1
|
Li C, Liu Y, Deng M, Li J, Li S, Li X, Zuo Y, Shen C, Wang Y. Comparison of the therapeutic effects of mesenchymal stem cells derived from human dental pulp (DP), adipose tissue (AD), placental amniotic membrane (PM), and umbilical cord (UC) on postmenopausal osteoporosis. Front Pharmacol 2024; 15:1349199. [PMID: 38601464 PMCID: PMC11004311 DOI: 10.3389/fphar.2024.1349199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Background: Osteoporosis is a systemic bone disease characterized by bone loss and microstructural degeneration. Recent preclinical and clinical trials have further demonstrated that the transplantation of mesenchymal stem cells (MSCs) derived from human adipose tissue (AD), dental pulp (DP), placental amniotic membrane (AM), and umbilical cord (UC) tissues can serve as an effective form of cell therapy for osteoporosis. However, MSC-mediated osteoimmunology and the ability of these cells to regulate osteoclast-osteoblast differentiation varies markedly among different types of MSCs. Methods: In this study, we investigated whether transplanted allogeneic MSCs derived from AD, DP, AM, and UC tissues were able to prevent osteoporosis in an ovariectomy (OVX)-induced mouse model of osteoporosis. The homing and immunomodulatory ability of these cells as well as their effects on osteoblastogenesis and the maintenance of bone formation were compared for four types of MSCs to determine the ideal source of MSCs for the cell therapy-based treatment of OVX-induced osteoporosis. The bone formation and bone resorption ability of these four types of MSCs were analyzed using micro-computed tomography analyses and histological staining. In addition, cytokine array-based analyses of serological markers and bioluminescence imaging assays were employed to evaluate cell survival and homing efficiency. Immune regulation was determined by flow cytometer assay to reflect the mechanisms of osteoporosis treatment. Conclusion: These analyses demonstrated that MSCs isolated from different tissues have the capacity to treat osteoporosis when transplanted in vivo. Importantly, DP-MSCs infusion was able to maintain trabecular bone mass more efficiently with corresponding improvements in trabecular bone volume, mineral density, number, and separation. Among the tested MSC types, DP-MSCs were also found to exhibit greater immunoregulatory capabilities, regulating the Th17/Treg and M1/M2 ratios. These data thus suggest that DP-MSCs may represent an effective tool for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Chuncai Li
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Hospital of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yincong Liu
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxing Deng
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Li
- Sichuan Provincial Cells Tissue Bank, Chengdu, China
| | - Shengqi Li
- Sichuan Provincial Cells Tissue Bank, Chengdu, China
| | - Xiaoyu Li
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Hospital of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chongyang Shen
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yichao Wang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Muñoz-Garcia J, Heymann D, Giurgea I, Legendre M, Amselem S, Castañeda B, Lézot F, William Vargas-Franco J. Pharmacological options in the treatment of osteogenesis imperfecta: A comprehensive review of clinical and potential alternatives. Biochem Pharmacol 2023; 213:115584. [PMID: 37148979 DOI: 10.1016/j.bcp.2023.115584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous connective tissue disorder characterized by bone fragility and different extra-skeletal manifestations. The severity of these manifestations makes it possible to classify OI into different subtypes based on the main clinical features. This review aims to outline and describe the current pharmacological alternatives for treating OI, grounded on clinical and preclinical reports, such as antiresorptive agents, anabolic agents, growth hormone, and anti-TGFβ antibody, among other less used agents. The different options and their pharmacokinetic and pharmacodynamic properties will be reviewed and discussed, focusing on the variability of their response and the molecular mechanisms involved to attain the main clinical goals, which include decreasing fracture incidence, improving pain, and promoting growth, mobility, and functional independence.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Irina Giurgea
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Marie Legendre
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Beatriz Castañeda
- Service d'Orthopédie Dento-Facial, Département d'Odontologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris F75013, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France.
| | | |
Collapse
|
3
|
Zhang F, Attarilar S, Xie K, Han C, Huang K, Lan C, Wang C, Yang C, Wang L, Mozafari M, Li K, Liu J, Tang Y. Carfilzomib alleviated osteoporosis by targeting PSME1/2 to activate Wnt/β-catenin signaling. Mol Cell Endocrinol 2022; 540:111520. [PMID: 34838695 DOI: 10.1016/j.mce.2021.111520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density and impaired bone strength. Carfilzomib (CFZ) is a new-generation proteasome inhibitor and has been found to affect bone metabolism. However, the effect and mechanism of CFZ on OP has not been investigated systematically. In this study, we found that protein levels of proteasome activator subunit 1/2 (PSME1/2) increased in OP, and accumulated mostly in osteoblasts and osteoclasts. Treatment with PSME1/2 recombinant protein inhibited osteogenesis and promoted osteoclast formation in vitro. Also, PSME1/2 inhibited the expression of β-catenin protein, resulting in limitation of Wnt/β-catenin signaling. CFZ inhibited PSME1 and PSME2 proteasome activities and increased β-catenin protein level, resulting in the translocation of β-catenin to the nucleus and activation of canonical Wnt/β-catenin signaling, further promoting osteogenesis and inhibiting osteoclastic differentiation. In vivo, we conducted ovariectomy (OVX) to create a model of OVX-induced postmenopausal OP in mice. When analyzed by micro-CT scanning, enhancement of bone mineral density, bone volume, trabecular number, and thickness was seen in the CFZ-treated mice. Also, we noticed increased osteogenesis and decreased osteoclastogenesis, diminished expression of PSME1 and PSME2 and activated Wnt/β-catenin signaling in bone sections from OP mice treated with CFZ. Overall, our data indicated that PSME1/2 may serve as new targets for the treatment of OP, and targeting PSME1/2 with CFZ provides a candidate therapeutic molecule for postmenopausal OP.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chao Han
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ke Huang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Changgong Lan
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kai Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China.
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
4
|
Ding Y, Cui Y, Yang X, Wang X, Tian G, Peng J, Wu B, Tang L, Cui CP, Zhang L. Anti-RANKL monoclonal antibody and bortezomib prevent mechanical unloading-induced bone loss. J Bone Miner Metab 2021; 39:974-983. [PMID: 34212247 DOI: 10.1007/s00774-021-01246-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Bone loss is a major health concern for astronauts during long-term spaceflight and for patients during prolonged bed rest or paralysis. It is essential to develop therapeutic strategies to combat the bone loss occurring in people afflicted with disuse atrophy on earth as well as in astronauts in space, especially during prolonged missions. Although several drugs have been demonstrated for treating postmenopausal osteoporosis or bone-related diseases, their effects on microgravity-induced bone loss are still unclear. MATERIALS AND METHODS Here, we employed the hindlimb-unloading (HLU) tail suspension model and compared the preventive efficiencies of five agents including alendronate (ALN), raloxifene (Rox), teriparatide (TPTD), anti-murine RANKL monoclonal antibody (anti-RANKL) and proteasome inhibitor bortezomib (Bzb) on mechanical unloading-induced bone loss. Bone mineral density (BMD) was measured by quantitative computed tomography. The osteoblastic and osteoclastic activity were measured by serum ELISA, histology analysis, and histomorphometric analysis. RESULTS Compared to the control, ALN and anti-RANKL antibody could restore bone mass close to sham levels by inhibiting bone resorption. Bzb could increase the whole bone mass and strength by inhibiting bone resorption and promoting bone formation simultaneously. Meanwhile, Rox did not affect bone loss caused by HLU. TPTD stimulated cortical bone formation but the total bone mass was not increased significantly. CONCLUSIONS We demonstrated for the first time that anti-RANKL antibody and Bzb had a positive effect on preventing mechanical unloading-induced bone loss. This finding puts forward the potential use of anti-RANKL and Bzb on bone loss therapies or prophylaxis of astronauts in spaceflight.
Collapse
Affiliation(s)
- Yi Ding
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yu Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
- General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang, China
| | - Xiaolu Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Guangzhao Tian
- Lab of Orthopaedics of Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Lab of Orthopaedics of Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Li Tang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| |
Collapse
|
5
|
Mukkamalla SKR, Malipeddi D. Myeloma Bone Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:6208. [PMID: 34201396 PMCID: PMC8227693 DOI: 10.3390/ijms22126208] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic clonal proliferation of plasma cells in the bone marrow microenvironment, characterized by overproduction of heavy- and light-chain monoclonal proteins (M-protein). These proteins are mainly found in the serum and/or urine. Reduction in normal gammaglobulins (immunoparesis) leads to an increased risk of infection. The primary site of origin is the bone marrow for nearly all patients affected by MM with disseminated marrow involvement in most cases. MM is known to involve bones and result in myeloma bone disease. Osteolytic lesions are seen in 80% of patients with MM which are complicated frequently by skeletal-related events (SRE) such as hypercalcemia, bone pain, pathological fractures, vertebral collapse, and spinal cord compression. These deteriorate the patient's quality of life and affect the overall survival of the patient. The underlying pathogenesis of myeloma bone disease involves uncoupling of the bone remodeling processes. Interaction of myeloma cells with the bone marrow microenvironment promotes the release of many biochemical markers including osteoclast activating factors and osteoblast inhibitory factors. Elevated levels of osteoclast activating factors such as RANK/RANKL/OPG, MIP-1-α., TNF-α, IL-3, IL-6, and IL-11 increase bone resorption by osteoclast stimulation, differentiation, and maturation, whereas osteoblast inhibitory factors such as the Wnt/DKK1 pathway, secreted frizzle related protein-2, and runt-related transcription factor 2 inhibit osteoblast differentiation and formation leading to decreased bone formation. These biochemical factors also help in development and utilization of appropriate anti-myeloma treatments in myeloma patients. This review article summarizes the pathophysiology and the recent developments of abnormal bone remodeling in MM, while reviewing various approved and potential treatments for myeloma bone disease.
Collapse
Affiliation(s)
| | - Dhatri Malipeddi
- Internal Medicine, Canton Medical Education Foundation/NEOMED, Canton, OH 44710, USA;
| |
Collapse
|
6
|
Zhang D, De Veirman K, Fan R, Jian Q, Zhang Y, Lei L, Evans H, Wang Y, Lei L, Wang B, Williamson RA, Chantry A, He P, Li A, De Raeve H, Vanderkerken K, He A, Hu J. ER stress arm XBP1s plays a pivotal role in proteasome inhibition-induced bone formation. Stem Cell Res Ther 2020; 11:516. [PMID: 33256835 PMCID: PMC7708206 DOI: 10.1186/s13287-020-02037-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bone destruction is a hallmark of multiple myeloma (MM). It has been reported that proteasome inhibitors (PIs) can reduce bone resorption and increase bone formation in MM patients, but the underlying mechanisms remain unclear. METHODS Mesenchymal stem cells (MSCs) were treated with various doses of PIs, and the effects of bortezomib or carfilzomib on endoplasmic reticulum (ER) stress signaling pathways were analyzed by western blotting and real-time PCR. Alizarin red S (ARS) and alkaline phosphatase (ALP) staining were used to determine the osteogenic differentiation in vitro. Specific inhibitors targeting different ER stress signaling and a Tet-on inducible overexpressing system were used to validate the roles of key ER stress components in regulating osteogenic differentiation of MSCs. Chromatin immunoprecipitation (ChIP) assay was used to evaluate transcription factor-promoter interaction. MicroCT was applied to measure the microarchitecture of bone in model mice in vivo. RESULTS We found that both PERK-ATF4 and IRE1α-XBP1s ER stress branches are activated during PI-induced osteogenic differentiation. Inhibition of ATF4 or XBP1s signaling can significantly impair PI-induced osteogenic differentiation. Furthermore, we demonstrated that XBP1s can transcriptionally upregulate ATF4 expression and overexpressing XBP1s can induce the expression of ATF4 and other osteogenic differentiation-related genes and therefore drive osteoblast differentiation. MicroCT analysis further demonstrated that inhibition of XBP1s can strikingly abolish bortezomib-induced bone formation in mouse. CONCLUSIONS These results demonstrated that XBP1s is a master regulator of PI-induced osteoblast differentiation. Activation of IRE1α-XBP1s ER stress signaling can promote osteogenesis, thus providing a novel strategy for the treatment of myeloma bone disease.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Rong Fan
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China.,Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Qiang Jian
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Yuchen Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Holly Evans
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Yanmeng Wang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China.,Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Lei Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Baiyan Wang
- Department of Clinical Hematology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ramone A Williamson
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Andrew Chantry
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Pengcheng He
- Department of Clinical Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hendrik De Raeve
- Department of Pathology, UZ Brussel, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Aili He
- Department of Clinical Hematology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
7
|
Zhang D, Fan R, Lei L, Lei L, Wang Y, Lv N, Chen P, Williamson RA, Wang B, Hu J. Cell cycle exit during bortezomib-induced osteogenic differentiation of mesenchymal stem cells was mediated by Xbp1s-upregulated p21 Cip1 and p27 Kip1. J Cell Mol Med 2020; 24:9428-9438. [PMID: 32628811 PMCID: PMC7417721 DOI: 10.1111/jcmm.15605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 01/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into a variety of cell types. Bortezomib, the first approved proteasome inhibitor used for the treatment of multiple myeloma (MM), has been shown to induce osteoblast differentiation, making it beneficial for myeloma bone disease. In the present study, we aimed to investigate the effects and underlying mechanisms of bortezomib on the cell cycle during osteogenic differentiation. We confirmed that low doses of bortezomib can induce MSCs towards osteogenic differentiation, but high doses are toxic. In the course of bortezomib-induced osteogenic differentiation, we observed cell cycle exit characterized by G0 /G1 phase cell cycle arrest with a significant reduction in cell proliferation. Additionally, we found that the cell cycle exit was tightly related to the induction of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 . Notably, we further demonstrated that the up-regulation of p21Cip1 and p27Kip1 is transcriptionally dependent on the bortezomib-activated ER stress signalling branch Ire1α/Xbp1s. Taken together, these findings reveal an intracellular pathway that integrates proteasome inhibition, osteogenic differentiation and the cell cycle through activation of the ER stress signalling branch Ire1α/Xbp1s.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rong Fan
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Li Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanmeng Wang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Nan Lv
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ping Chen
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ramone A Williamson
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baiyan Wang
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| |
Collapse
|
8
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
9
|
Green AC, Lath D, Hudson K, Walkley B, Down JM, Owen R, Evans HR, Paton-Hough J, Reilly GC, Lawson MA, Chantry AD. TGFβ Inhibition Stimulates Collagen Maturation to Enhance Bone Repair and Fracture Resistance in a Murine Myeloma Model. J Bone Miner Res 2019; 34:2311-2326. [PMID: 31442332 DOI: 10.1002/jbmr.3859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Multiple myeloma is a plasma cell malignancy that causes debilitating bone disease and fractures, in which TGFβ plays a central role. Current treatments do not repair existing damage and fractures remain a common occurrence. We developed a novel low tumor phase murine model mimicking the plateau phase in patients as we hypothesized this would be an ideal time to treat with a bone anabolic. Using in vivo μCT we show substantial and rapid bone lesion repair (and prevention) driven by SD-208 (TGFβ receptor I kinase inhibitor) and chemotherapy (bortezomib and lenalidomide) in mice with human U266-GFP-luc myeloma. We discovered that lesion repair occurred via an intramembranous fracture repair-like mechanism and that SD-208 enhanced collagen matrix maturation to significantly improve fracture resistance. Lesion healing was associated with VEGFA expression in woven bone, reduced osteocyte-derived PTHrP, increased osteoblasts, decreased osteoclasts, and lower serum tartrate-resistant acid phosphatase 5b (TRACP-5b). SD-208 also completely prevented bone lesion development in mice with aggressive JJN3 tumors, and was more effective than an anti-TGFβ neutralizing antibody (1D11). We also discovered that SD-208 promoted osteoblastic differentiation (and overcame the TGFβ-induced block in osteoblastogenesis) in myeloma patient bone marrow stromal cells in vitro, comparable to normal donors. The improved bone quality and fracture-resistance with SD-208 provides incentive for clinical translation to improve myeloma patient quality of life by reducing fracture risk and fatality. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alanna C Green
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Darren Lath
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Katie Hudson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Brant Walkley
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, UK
| | - Jennifer M Down
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Robert Owen
- INSIGNEO Institute of In Silico Medicine, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Holly R Evans
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Julia Paton-Hough
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Gwendolen C Reilly
- INSIGNEO Institute of In Silico Medicine, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Michelle A Lawson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Andrew D Chantry
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK.,Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
10
|
Kim SH, Kim MO, Kim HJ, Neupane S, Kim HJ, Lee JH, Kim HH, Kim JY, Lee Y. Bortezomib prevents ovariectomy-induced osteoporosis in mice by inhibiting osteoclast differentiation. J Bone Miner Metab 2018; 36:537-546. [PMID: 29027021 DOI: 10.1007/s00774-017-0871-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/16/2017] [Indexed: 01/11/2023]
Abstract
Bone homeostasis is achieved through coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. When the balance is skewed in favor of osteoclasts due to hormonal or inflammatory issues, pathologic bone loss occurs leading to conditions such as osteoporosis, rheumatoid arthritis, and periodontitis. Bortezomib is the first in-class of proteasome inhibitors used as an anti-myeloma agent. In the present study, we show that bortezomib directly inhibited the receptor activator of nuclear factor κB ligand (RANKL)-dependent osteoclast differentiation of mouse bone marrow macrophages. Bortezomib significantly reduced the induction of osteoclast marker genes and proteins including nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). The intraperitoneal injection of bortezomib reduced ovariectomy-induced osteoclastogenesis and protected the mice from bone loss. These data propose novel use of bortezomib as a potential anti-resorptive agent.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Myoung Ok Kim
- School of Animal BT Sciences, Kyungpook National University, Sangju, South Korea
| | - Hyo Jeong Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry & Institute of Translational Dental Science, Pusan National University, Yangsan, 626-810, South Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry & Institute of Translational Dental Science, Pusan National University, Yangsan, 626-810, South Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 110-749, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea.
- Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), School of Dentistry, Kyungpook National University, Daegu, 700-412, South Korea.
- School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, South Korea.
| |
Collapse
|
11
|
Accardi F, Toscani D, Costa F, Aversa F, Giuliani N. The Proteasome and Myeloma-Associated Bone Disease. Calcif Tissue Int 2018; 102:210-226. [PMID: 29080972 DOI: 10.1007/s00223-017-0349-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
Bone disease is the hallmark of multiple myeloma (MM), a hematological malignancy characterized by osteolytic lesions due to a severe uncoupled and unbalanced bone remodeling with pronounced osteoblast suppression. Bone metastasis is also a frequent complication of solid tumors including advanced breast or prostate cancer. In the past years, the ubiquitin-proteasome pathway has been proved critical in regulating the balance between bone formation and bone resorption. Proteasome inhibitors (PIs) are a new class of drugs, currently used in the treatment of MM, that affect both tumor cells and bone microenvironment. Particularly, PIs stimulate osteoblast differentiation by human mesenchymal stromal cells and increase bone regeneration in mice. Interestingly, in vitro data indicate that PIs block MM-induced osteoblast and osteocyte cell death by targeting both apoptosis and autophagy. The preclinical data are supported by the following effects observed in MM patients treated with PIs: increase of bone alkaline phosphatase levels, normalization of the markers of bone turnover, and reduction of the skeletal-related events. Moreover, the histomorphometric data indicate that the treatment with bortezomib stimulates osteoblast formation and maintains osteocyte viability in MM patients. This review updates the evidence on the effects of PIs on bone remodeling and on cancer-induced bone disease while focusing on MM bone disease.
Collapse
Affiliation(s)
- Fabrizio Accardi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Franco Aversa
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
12
|
Jung JK, Gwon GJ, Neupane S, Sohn WJ, Kim KR, Kim JY, An SY, Kwon TY, An CH, Lee Y, Kim JY, Ha JH. Bortezomib Facilitates Reparative Dentin Formation after Pulp Access Cavity Preparation in Mouse Molar. J Endod 2017; 43:2041-2047. [PMID: 29032823 DOI: 10.1016/j.joen.2017.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate in vitro and ex vivo roles of bortezomib, a proteasome inhibitor that binds to the active site of the 26S proteasome, in tertiary dentin formation. METHODS We established pulpal access cavity preparation that was treated with or without bortezomib before direct pulp capping with a calcium hydroxide-based material. We also analyzed bone morphogenetic protein (Bmp)- and Wnt-related signaling molecules using quantitative real-time polymerase chain reaction. RESULTS In the short-term observation period, the bortezomib-treated pulp specimens showed the period-altered immunolocalization patterns of nestin, CD31, and myeloperoxidase, whereas the control specimens did not. The bortezomib-treated group showed a complete dentin bridge with very few irregular tubules after 42 days. The micro-computed tomographic images showed more apparent dentin bridge structures in the treated specimens than were in the controls. Quantitative real-time polymerase chain reaction analysis showed up-regulated Bmp and Wnt. CONCLUSIONS These findings revealed that treatment with 1 μmol/L bortezomib induced reparative dentin formation that facilitated the maintenance of the integrity of the remaining pulpal tissue via early vascularization and regulation of Bmp and Wnt signaling.
Collapse
Affiliation(s)
- Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Gi-Jeong Gwon
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea
| | - Ki-Rim Kim
- Department of Dental Hygiene, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University College of Health Science, Incheon, Seoul, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, Kyungpook National University, Daegu, Korea
| | - Tae-Yub Kwon
- Department of Dental Materials, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea.
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, Institute for Hard Tissue and Bone Regeneration, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
13
|
Phetfong J, Sanvoranart T, Nartprayut K, Nimsanor N, Seenprachawong K, Prachayasittikul V, Supokawej A. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett 2016; 21:12. [PMID: 28536615 PMCID: PMC5414670 DOI: 10.1186/s11658-016-0013-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects millions of people worldwide. Osteoporosis is generally age related, and it is underdiagnosed because it remains asymptomatic for several years until the development of fractures that confine daily life activities, particularly in elderly people. Most patients with osteoporotic fractures become bedridden and are in a life-threatening state. The consequences of fracture can be devastating, leading to substantial morbidity and mortality of the patients. The normal physiologic process of bone remodeling involves a balance between bone resorption and bone formation during early adulthood. In osteoporosis, this process becomes imbalanced, resulting in gradual losses of bone mass and density due to enhanced bone resorption and/or inadequate bone formation. Several growth factors underlying age-related osteoporosis and their signaling pathways have been identified, such as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand (RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt) proteins and signaling through parathyroid hormone receptors. In addition, the pathogenesis of osteoporosis has been connected to genetics. The current treatment of osteoporosis predominantly consists of antiresorptive and anabolic agents; however, the serious adverse effects of using these drugs are of concern. Cell-based replacement therapy via the use of mesenchymal stem cells (MSCs) may become one of the strategies for osteoporosis treatment in the future.
Collapse
Affiliation(s)
- Jitrada Phetfong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Tanwarat Sanvoranart
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Kuneerat Nartprayut
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Natakarn Nimsanor
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| |
Collapse
|
14
|
Zangari M, Suva LJ. The effects of proteasome inhibitors on bone remodeling in multiple myeloma. Bone 2016; 86:131-8. [PMID: 26947893 PMCID: PMC5516941 DOI: 10.1016/j.bone.2016.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
Bone disease is a characteristic feature of multiple myeloma, a malignant plasma cell dyscrasia. In patients with multiple myeloma, the normal process of bone remodeling is dysregulated by aberrant bone marrow plasma cells, resulting in increased bone resorption, prevention of new bone formation, and consequent bone destruction. The ubiquitin-proteasome system, which is hyperactive in patients with multiple myeloma, controls the catabolism of several proteins that regulate bone remodeling. Clinical studies have reported that treatment with the first-in-class proteasome inhibitor bortezomib reduces bone resorption and increases bone formation and bone mineral density in patients with multiple myeloma. Since the introduction of bortezomib in 2003, several next-generation proteasome inhibitors have also been used clinically, including carfilzomib, oprozomib, ixazomib, and delanzomib. This review summarizes the available preclinical and clinical evidence regarding the effect of proteasome inhibitors on bone remodeling in multiple myeloma.
Collapse
Affiliation(s)
- Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Larry J Suva
- Department of Orthopedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
15
|
Current View on Osteogenic Differentiation Potential of Mesenchymal Stromal Cells Derived from Placental Tissues. Stem Cell Rev Rep 2016; 11:570-85. [PMID: 25381565 PMCID: PMC4493719 DOI: 10.1007/s12015-014-9569-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells (MSC) isolated from human term placental tissues possess unique characteristics, including their peculiar immunomodulatory properties and their multilineage differentiation potential. The osteogenic differentiation capacity of placental MSC has been widely disputed, and continues to be an issue of debate. This review will briefly discuss the different MSC populations which can be obtained from different regions of human term placenta, along with their unique properties, focusing specifically on their osteogenic differentiation potential. We will present the strategies used to enhance osteogenic differentiation potential in vitro, such as through the selection of subpopulations more prone to differentiate, the modification of the components of osteo-inductive medium, and even mechanical stimulation. Accordingly, the applications of three-dimensional environments in vitro and in vivo, such as non-synthetic, polymer-based, and ceramic scaffolds, will also be discussed, along with results obtained from pre-clinical studies of placental MSC for the regeneration of bone defects and treatment of bone-related diseases.
Collapse
|
16
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
17
|
Staines KA, Prideaux M, Allen S, Buttle DJ, Pitsillides AA, Farquharson C. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models. J Cell Physiol 2015; 231:1392-404. [PMID: 26639105 PMCID: PMC4832367 DOI: 10.1002/jcp.25282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022]
Abstract
The transmembrane glycoprotein E11 is considered critical in early osteoblast-osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO-A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post-translational degradation. We found that exogenous treatment of MLO-A5 and osteocytic IDG-SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome-selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin-A) produced similar dose-dependent increases in E11 protein levels in MLO-A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO-A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome-mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches.
Collapse
Affiliation(s)
- Katherine A Staines
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Matt Prideaux
- The University of Adelaide, North Terrace, Adelaide, Australia
| | - Steve Allen
- Royal Veterinary College, Royal College Street, London, United Kingdom
| | - David J Buttle
- Department of Infection and Immunity, The University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | | | - Colin Farquharson
- Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
18
|
Kim YG, Kang J, Kim H, Kim H, Kim HH, Kim JY, Lee Y. Bortezomib Inhibits Osteoclastogenesis and Porphyromonas gingivalis Lipopolysaccharide-induced Alveolar Bone Resorption. J Dent Res 2015; 94:1243-50. [DOI: 10.1177/0022034515592592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Healthy bone is maintained by the coordinated activities of osteoblast-mediated bone formation and osteoclast-dependent bone resorption. Pathologic conditions such as hormonal imbalance and inflammation cause increased osteoclastogenesis resulting in osteoporosis, rheumatoid arthritis, and periodontitis. Bortezomib is novel antimyeloma agent that has a direct beneficial effect on bone formation. However, the role of bortezomib in osteoclastogenesis and underlying mechanisms remains to be fully comprehended. In the present study, we show that bortezomib directly inhibited the receptor activator of nuclear factor κB ligand (RANKL)– and lipopolysaccharide-dependent osteoclast differentiation. Interestingly, the bortezomib-mediated inhibition of osteoclastogenesis was transient, since the removal of bortezomib from culture completely restored osteoclast differentiation. Bortezomib impeded the induction and nuclear localization of nuclear factor of activated T cells, cytoplasmic 1 and reduced both macrophage colony-stimulating factor– and RANKL-induced extracellular-signal-regulated kinase (ERK) phosphorylation. In a mouse model of periodontitis, bortezomib prevented alveolar bone erosion induced by Porphyromonas gingivalis lipopolysaccharide. These data not only suggest a previously unappreciated mechanism by which bortezomib regulates bone resorption but also propose novel applications of bortezomib beyond its use as an antimyeloma agent.
Collapse
Affiliation(s)
- Y.-G. Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - J.H. Kang
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - H.J. Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - H.J. Kim
- Department of Physiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - H.-H. Kim
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, Korea
| | - J.-Y. Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Y. Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|