and Complex Systems, University Paris Denis Diderot, Paris, France
| |
Collapse
|
30
|
LPE-1, an orally active pyrimidine derivative, inhibits growth and mobility of human esophageal cancers by targeting LSD1. Pharmacol Res 2017; 122:66-77. [PMID: 28571892 DOI: 10.1016/j.phrs.2017.05.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/11/2023]
Abstract
Histone lysine specific demethylase 1 (LSD1) plays an important role in epigenetic modifications, and aberrant expression of LSD1 predicts tumor progression and poor prognosis in human esophageal cancers. In this study, a series of LSD1 inhibitors were synthesized and proved to be highly potent against human esophageal squamous cell carcinoma (ESCC). Our data showed that these LSD1 inhibitors selectively suppressed the viability of esophageal cancer cell line (EC-109) bearing overexpressed LSD1. Among these, compound LPE-1 (LSD1 IC50=0.336±0.003μM) significantly suppressed proliferation, induced apoptosis, arrested cell cycle of EC109 cells at G2/M phase, and caused changes of the associated protein markers correspondingly. We also found that compound LPE-1 potently inhibited the migration and invasion of EC-109 cells. Docking studies showed that the cyano group formed hydrogen bonds with Val811 and Thr810. Additionally, the thiophene moiety formed arene-H interaction with Trp761 residue. In vivo studies showed that compound LPE-1 inhibited tumor growth of xenograft models bearing EC-109 without obvious toxicity. Collectively, our findings indicate that LSD1 may be a potential therapeutic target in ESCC, and compound LPE-1 could serve as a lead compound for further development for anti-ESCC drug discovery.
Collapse
|
31
|
Liu F, Wang L, Perna F, Nimer SD. Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nat Rev Cancer 2016; 16:359-72. [PMID: 27220480 PMCID: PMC5548460 DOI: 10.1038/nrc.2016.41] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer, once thought to be caused largely by genetic alterations, is now considered to be a mixed genetic and epigenetic disease. The epigenetic landscape, which is dictated by covalent DNA and histone modifications, is profoundly altered in transformed cells. These abnormalities may arise from mutations in, or altered expression of, chromatin modifiers. Recent reports on the interplay between cellular signalling pathways and chromatin modifications add another layer of complexity to the already complex regulation of the epigenome. In this Review, we discuss these new studies and how the insights they provide can contribute to a better understanding of the molecular pathogenesis of neoplasia.
Collapse
Affiliation(s)
- Fan Liu
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136
| | - Lan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Stephen D. Nimer
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136
- Department of Internal Medicine, University of Miami, Miller School of Miami, FL33136
- Corresponding Author:
| |
Collapse
|
32
|
LI YUANXIA, WAN XIAOLEI, WEI YE, LIU XIUWEN, LAI WENSHENG, ZHANG LIUPING, JIN JIE, WU CHAOYANG, SHAO QIXIANG, SHAO GENBAO, LIN QIONG. LSD1-mediated epigenetic modification contributes to ovarian cancer cell migration and invasion. Oncol Rep 2016; 35:3586-92. [DOI: 10.3892/or.2016.4729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/02/2016] [Indexed: 11/05/2022] Open
|
33
|
Wang Y, Zhu Y, Wang Q, Hu H, Li Z, Wang D, Zhang W, Qi B, Ye J, Wu H, Jiang H, Liu L, Yang J, Cheng J. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett 2016; 374:12-21. [PMID: 26872725 DOI: 10.1016/j.canlet.2016.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
The histone demethylase LSD1 functions as a key pro-oncogene and attractive therapeutic target in human cancer. Here we sought to interrogate the oncogenic roles of LSD1 in OSCC tumorigenesis and therapeutic intervention by integrating chemical-induced OSCC model, genetic and pharmacological loss-of-function approaches. Our data revealed that aberrant LSD1 overexpression in OSCC was significantly associated with tumor aggressiveness and shorter overall survival. Increased abundance of LSD1 was detected along with disease progression in DMBA- or 4NQO-induced OSCC animal models. LSD1 depletion via siRNA-mediated knockdown in OSCC cells resulted in impaired cell proliferation, migration/invasion, tumorsphere formation and reduced xenograft growth while inducing cell apoptosis and enhancing chemosensitivity to 5-FU. Moreover, treatments of LSD1 chemical inhibitors (pargyline and tranylcypromine) induced its protein reduction probably via enhanced protein degradation and produced similar phenotypic changes resembling LSD1 silencing in OSCC cells. Pharmacological inhibition of LSD1 by intraperitoneal delivery of these inhibitors resulted in impaired xenograft overgrowth. Taken together, our data reveal the tumorigenic roles of LSD1 and identified LSD1 as a novel biomarker with diagnostic and prognostic significance, and also establish that targeting LSD1 by chemical inhibitors is a viable therapeutic strategy against OSCC.
Collapse
Affiliation(s)
- Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu 210029, China
| | - Yumin Zhu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu 210029, China
| | - Qiong Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu 210029, China
| | - Huijun Hu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu 210029, China
| | - Zhongwu Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu 210029, China; Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Jiangsu 210029, China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Jiangsu 210029, China
| | - Wei Zhang
- Department of Oral Pathology, Nanjing Medical University, Jiangsu 210029, China
| | - Bin Qi
- Department of Oral Pathology, Nanjing Medical University, Jiangsu 210029, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Jiangsu 210029, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Jiangsu 210029, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Jiangsu 210029, China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu 210029, China; Department of Oral Pathology, Nanjing Medical University, Jiangsu 210029, China
| | - Jianrong Yang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu 210029, China; Department of Oral and Maxillofacial Surgery, Nanjing Medical University, Jiangsu 210029, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu 210029, China.
| |
Collapse
|
34
|
Gelato KA, Shaikhibrahim Z, Ocker M, Haendler B. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin Ther Targets 2016; 20:783-99. [PMID: 26799480 DOI: 10.1517/14728222.2016.1134490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Matthias Ocker
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
- Department of Gastroenterology/Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
35
|
Vianello P, Botrugno OA, Cappa A, Dal Zuffo R, Dessanti P, Mai A, Marrocco B, Mattevi A, Meroni G, Minucci S, Stazi G, Thaler F, Trifiró P, Valente S, Villa M, Varasi M, Mercurio C. Discovery of a Novel Inhibitor of Histone Lysine-Specific Demethylase 1A (KDM1A/LSD1) as Orally Active Antitumor Agent. J Med Chem 2016; 59:1501-17. [DOI: 10.1021/acs.jmedchem.5b01209] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Paola Vianello
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Oronza A. Botrugno
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Anna Cappa
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Roberto Dal Zuffo
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paola Dessanti
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.le
A. Moro 5, 00185 Rome, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Biagina Marrocco
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.le
A. Moro 5, 00185 Rome, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
1, 27100 Pavia, Italy
| | - Giuseppe Meroni
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
- Department
of Biosciences, University of Milan, Via Celoria, 26, 20133 Milan, Italy
| | - Giulia Stazi
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.le
A. Moro 5, 00185 Rome, Italy
| | - Florian Thaler
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paolo Trifiró
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza University of Rome, P.le
A. Moro 5, 00185 Rome, Italy
| | - Manuela Villa
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Mario Varasi
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Department
of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
- Genextra Group, DAC s.r.l., Via
Adamello 16, 20139 Milan, Italy
| |
Collapse
|
36
|
Sharan RN, Vaiphei ST, Nongrum S, Keppen J, Ksoo M. Consensus reference gene(s) for gene expression studies in human cancers: end of the tunnel visible? Cell Oncol (Dordr) 2015; 38:419-31. [PMID: 26384826 DOI: 10.1007/s13402-015-0244-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gene expression studies are increasingly used to provide valuable information on the diagnosis and prognosis of human cancers. Also, for in vitro and in vivo experimental cancer models gene expression studies are widely used. The complex algorithms of differential gene expression analyses require normalization of data against a reference or normalizer gene, or a set of such genes. For this purpose, mostly invariant housekeeping genes are used. Unfortunately, however, there are no consensus (housekeeping) genes that serve as reference or normalizer for different human cancers. In fact, scientists have employed a wide range of reference genes across different types of cancer for normalization of gene expression data. As a consequence, comparisons of these data and/or data harmonizations are difficult to perform and challenging. In addition, an inadequate choice for a reference gene may obscure genuine changes and/or result in erroneous gene expression data comparisons. METHODS In our effort to highlight the importance of selecting the most appropriate reference gene(s), we have screened the literature for gene expression studies published since the turn of the century on thirteen of the most prevalent human cancers worldwide. CONCLUSIONS Based on the analysis of the data at hand, we firstly recommend that in each study the suitability of candidate reference gene(s) should carefully be evaluated in order to yield reliable differential gene expression data. Secondly, we recommend that a combination of PPIA and either GAPDH, ACTB, HPRT and TBP, or appropriate combinations of two or three of these genes, should be employed in future studies, to ensure that results from different studies on different human cancers can be harmonized. This approach will ultimately increase the depth of our understanding of gene expression signatures across human cancers.
Collapse
Affiliation(s)
- R N Sharan
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India.
| | - S Thangminlal Vaiphei
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - Saibadaiahun Nongrum
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - Joshua Keppen
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - Mandahakani Ksoo
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| |
Collapse
|
37
|
Wu J, Hu L, Du Y, Kong F, Pan Y. Prognostic role of LSD1 in various cancers: evidence from a meta-analysis. Onco Targets Ther 2015; 8:2565-70. [PMID: 26451115 PMCID: PMC4592051 DOI: 10.2147/ott.s89597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The prognostic value of lysine-specific demethylase 1 (LSD1) overexpression in various cancers has been investigated by many studies with inconsistent results. A meta-analysis was performed to assess the association between LSD1 and overall survival (OS) in cancer patients. Eligible studies were identified by searching the online databases PubMed and China National Knowledge Infrastructure up to February 2015. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to clarify the correlation between LSD1 expression and prognosis of different cancers. In total, nine studies with 1,149 cancer patients were included for final analysis. The meta-analysis suggested that LSD1 overexpression was associated with poor OS in cancer patients (HR =1.80, 95% CI: 1.39–2.34, P=0.000). Subgroup analysis by ethnicity, cancer type and HR estimate also showed that high levels of LSD1 were significantly correlated with OS. The meta-analysis showed that LSD1 overexpression may be associated with a worse prognosis in cancer patients.
Collapse
Affiliation(s)
- Jin Wu
- The Central Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Lixia Hu
- Department of Oncology, The Second People's Hospital of Hefei, Hefei, Anhui, People's Republic of China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fanliang Kong
- Department of Oncology, The Second People's Hospital of Hefei, Hefei, Anhui, People's Republic of China
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
38
|
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46. [PMID: 25787087 PMCID: PMC4747437 DOI: 10.1002/bip.22643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1-selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance.
Collapse
|
39
|
Lei ZJ, Wang J, Xiao HL, Guo Y, Wang T, Li Q, Liu L, Luo X, Fan LL, Lin L, Mao CY, Wang SN, Wei YL, Lan CH, Jiang J, Yang XJ, Liu PD, Chen DF, Wang B. Lysine-specific demethylase 1 promotes the stemness and chemoresistance of Lgr5(+) liver cancer initiating cells by suppressing negative regulators of β-catenin signaling. Oncogene 2015; 34:3188-98. [PMID: 25893304 DOI: 10.1038/onc.2015.129] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/19/2015] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Cancer initiating cells (CICs) are responsible for the unrestrained cell growth and chemoresistance of malignant tumors. Histone demethylation has been shown to be crucial for self-renewal/differentiation of stem cells, but it remains elusive whether lysine-specific demethylase 1 (LSD1) regulates the stemness properties of CICs. Here we report that the abundant expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is associated with the progression of hepatocellular carcinoma (HCC). Lgr5(+) HCC cells behave similarly to CICs and are highly tumorigenic and resistant to chemotherapeutic agents. Importantly, Lgr5(+) cells express higher levels of LSD1, which in turn regulates Lgr5 expression and promotes the self-renewal and drug resistance of Lgr5(+) CICs. Mechanistically, LSD1 promotes β-catenin activation by inhibiting the expression of several suppressors of β-catenin signaling, especially Prickle1 and APC in Lgr5(+) CICs, by directly regulating the levels of mono- and di-methylation of histone H3 lysine-4 at the promoters of these genes. Furthermore, LSD1-associated activation of the β-catenin signaling is essential for maintaining the activity of Lgr5(+) CICs. Together, our findings unravel the LSD1/Prickle1/APC/β-catenin signaling axis as a novel molecular circuit regulating the stemness and chemoresistance of hepatic Lgr5(+) CICs and provide potential targets to improve chemotherapeutic efficacies against HCC.
Collapse
Affiliation(s)
- Z-J Lei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - J Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - H-L Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Y Guo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - T Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Q Li
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - L Liu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - X Luo
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - L-L Fan
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - L Lin
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - C-Y Mao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - S-N Wang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Y-L Wei
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - C-H Lan
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - J Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - X-J Yang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - P-D Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D-F Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - B Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
40
|
LSD1 overexpression is associated with poor prognosis in basal-like breast cancer, and sensitivity to PARP inhibition. PLoS One 2015; 10:e0118002. [PMID: 25679396 PMCID: PMC4332491 DOI: 10.1371/journal.pone.0118002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/03/2015] [Indexed: 02/03/2023] Open
Abstract
LSD1, a lysine-specific histone demethylase, is overexpressed in several types of cancers and linked to poor outcomes. In breast cancer, the significance of LSD1 overexpression is not clear. We have performed an in silico analysis to assess the relationship of LSD1 expression to clinical outcome. We demonstrate that LSD1 overexpression is a poor prognostic factor in breast cancer, especially in basal-like breast cancer, a subtype of breast cancer with aggressive clinical features. This link is also observed in samples of triple negative breast cancer. Interestingly, we note that overexpression of LSD1 correlates with down-regulation of BRCA1 in triple negative breast cancer. This phenomenon is also observed in in vitro models of basal-like breast cancer, and is associated with an increased sensitivity to PARP inhibitors. We propose therefore that high expression levels of the demethylase LSD1 is a potential prognostic factor of poor outcome in basal-like breast cancer, and that PARP inhibition may be a therapeutic strategy of interest in this poor prognostic subtype with overexpression of LSD1.
Collapse
|
41
|
Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TCP, Buesa C. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics 2015; 7:609-26. [PMID: 26111032 DOI: 10.2217/epi.15.9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation and demethylation are important processes associated with the regulation of gene transcription, and alterations in histone methylation status have been linked to a large number of human diseases. Initially thought to be an irreversible process, histone methylation is now known to be reversed by two families of proteins containing over 30 members that act to remove methyl groups from specific lysine residues present in the tails of histone H3 and histone H4. A rapidly growing number of reports have implicated the FAD-dependent lysine specific demethylase (KDM1) family in cancer, and several small-molecule inhibitors are in development for the treatment of cancer. An additional role has emerged for KDM1 in brain function, offering additional opportunities for the development of novel therapeutic strategies in neurodegenerative disease. A decade after the identification of KDM1A as a histone demethylase, the first selective inhibitors have now reached the clinic.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Alberto Ortega
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Serena Lunardi
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Filippo Ciceri
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Manchester, M20 4BX, UK
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| |
Collapse
|
42
|
Zhu H, Chen X, Chen B, Chen B, Song W, Sun D, Zhao Y. Activating transcription factor 4 promotes esophageal squamous cell carcinoma invasion and metastasis in mice and is associated with poor prognosis in human patients. PLoS One 2014; 9:e103882. [PMID: 25078779 PMCID: PMC4117569 DOI: 10.1371/journal.pone.0103882] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 07/08/2014] [Indexed: 01/16/2023] Open
Abstract
Background Activating transcription factor 4 (ATF4) is a stress response gene that is involved in homeostasis and cellular protection. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remains unknown. In this study, we aimed to determine the clinicopathologic significance of ATF4 in ESCC and its potential role in ESCC invasion and metastasis. Methodology/Principal Findings We demonstrated that ATF4 overexpression is correlated with multiple malignant characteristics and indicates poor prognosis in ESCC patients. ATF4 expression was an independent factor that affected the overall survival of patients with ESCC after surgical resection. ATF4 promoted cell invasion and metastasis by promoting matrix metalloproteinase (MMP)-2 and MMP-7 expression, while its silencing significantly attenuated these activities both in vitro and in vivo. Conclusions/Significance We report that ATF4 is a potential biomarker for ESCC prognosis and that its dysregulation may play a key role in the regulation of invasion and metastasis in ESCC cells. The targeting of ATF4 may provide a new strategy for blocking ESCC metastasis.
Collapse
Affiliation(s)
- Hongwu Zhu
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Xiong Chen
- Department of Oncology, Fuzhou General Hospital of the Nanjing Military Command of the PLA, Fuzhou, China
| | - Bin Chen
- Department of Oncology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Bei Chen
- Department of Oncology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Weibing Song
- Department of Gerontology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Dayong Sun
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
- * E-mail: (DS); (YZ)
| | - Yagang Zhao
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
- * E-mail: (DS); (YZ)
| |
Collapse
|
43
|
Yuan C, Li Z, Qi B, Zhang W, Cheng J, Wang Y. High expression of the histone demethylase LSD1 associates with cancer cell proliferation and unfavorable prognosis in tongue cancer. J Oral Pathol Med 2014; 44:159-65. [DOI: 10.1111/jop.12220] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Chunping Yuan
- Head Neck Cancer Center; Institute of Stomatology; Nanjing Medical University; Jiangsu China
- Department of Oral and Maxillofacial Surgery; Nanjing Medical University; Jiangsu China
| | - Zhongwu Li
- Head Neck Cancer Center; Institute of Stomatology; Nanjing Medical University; Jiangsu China
- Department of Oral and Maxillofacial Surgery; Nanjing Medical University; Jiangsu China
| | - Bing Qi
- Department of Oral Pathology; School of Stomatology; Nanjing Medical University; Jiangsu China
| | - Wei Zhang
- Department of Oral Pathology; School of Stomatology; Nanjing Medical University; Jiangsu China
| | - Jie Cheng
- Head Neck Cancer Center; Institute of Stomatology; Nanjing Medical University; Jiangsu China
- Department of Oral and Maxillofacial Surgery; Nanjing Medical University; Jiangsu China
| | - Yanling Wang
- Head Neck Cancer Center; Institute of Stomatology; Nanjing Medical University; Jiangsu China
- Department of Oral and Maxillofacial Surgery; Nanjing Medical University; Jiangsu China
| |
Collapse
|
44
|
Interplay among epigenetic alterations and crosstalk between genetic and epigenetic alterations in esophageal squamous cell carcinoma. Esophagus 2014. [DOI: 10.1007/s10388-014-0431-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
45
|
Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell's Journey. CANCER MICROENVIRONMENT 2014; 7:117-31. [PMID: 24938990 DOI: 10.1007/s12307-014-0148-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/08/2014] [Indexed: 12/21/2022]
Abstract
Metastasis is the process of primary tumor cells breaking away and colonizing distant secondary sites. In order for a tumor cell growing in one microenvironment to travel to, and flourish in, a secondary environment, it must survive a series of events termed the metastatic cascade. Before departing the primary tumor, cells acquire genetic and epigenetic changes that endow them with properties not usually associated with related normal differentiated cells. Those cells also induce a subset of bone marrow-derived stem cells to mobilize and establish pre-metastatic niches [1]. Many tumor cells undergo epithelial-to-mesenchymal transition (EMT), where they transiently acquire morphologic changes, reduced requirements for cell-cell contact and become more invasive [2]. Invasive tumor cells eventually enter the circulatory (hematogenous) or lymphatic systems or travel across body cavities. In transit, tumor cells must resist anoikis, survive sheer forces and evade detection by the immune system. For blood-borne metastases, surviving cells then arrest or adhere to endothelial linings before either proliferating or extravasating. Eventually, tumor cells complete the process by proliferating to form a macroscopic mass [3].Up to 90 % of all cancer related morbidity and mortality can be attributed to metastasis. Surgery manages to ablate most primary tumors, especially when combined with chemotherapy and radiation. But if cells have disseminated, survival rates drop precipitously. While multiple parameters of the primary tumor are predictive of local or distant relapse, biopsies remain an imperfect science. The introduction of molecular and other biomarkers [4, 5] continue to improve the accuracy of prognosis. However, the invasive procedure introduces new complications for the patient. Likewise, the heterogeneity of any tumor population [3, 6, 7] means that sampling error (i.e., since it is impractical to examine the entire tumor) necessitates further improvements.In the case of breast cancer, for example, women diagnosed with stage I diseases (i.e., no evidence of invasion through a basement membrane) still have a ~30 % likelihood of developing distant metastases [8]. Many physicians and patients opt for additional chemotherapy in order to "mop up" cells that have disseminated and have the potential to grow into macroscopic metastases. This means that ~ 70 % of patients receive unnecessary therapy, which has undesirable side effects. Therefore, improving prognostic capability is highly desirable.Recent advances allow profiling of primary tumor DNA sequences and gene expression patterns to define a so-called metastatic signature [9-11], which can be predictive of patient outcome. However, the genetic changes that a tumor cell must undergo to survive the initial events of the metastatic cascade and colonize a second location belie a plasticity that may not be adequately captured in a sampling of heterogeneous tumors. In order to tailor or personalize patient treatments, a more accurate assessment of the genetic profile in the metastases is needed. Biopsy of each individual metastasis is not practical, safe, nor particularly cost-effective. In recent years, there has been a resurrection of the notion to do a 'liquid biopsy,' which essentially involves sampling of circulating tumor cells (CTC) and/or cell free nucleic acids (cfDNA, including microRNA (miRNA)) present in blood and lymph [12-16].The rationale for liquid biopsy is that tumors shed cells and/or genetic fragments into the circulation, theoretically making the blood representative of not only the primary tumor but also distant metastases. Logically, one would predict that the proportion of CTC and/or cfDNA would be proportionate to the likelihood of developing metastases [14]. While a linear relationship does not exist, the information within CTC or cfDNA is beginning to show great promise for enabling a global snapshot of the disease. However, the CTC and cfDNA are present at extremely low levels. Nonetheless, newer technologies capture enough material to enrich and sequence the patient's DNA or quantification of some biomarkers.Among the biomarkers showing great promise are metastasis suppressors which, by definition, block a tumor cell's ability to complete the metastatic process without prohibiting primary tumor growth [17]. Since the discovery of the first metastasis suppressor, Nm23, more than 30 have been functionally characterized. They function at various stages of the metastatic cascade, but their mechanisms of action, for the most part, remain ill-defined. Deciphering the molecular interactions of functional metastasis suppressors may provide insights for targeted therapies when these regulators cease to function and result in metastatic disease.In this brief review, we summarize what is known about the various metastasis suppressors and their functions at individual steps of the metastatic cascade (Table 1). Some of the subdivisions are rather arbitrary in nature, since many metastasis suppressors affect more than one step in the metastatic cascade. Nonetheless what emerges is a realization that metastasis suppressors are intimately associated with the microenvironments in which cancer cells find themselves [18].
Collapse
|
46
|
Ge W, Liu Y, Chen T, Zhang X, Lv L, Jin C, Jiang Y, Shi L, Zhou Y. The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 2014; 35:6015-25. [PMID: 24794925 DOI: 10.1016/j.biomaterials.2014.04.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/12/2014] [Indexed: 12/23/2022]
Abstract
Human adipose-derived stem cells (hASCs) are a highly attractive source in bone tissue engineering. It has become increasingly clear that chromatin regulators play an important role in cell fate determination. However, how osteogenic differentiation of hASCs is controlled by epigenetic mechanisms is not fully understood. Here we use genetic tools and chemical inhibitors to modify the epigenetic program of hASCs and identify lysine-specific demethylase 1 (LSD1), a histone demethylase that specifically catalyzes demethylation of di- and mono- methyl histone H3 lysine 4 (H3K4me2/1), as a key regulator in osteogenic differentiation of hASCs. Specifically, we demonstrated that genetic depletion of LSD1 with lentiviral strategy for gene knockdown promoted osteogenic differentiation of hASCs by cell studies and xenograft assays. At the molecular level, we found that LSD1 regulates osteogenesis-associated genes expression through its histone demethylase activity. Significantly, we demonstrated LSD1 demethylase inhibitors could efficiently block its catalytic activity and epigenetically boost osteogenic differentiation of hASCs. Altogether, our study defined the functional and biological roles of LSD1 and extensively explored the effects of its enzymatic activity in osteogenic differentiation of hASCs. A better understanding of how LSD1 influences on osteogenesis associated epigenetic events will provide new insights into the modulation of hASCs based cell therapy and improve the development of bone tissue engineering with epigenetic intervention.
Collapse
Affiliation(s)
- Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China; Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Tong Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lei Shi
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
47
|
Yang H, Liu J, Yu H, Sun P, Hu Y, Zhong J, Zhu Z. Expression and association of CD44v6 with prognosis in T2-3N0M0 esophageal squamous cell carcinoma. J Thorac Dis 2014; 6:91-8. [PMID: 24605222 DOI: 10.3978/j.issn.2072-1439.2013.11.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022]
Abstract
AIM To investigate the expression of CD44v6 in stage T2-3N0M0 esophageal squamous cell carcinoma (ESCC) and its prognostic significance. METHODS The expression of CD44v6 in a series of 227 ESCC specimens was evaluated by immunohistochemistry (IHC). A reproducible semiquantitative method which took both staining percentage and intensity into account was applied for IHC scoring, and receiver operating characteristic (ROC) curve analysis was utilized to select the cut-off score for high or low IHC reactivity. Then, the correlations of CD44v6 expression with clinicopathological features of patients and its prognostic relevance were determined. RESULTS In the present study, the proportion of low CD44v6 expression was found significantly lower in Grade 3 of ESCC, than that of Grade 1 and Grade 2 of ESCC. There are no significant correlations between CD44v6 expression and other clinicopathological parameters including gender, age, tumor size, tumor location, depth of invasion and pathological stage. The Kaplan-Meier survival curves showed that up-regulated expression of CD44v6 indicated a poorer post-operative survival for ESCC patients of stage T2-3N0M0 (P=0.009), especially for those with T2 lesions (P=0.044) or with stage IIB diseases (P=0.005). Multivariate analysis also confirmed that CD44v6 expression [relative risk, 1.639; 95% confidence interval (CI): 1.142-2.354, P=0.007] and depth of invasion (relative risk, 1.487; 95% CI: 1.063-2.080, P=0.020) were independent prognostic factors. CONCLUSIONS Elevated CD44v6 expression may be an adverse prognostic indicator for patients with stage T2-3N0M0 ESCC, especially for those with T2 lesions or stage IIB diseases.
Collapse
Affiliation(s)
- Han Yang
- 1 Department of Thoracic Surgery, 2 Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China ; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Junling Liu
- 1 Department of Thoracic Surgery, 2 Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China ; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hui Yu
- 1 Department of Thoracic Surgery, 2 Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China ; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Peng Sun
- 1 Department of Thoracic Surgery, 2 Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China ; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yi Hu
- 1 Department of Thoracic Surgery, 2 Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China ; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jiudi Zhong
- 1 Department of Thoracic Surgery, 2 Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China ; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhihua Zhu
- 1 Department of Thoracic Surgery, 2 Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China ; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
48
|
miR-329 suppresses the growth and motility of neuroblastoma by targeting KDM1A. FEBS Lett 2013; 588:192-7. [DOI: 10.1016/j.febslet.2013.11.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 11/23/2022]
|