1
|
Tada H, Uehara S, Chang CH, Yano KI, Sato T. Effect of Nanosecond Pulsed Currents on Directions of Cell Elongation and Migration through Time-Lapse Analysis. Int J Mol Sci 2023; 24:3826. [PMID: 36835235 PMCID: PMC9967925 DOI: 10.3390/ijms24043826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally known that cells elongate perpendicularly to an electric field and move in the direction of the field when an electric field is applied. We have shown that irradiation of plasma-simulated nanosecond pulsed currents elongates cells, but the direction of cell elongation and migration has not been elucidated. In this study, a new time-lapse observation device that can apply nanosecond pulsed currents to cells was constructed, and software to analyze cell migration was created to develop a device that can sequentially observe cell behavior. The results showed nanosecond pulsed currents elongate cells but do not affect the direction of elongation and migration. It was also found the behavior of cells changes depending on the conditions of the current application.
Collapse
Affiliation(s)
- Hayato Tada
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
- Graduation School of Engineering, Tohoku University, Sendai 980-8577, Japan
| | - Satoshi Uehara
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
| | - Chia-Hsing Chang
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
- Graduation School of Engineering, Tohoku University, Sendai 980-8577, Japan
| | - Ken-ichi Yano
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-0862, Japan
| | - Takehiko Sato
- Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Yazdani Z, Biparva P, Rafiei A, Kardan M, Hadavi S. Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLoS One 2022; 17:e0279120. [PMID: 36534669 PMCID: PMC9762585 DOI: 10.1371/journal.pone.0279120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Green synthesized zero-valent iron nanoparticles (nZVI) have high potential in cancer therapy. Cold atmospheric plasma (CAP) is also an emerging biomedical technique that has great potential to cure cancer. Therefore, the combined effect of CAP and nZVI might be promising in treatment of cancer. In this study, we evaluated the combined effect of CAP and nZVI on the metabolic activity of the surviving cells and induction of apoptosis in malignant melanoma in comparison with normal cells. Therefore, the effect of various time exposure of CAP radiation, different doses of nZVI, and the combined effect of CAP and nZVI were evaluated on the viability of malignant melanoma cells (B16-F10) and normal fibroblast cells (L929) at 24 h after treatment using MTT assay. Then, the effect of appropriate doses of each treatment on apoptosis was evaluated by fluorescence microscopy and flow cytometry with Annexin/PI staining. In addition, the expression of BAX, BCL2 and Caspase 3 (CASP3) was also assayed. The results showed although the combined effect of CAP and nZVI significantly showed cytotoxic effects and apoptotic activity on cancer cells, this treatment had no more effective compared to CAP or nZVI alone. In addition, evaluation of gene expression showed that combination therapy didn't improve expression of apoptotic genes in comparison with CAP or nZVI. In conclusion, combined treatment of CAP and nZVI does not seem to be able to improve the effect of monotherapy of CAP or nZVI. It may be due to the resistance of cancer cells to high ROS uptake or the accumulation of saturated ROS in cells, which prevents the intensification of apoptosis.
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pourya Biparva
- Department of Basic Sciences, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Kardan
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedehniaz Hadavi
- Department of Atomic and Molecular Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
- Plasma Technology Research Center, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Bengtson C, Bogaerts A. The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling. Int J Mol Sci 2021; 22:ijms22095033. [PMID: 34068601 PMCID: PMC8126141 DOI: 10.3390/ijms22095033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide (H2O2) has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the H2O2 membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular H2O2 concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous H2O2. We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.
Collapse
|
4
|
Adhikari M, Adhikari B, Adhikari A, Yan D, Soni V, Sherman J, Keidar M. Cold Atmospheric Plasma as a Novel Therapeutic Tool for the Treatment of Brain Cancer. Curr Pharm Des 2020; 26:2195-2206. [PMID: 32116185 DOI: 10.2174/1381612826666200302105715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies from the past few years revealed the importance of Cold Atmospheric Plasma (CAP) on various kinds of diseases, including brain cancers or glioblastoma (GBM), and hence coined a new term 'Plasma Medicine' in the modern world for promising therapeutic approaches. Here, we focus on the efficacy of CAP and its liquid derivatives on direct interactions or with specific nanoparticles to show pivotal roles in brain cancer treatment. METHOD In the present review study, the authors studied several articles over the past decades published on the types of CAP and its effects on different brain cancers and therapy. RESULTS A growing body of evidence indicates that CAP and its derivatives like Plasma Activated Media/ Water (PAM/PAW) are introduced in different kinds of GBM. Recent studies proposed that CAP plays a remarkable role in GBM treatment. To increase the efficacy of CAP, various nanoparticles of different origins got specific attention in recent times. In this review, different strategies to treat brain cancers, including nanoparticles, are discussed as enhancers of CAP induced targeted nanotherapeutic approach. CONCLUSION CAP treatment and its synergistic effects with different nanoparticles hold great promise for clinical applications in early diagnosis and treatment of GBM treatment. However, results obtained from previous studies were still in the preliminary phase, and there must be a concern over the use of optimal methods for a dosage of CAP and nanoparticles for complete cure of GBM.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Bhawana Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Vikas Soni
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Jonathan Sherman
- Neurological Surgery, The George Washington University, Foggy Bottom South Pavilion, 22nd Street, NW, 7th Floor, Washington, DC, 20037, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| |
Collapse
|
5
|
Kurita H, Haruta N, Uchihashi Y, Seto T, Takashima K. Strand breaks and chemical modification of intracellular DNA induced by cold atmospheric pressure plasma irradiation. PLoS One 2020; 15:e0232724. [PMID: 32374749 PMCID: PMC7202611 DOI: 10.1371/journal.pone.0232724] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Abstract
DNA damage in the A549 human lung cancer cell line treated with cold plasma irradiation was investigated. We confirmed that cold atmospheric plasma generated reactive oxygen and nitrogen species (RONS) in a liquid, and the intracellular RONS level was increased in plasma-irradiated cells. However, a notable decrease in cell viability was not observed 24 hours after plasma irradiation. Because RONS induce oxidative damage in cells, strand breaks and chemical modification of DNA in the cancer cells were investigated. We found that 8-oxoguanine (8-oxoG) formation as well as DNA strand breaks, which have been thoroughly investigated, were induced by plasma irradiation. In addition, up-regulation of 8-oxoG repair enzyme was observed after plasma irradiation.
Collapse
Affiliation(s)
- Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Natsuki Haruta
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Yoshito Uchihashi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Takahito Seto
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Kazunori Takashima
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| |
Collapse
|
6
|
Chang CH, Yano KI, Sato T. Nanosecond pulsed current under plasma-producing conditions induces morphological alterations and stress fiber formation in human fibrosarcoma HT-1080 cells. Arch Biochem Biophys 2020; 681:108252. [PMID: 31911153 DOI: 10.1016/j.abb.2020.108252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a promising means for various biomedical applications, including cancer therapy. Although the biological action of CAP is considered to be brought about by synergistic effects of reactive species and electrical factors of CAP, limited information is currently available on the contribution of electrical factors to CAP-induced cell responses. We have previously demonstrated that nanosecond pulsed current (nsPC) under CAP-producing conditions significantly promoted the motility of human HT-1080 cells. In this study, we explored the effects of nsPC on cell morphology associated with cell motility. We observed that nsPC stimulation caused extended cell shape, membrane protrusion formation, and increased cell surface area, but not cell death induction. nsPC stimulation also caused elevated intracellular ROS and Ca2+. HT-1080 cells can undergo two modes of cell motility, namely mesenchymal and ameboid motility, and we found that morphological features of mesenchymal motility was partly shared with nsPC-stimulated cells. Furthermore, nsPC-stimulated cells had extended stress fibers composed of filamentous actin. Taken together, this study provides a novel insight into the electrical aspect of CAP action, and we speculate that nsPC activates a certain mechanism involving intracellular signaling for stress fiber formation, leading to altered cell morphology and increased cell motility.
Collapse
Affiliation(s)
- Chia-Hsing Chang
- Department of Mechanical System Engineering, Tohoku University, Japan
| | - Ken-Ichi Yano
- Institute of Pulsed Power Science, Kumamoto University, Japan
| | - Takehiko Sato
- Institute of Fluid Science, Tohoku University, Japan.
| |
Collapse
|
7
|
Xiang L, Xu X, Zhang S, Cai D, Dai X. Cold atmospheric plasma conveys selectivity on triple negative breast cancer cells both in vitro and in vivo. Free Radic Biol Med 2018; 124:205-213. [PMID: 29870749 DOI: 10.1016/j.freeradbiomed.2018.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/17/2018] [Accepted: 06/02/2018] [Indexed: 01/27/2023]
Abstract
Breast cancers are heterogeneous, with the triple negative subtype being the most aggressive and lack of effective therapy. Cold atmospheric plasma has become a promising onco-therapeutic approach as demonstrated by many pre-clinical studies. We found from both in vitro and in vivo experiments that plasma-activated medium could selectively induce the apoptosis, inhibit the proliferation and migration of triple negative breast cancers rather than the other subtypes. We propose that it is the accelerated genome mutation rate, hyper-activated MAPK/JNK and NF-kB pathways of triple negative breast cancers that make them more vulnerable to plasma treatment than non-triple negative tumors, and MAPK/JNK and NF-κB signalings in response to reactive oxygen species generated by plasma that play deterministic roles in this differential therapeutic response. Our work contributes in establishing a correlation between plasma efficacy and cancer subtypes, which facilitates the clinical translation of plasma as a precision medicinal approach.
Collapse
Affiliation(s)
| | - Xiaoyu Xu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, China
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
8
|
Van Boxem W, Van der Paal J, Gorbanev Y, Vanuytsel S, Smits E, Dewilde S, Bogaerts A. Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity. Sci Rep 2017; 7:16478. [PMID: 29184131 PMCID: PMC5705646 DOI: 10.1038/s41598-017-16758-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/16/2017] [Indexed: 11/21/2022] Open
Abstract
We evaluate the anti-cancer capacity of plasma-treated PBS (pPBS), by measuring the concentrations of NO2− and H2O2 in pPBS, treated with a plasma jet, for different values of gas flow rate, gap and plasma treatment time, as well as the effect of pPBS on cancer cell cytotoxicity, for three different glioblastoma cancer cell lines, at exactly the same plasma treatment conditions. Our experiments reveal that pPBS is cytotoxic for all conditions investigated. A small variation in gap between plasma jet and liquid surface (10 mm vs 15 mm) significantly affects the chemical composition of pPBS and its anti-cancer capacity, attributed to the occurrence of discharges onto the liquid. By correlating the effect of gap, gas flow rate and plasma treatment time on the chemical composition and anti-cancer capacity of pPBS, we may conclude that H2O2 is a more important species for the anti-cancer capacity of pPBS than NO2−. We also used a 0D model, developed for plasma-liquid interactions, to elucidate the most important mechanisms for the generation of H2O2 and NO2−. Finally, we found that pPBS might be more suitable for practical applications in a clinical setting than (commonly used) plasma-activated media (PAM), because of its higher stability.
Collapse
Affiliation(s)
- Wilma Van Boxem
- Research group PLASMANT, Department of Chemistry, University of Antwerp Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium.
| | - Jonas Van der Paal
- Research group PLASMANT, Department of Chemistry, University of Antwerp Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium
| | - Yury Gorbanev
- Research group PLASMANT, Department of Chemistry, University of Antwerp Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium
| | - Steven Vanuytsel
- Research group PLASMANT, Department of Chemistry, University of Antwerp Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium.,Center for Oncological Research (CORE), University of Antwerp Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), University of Antwerp Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium
| | - Sylvia Dewilde
- Research group PPES, Department of Biomedicinal Sciences, University of Antwerp Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium
| | - Annemie Bogaerts
- Research group PLASMANT, Department of Chemistry, University of Antwerp Universiteitsplein 1, BE-2610, Wilrijk-Antwerp, Belgium.
| |
Collapse
|
9
|
Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 2017; 8:15977-15995. [PMID: 27845910 PMCID: PMC5362540 DOI: 10.18632/oncotarget.13304] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023] Open
Abstract
Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Jonathan H Sherman
- Department of Neurological Surgery, The George Washington University,Washington, DC, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Shi L, Yu L, Zou F, Hu H, Liu K, Lin Z. Gene expression profiling and functional analysis reveals that p53 pathway-related gene expression is highly activated in cancer cells treated by cold atmospheric plasma-activated medium. PeerJ 2017; 5:e3751. [PMID: 28852598 PMCID: PMC5572956 DOI: 10.7717/peerj.3751] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Background Cold atmospheric-pressure plasma (CAP) has been considered a promising strategy for anti-cancer treatment. Traditionally, CAP was employed to kill cancer cells or tumor tissues by direct irradiation. However, CAP has some disadvantages such as infiltration capacity and storage convenience. Recently, plasma-activated medium (PAM) was used as an alternative strategy to treat cancer cells or tumors. The novel PAM approach has potential as an anti-cancer therapy. Objective To reveal the global activation of signaling pathways in oral cancer cells induced by PAM. Methods Oral squamous cell line SCC15 were treated by PAM and gene expression profiles were evaluated by using RNA-seq. Functional analyses were employed to reveal the global responses of SCC15 cells with PAM stimulation. QRT-PCR and Western blot were carried out to validate the expression levels of selected genes. Results More than 6G clean data per sample were obtained in PAM-treated SCC15 cells. A total of 934 differentially expressed genes (DEGs) were identified and GO analysis implicated the deep involvement of biological process. KEGG mapping further clustered 40 pathways, revealing that “p53 pathway” was significantly enriched. SCC15 cells were commonly used as a p53-null cell line. Therefore, the enriched p53 pathway-related genes in our analysis might be activated by other stimulators, in a p53-independent manner. Gene set enrichment analysis (GSEA) was also performed to evaluate changes at the gene-sets level. The results demonstrated not only the high engagement of “p53 pathway” but also the involvement of novel pathways such as hypoxia pathway. Conclusions The present study elucidates the transcriptomic changes of PAM treated SCC15 cells, containing highly enriched DEGs involved in “p53 pathway”. Our analysis in this work not only provides genomic resources for future studies but also gives novel insights to uncover the molecular mechanism of PAM stimulation.
Collapse
Affiliation(s)
- Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, PR China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, PR China
| | - Fagui Zou
- School of Life Sciences, Chongqing University, Chongqing, PR China
| | - Huimin Hu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, PR China
| | - Kun Liu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, PR China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing, PR China
| |
Collapse
|
11
|
Selective effects of non-thermal atmospheric plasma on triple-negative breast normal and carcinoma cells through different cell signaling pathways. Sci Rep 2017; 7:7980. [PMID: 28801613 PMCID: PMC5554176 DOI: 10.1038/s41598-017-08792-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Non-thermal atmospheric plasma (NTP) has shown its selective anticancer effects in many types of tumors in vitro and one of the main mechanisms is that the different increase of intracellular ROS in cancer and homologous normal cells. In this study, we report that NTP treatment reduces the proliferation in triple negative breast cancer (TNBC) and normal cell lines. Simultaneously, STAT3 pathway is inhibited by NTP effects. However, it is observed that normal cells MCF10A are more sensitive to ROS toxicity induced by NTP than cancer cells MDA-MB-231. When 5 mM of ROS inhibitor N-acetyl cysteine (NAC) is employed in NTP treatments, the proliferation of normal breast cells MCF10A recovers. Meanwhile, NTP effects remain significant inhibition of MDA-MB-231 cells. Our results further reveal that NTP can induce apoptosis in MDA-MB-231 cells through inhibiting interleukin-6 receptor (IL-6R) pathway. Moreover, the mechanism of NTP anti-cancer selectivity relates to constantly HER2/Akt activation induced by NTP especially in MCF10A cells but not in MDA-MB-231 cells. Therefore, these two different cell signaling pathways induced by NTP treatments in TNBC and homologous normal cells make NTP becoming a potential tool in future therapy.
Collapse
|
12
|
Tanaka H, Ishikawa K, Mizuno M, Toyokuni S, Kajiyama H, Kikkawa F, Metelmann HR, Hori M. State of the art in medical applications using non-thermal atmospheric pressure plasma. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s41614-017-0004-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
The Specific Vulnerabilities of Cancer Cells to the Cold Atmospheric Plasma-Stimulated Solutions. Sci Rep 2017; 7:4479. [PMID: 28667316 PMCID: PMC5493667 DOI: 10.1038/s41598-017-04770-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/18/2017] [Indexed: 01/02/2023] Open
Abstract
Cold atmospheric plasma (CAP), a novel promising anti-cancer modality, has shown its selective anti-cancer capacity on dozens of cancer cell lines in vitro and on subcutaneous xenograft tumors in mice. Over the past five years, the CAP-stimulated solutions (PSS) have also shown their selective anti-cancer effect over different cancers in vitro and in vivo. The solutions used to make PSS include several bio-adaptable solutions, mainly cell culture medium and simple buffered solutions. Both the CAP-stimulated medium (PSM) and the CAP-stimulated buffered solution (PSB) are able to significantly kill cancer cells in vitro. In this study, we systematically compared the anti-cancer effect of PSM and PSB over pancreatic adenocarcinoma cells and glioblastoma cells. We demonstrated that pancreatic cancer cells and glioblastoma cells were specifically vulnerable to PSM and PSB, respectively. The specific response such as the rise of intracellular reactive oxygen species of two cancer cell lines to the H2O2-containing environments might result in the specific vulnerabilities to PSM and PSB. In addition, we demonstrated a basic guideline that the toxicity of PSS on cancer cells could be significantly modulated through controlling the dilutability of solution.
Collapse
|
14
|
Genotoxicity and cytotoxicity of the plasma jet-treated medium on lymphoblastoid WIL2-NS cell line using the cytokinesis block micronucleus cytome assay. Sci Rep 2017. [PMID: 28634331 PMCID: PMC5478598 DOI: 10.1038/s41598-017-03754-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite growing interest in the application of atmospheric plasma jets as medical treatment strategies, there has been comparatively little research on the potential genotoxic and cytotoxic effects of plasma jet treatment. In this study, we have employed the cytokinesis block micronucleus cytome (CBMN-Cyt) assay with WIL2-NS B lymphoblastoid cells to test the potential genotoxicity, as well as the cytotoxicity, of toxic species generated in cell culture media by an argon (Ar) plasma jet. Elevated levels of cell death (necrosis) and occurrence of chromosomal damage (micronuclei MN, nculeoplasmic bridge NPBs and nuclear bus, Nbuds) were observed when cells were exposed to plasma jet-treated media. These results provide a first insight into how we might measure the genotoxic and cytotoxic effect of plasma jet treatments (both indirect and direct) in dividing human cells.
Collapse
|
15
|
Non-thermal atmospheric pressure plasma activates lactate in Ringer's solution for anti-tumor effects. Sci Rep 2016; 6:36282. [PMID: 27824103 PMCID: PMC5099972 DOI: 10.1038/srep36282] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer’s solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer’s lactate solution has anti-tumor effects, but of the four components in Ringer’s lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer’s lactate solution. Overall, these results suggest that plasma-activated Ringer’s lactate solution is promising for chemotherapy.
Collapse
|
16
|
Periodic Exposure of Keratinocytes to Cold Physical Plasma: An In Vitro Model for Redox-Related Diseases of the Skin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9816072. [PMID: 26966508 PMCID: PMC4757748 DOI: 10.1155/2016/9816072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/03/2015] [Accepted: 12/20/2015] [Indexed: 12/20/2022]
Abstract
Oxidative stress illustrates an imbalance between radical formation and removal. Frequent redox stress is critically involved in many human pathologies including cancer, psoriasis, and chronic wounds. However, reactive species pursue a dual role being involved in signaling on the one hand and oxidative damage on the other. Using a HaCaT keratinocyte cell culture model, we investigated redox regulation and inflammation to periodic, low-dose oxidative stress after two, six, eight, ten, and twelve weeks. Chronic redox stress was generated by recurrent incubation with cold physical plasma-treated cell culture medium. Using transcriptome microarray technology, we identified both acute ROS-stress responses as well as numerous adaptions after several weeks of redox challenge. We determined a differential expression (2-fold, FDR < 0.01, p < 0.05) of 260 genes that function in inflammation and redox homeostasis, such as cytokines (e.g., IL-6, IL-8, and IL-10), growth factors (e.g., CSF2, FGF, and IGF-2), and antioxidant enzymes (e.g., HMOX, NQO1, GPX, and PRDX). Apoptotic signaling was affected rather modestly, especially in p53 downstream targets (e.g., BCL2, BBC3, and GADD45). Strikingly, the cell-protective heat shock protein HSP27 was strongly upregulated (p < 0.001). These results suggested cellular adaptions to frequent redox stress and may help to better understand the inflammatory responses in redox-related diseases.
Collapse
|