1
|
Willis LF, Kapur N, Radford SE, Brockwell DJ. Biophysical Analysis of Therapeutic Antibodies in the Early Development Pipeline. Biologics 2024; 18:413-432. [PMID: 39723199 PMCID: PMC11669289 DOI: 10.2147/btt.s486345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The successful progression of therapeutic antibodies and other biologics from the laboratory to the clinic depends on their possession of "drug-like" biophysical properties. The techniques and the resultant biophysical and biochemical parameters used to characterize their ease of manufacture can be broadly defined as developability. Focusing on antibodies, this review firstly discusses established and emerging biophysical techniques used to probe the early-stage developability of biologics, aimed towards those new to the field. Secondly, we describe the inter-relationships and redundancies amongst developability assays and how in silico methods aid the efficient deployment of developability to bring a new generation of cost-effective therapeutic proteins from bench to bedside more quickly and sustainably.
Collapse
Affiliation(s)
- Leon F Willis
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikil Kapur
- School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
2
|
Kushwaha P, Hatwar A, Prabhu NP. Stability and Fibrillation of Lysozyme in the Mixtures of Ionic Liquids with Varying Hydrophobicity. Chemphyschem 2024:e202400743. [PMID: 39637317 DOI: 10.1002/cphc.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Combinatorial effects of small molecules provide newer avenues to improve protein stability. The combined effect of two different classes of ILs on the stability and fibrillation propensity of lysozyme (Lyz) was investigated. Imidazolium-ILs (an aromatic moiety) with varying alkyl chains, methyl (MIC), butyl (BMIC) and hexyl (HMIC), and pyrrolidinium-IL (alicyclic moiety) with butyl substitution (BPyroBr) were chosen. The fibrillation was delayed by the addition of any of the IL. While added as a mixture with varying molar ratios, the presence of HMIC with MIC or BMIC at the ratio of 2:1 increased the fibrillation time synergistically by increasing lag time and reducing elongation rate. The protein stability was significantly reduced in these conditions compared to lower molar ratios of HMIC with MIC or BMIC. Molecular dynamics simulation studies indicated that upon adding Im-ILs water molecules were reduced around Lyz, whereas BPyroBr slightly increased the water around Lyz. Preferential interaction studies suggest that the preferential binding of HMIC with the protein was the most favored and it synergistically facilitated the preferential binding of MIC. Though BMIC was preferentially binding to the protein, it disfavoured the interaction of MIC. BMIC and BPyroBr had a competitive binding on the surface of Lyz. The results suggested that the mixture of ILs containing the longer alkyl chain destabilizes the protein and delays the fibril formation to a larger extent than the shorter alkyl chain ILs. Further, the effect of aromatic ILs could be greater than alicyclic ILs having the same alkyl chain length.
Collapse
Affiliation(s)
- Pratibha Kushwaha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Abhinav Hatwar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
3
|
Sebastian A, P K, Aarya, Sen Mojumdar S. Temperature-Induced Luminescence Intensity Fluctuation of Protein-Protected Copper Nanoclusters: Role of Scaffold Conformation vs Nonradiative Transition. ACS OMEGA 2024; 9:21520-21527. [PMID: 38764622 PMCID: PMC11097160 DOI: 10.1021/acsomega.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Protein-scaffolded atomically precise metal nanoclusters (NCs) have emerged as a promising class of biofriendly nanoprobes at the forefront of modern research, particularly in the area of sensing. The photoluminescence (PL) intensity of several nanoclusters showed a systematic temperature-dependent fluctuation, but the mechanism remains ambiguous and is poorly understood. We tried to shed some light on this mechanistic aspect by testing a couple of hypotheses: (i) conformational fluctuation of the protein scaffold-mediated PL intensity fluctuation and (ii) PL intensity fluctuation due to the variation in the radiative and nonradiative transition rates. Herein, the PL intensity of the lysozyme-capped copper nanocluster (Lys-Cu NC) showed excellent temperature dependency; upon increasing the temperature, the PL intensity gradually decreased. However, contrasting effects can be seen when the nanocluster is exposed to a chemical denaturant (guanidine hydrochloride (GdnHCl)); the PL intensity increased with the increase in the GdnHCl concentration due to the change in the ionic strength of the medium. This discrepancy clearly suggests that the thermal PL intensity fluctuation cannot be explained by a change in the scaffold conformation. Furthermore, upon closer investigation, we observed a 2-fold increase in the nonradiative decay rate of the Lys-Cu NC at the elevated temperature, which could reasonably explain the decrease in the PL intensity of the nanocluster at the higher temperature. Additionally, from the result, it was evident that the protein scaffold-metal core interaction played a key role here in stabilizing each other; hence, the scaffold structure remained unaffected even in the presence of chemical denaturants.
Collapse
Affiliation(s)
- Anna Sebastian
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678623, Kerala, India
| | - Kavya P
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678623, Kerala, India
| | - Aarya
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678623, Kerala, India
| | - Supratik Sen Mojumdar
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678623, Kerala, India
| |
Collapse
|
4
|
Muthu SA, Qureshi A, Sharma R, Bisaria I, Parvez S, Grover S, Ahmad B. Redesigning the kinetics of lysozyme amyloid aggregation by cephalosporin molecules. J Biomol Struct Dyn 2024:1-16. [PMID: 38682862 DOI: 10.1080/07391102.2024.2335304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In lysozyme amyloidosis, fibrillar aggregates of lysozyme are associated with severe renal, hepatic, and gastrointestinal manifestations, with no definite therapy. Current drugs are now being tested in amyloidosis clinical trials as aggregation inhibitors to mitigate disease progression. The tetracycline group among antimicrobials in use is in phase II of clinical trials, whereas some macrolides and cephalosporins have shown neuroprotection. In the present study, two cephalosporins, ceftazidime (CZD) and cefotaxime (CXM), and a glycopeptide, vancomycin (VNC), are evaluated for inhibition of amyloid aggregation of hen egg white lysozyme (HEWL) under two conditions (i) 4 M guanidine hydrochloride (GuHCl) at pH 6.5 and 37° C, (ii) At pH 1.5 and 65 °C. Fluorescence quench titration and molecular docking methods report that CZD, CXM, and VNC interact more strongly with the partially folded intermediates (PFI) in comparison to the protein's natural state (N). However, only CZD and CXM proficiently inhibit the aggregation. Transmission electron microscopy, tinctorial assessments, and aggregation kinetics all support oligomer-level inhibition. Transition structures in CZD-HEWL and CXM-HEWL aggregation are shown by circular dichroism (CD). On the other hand, kinetic variables and soluble fraction assays point to a localized association of monomers. Intrinsic fluorescence (IF),1-Anilino 8-naphthalene sulphonic acid, and CD demonstrate structural and conformational modifications redesigning the PFI. GuHCl-induced unfolding and differential scanning fluorimetry suggested that the PFI monomers bound to CZD and CXM exhibited partial stability. Our results present two mechanisms that function in both solution conditions, creating a novel avenue for the screening of putative inhibitors for drug repurposing. We extend our proposed mechanisms in the designing of physical inhibitors of amyloid aggregation considering shorter time frames and foolproof methods.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Afnaan Qureshi
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Rahul Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ishita Bisaria
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Ciccarelli M, Masser AE, Kaimal JM, Planells J, Andréasson C. Genetic inactivation of essential HSF1 reveals an isolated transcriptional stress response selectively induced by protein misfolding. Mol Biol Cell 2023; 34:ar101. [PMID: 37467033 PMCID: PMC10551698 DOI: 10.1091/mbc.e23-05-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Heat Shock Factor 1 (Hsf1) in yeast drives the basal transcription of key proteostasis factors and its activity is induced as part of the core heat shock response. Exploring Hsf1 specific functions has been challenging due to the essential nature of the HSF1 gene and the extensive overlap of target promoters with environmental stress response (ESR) transcription factors Msn2 and Msn4 (Msn2/4). In this study, we constructed a viable hsf1∆ strain by replacing the HSF1 open reading frame with genes that constitutively express Hsp40, Hsp70, and Hsp90 from Hsf1-independent promoters. Phenotypic analysis showed that the hsf1∆ strain grows slowly, is sensitive to heat as well as protein misfolding and accumulates protein aggregates. Transcriptome analysis revealed that the transcriptional response to protein misfolding induced by azetidine-2-carboxylic acid is fully dependent on Hsf1. In contrast, the hsf1∆ strain responded to heat shock through the ESR. Following HS, Hsf1 and Msn2/4 showed functional compensatory induction with stronger activation of the remaining stress pathway when the other branch was inactivated. Thus, we provide a long-overdue genetic test of the function of Hsf1 in yeast using the novel hsf1∆ construct. Our data highlight that the accumulation of misfolded proteins is uniquely sensed by Hsf1-Hsp70 chaperone titration inducing a highly selective transcriptional stress response.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
6
|
Takita T, Sakuma H, Ohashi R, Nilouyal S, Nemoto S, Wada M, Yogo Y, Yasuda K, Ikushiro S, Sakaki T, Yasukawa K. Comparison of the stability of CYP105A1 and its variants engineered for production of active forms of vitamin D. Biosci Biotechnol Biochem 2022; 86:444-454. [PMID: 35134837 DOI: 10.1093/bbb/zbac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/21/2022] [Indexed: 11/14/2022]
Abstract
CYP105A1 from Streptomyces griseolus converts vitamin D3 to its biologically active form, 1α,25-dihydroxy vitamin D3. R73A/R84A mutation enhanced the 1α- and 25-hydroxylation activity for vitamin D3, while M239A mutation generated the 1α-hydroxylation activity for vitamin D2. In this study, the stability of six CYP105A1 enzymes, including 5 variants (R73A/R84A, M239A, R73A/R84A/M239A (=TriA), TriA/E90A, and TriA/E90D), was examined. Circular dichroism analysis revealed that M239A markedly reduces the enzyme stability. Protein fluorescence analysis disclosed that these mutations, especially M239A, induce large changes in the local conformation around Trp residues. Strong stabilizing effect of glycerol was observed. Nondenaturing PAGE analysis showed that CYP105A1 enzymes are prone to self-association. Fluorescence analysis using a hydrophobic probe 8-anilino-1-naphthalenesulfonic acid suggested that M239A mutation enhances self-association and that E90A and E90D mutations, in cooperation with M239A, accelerate self-association with little effect on the stability.
Collapse
Affiliation(s)
- Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiro Sakuma
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ren Ohashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Somaye Nilouyal
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Sho Nemoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Moeka Wada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuya Yogo
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan.,Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan.,Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
7
|
Stamboroski S, Boateng K, Lierath J, Kowalik T, Thiel K, Köppen S, Noeske PLM, Brüggemann D. Influence of Divalent Metal Ions on the Precipitation of the Plasma Protein Fibrinogen. Biomacromolecules 2021; 22:4642-4658. [PMID: 34670087 DOI: 10.1021/acs.biomac.1c00930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibrinogen nanofibers are very attractive biomaterials to mimic the native blood clot architecture. Previously, we reported the self-assembly of fibrinogen nanofibers in the presence of monovalent salts and have now studied how divalent salts influence fibrinogen precipitation. Although the secondary fibrinogen structure was significantly altered with divalent metal ions, morphological analysis revealed exclusively smooth fibrinogen precipitates. In situ monitoring of the surface roughness facilitated predicting the tendency of various salts to form fibrinogen fibers or smooth films. Analysis of the chemical composition revealed that divalent salts were removed from smooth fibrinogen films upon rinsing while monovalent Na+ species were still present in fibrinogen fibers. Therefore, we assume that the decisive factor controlling the morphology of fibrinogen precipitates is direct ion-protein contact, which requires disruption of the ion-surrounding hydration shells. We conclude that in fibrinogen aggregates, this mechanism is effective only for monovalent ions, whereas divalent ions are limited to indirect fibrinogen adsorption.
Collapse
Affiliation(s)
- Stephani Stamboroski
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen, Germany.,Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Kwasi Boateng
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen, Germany.,Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Jana Lierath
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen, Germany.,Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Thomas Kowalik
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen, Germany
| | - Karsten Thiel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen, Germany
| | - Susan Köppen
- Hybrid Materials Interfaces Group, Faculty of Production Engineering and Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Paul-Ludwig Michael Noeske
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
8
|
Lysozyme encapsulated gold nanoclusters for probing the early stage of lysozyme aggregation under acidic conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111540. [DOI: 10.1016/j.jphotobiol.2019.111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
|
9
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
10
|
Levartovsky Y, Shemesh A, Asor R, Raviv U. Effect of Weakly Interacting Cosolutes on Lysozyme Conformations. ACS OMEGA 2018; 3:16246-16252. [PMID: 31458260 PMCID: PMC6643829 DOI: 10.1021/acsomega.8b01289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/15/2018] [Indexed: 06/10/2023]
Abstract
Exposure of a protein to cosolutes, like denaturants, changes its folding equilibrium. To determine the ensemble of protein conformations at equilibrium, in the presence of weakly interacting cosolutes, we present a two-stage analysis of solution X-ray scattering data. In the first stage, Guinier analysis and Kratky plot revealed information about the compactness and flexibility of the protein. In the second stage, elastic network contact model and coarse-grained normal mode analysis were used to generate an ensemble of conformations. The scattering curves of the conformations were computed and fitted to the measured scattering curves to get insights into the dominating folding states at equilibrium. Urea and guanidine hydrochloride (GuHCl) behaved as preferentially included weakly interacting cosolutes and induced denaturation of hen egg-white lysozyme, which served as our test case. The computed models adequately fit the data and gave ensembles of conformations that were consistent with our measurements. The analysis suggests that in the presence of urea, lysozyme retained its compactness and assumed molten globule characteristics, whereas in the presence of GuHCl lysozyme adopted random coiled conformations. Interestingly, no equilibrium intermediate states were observed in both urea and GuHCl.
Collapse
|
11
|
Biswas B, Muttathukattil AN, Reddy G, Singh PC. Contrasting Effects of Guanidinium Chloride and Urea on the Activity and Unfolding of Lysozyme. ACS OMEGA 2018; 3:14119-14126. [PMID: 31458105 PMCID: PMC6644995 DOI: 10.1021/acsomega.8b01911] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Cosolvents play an important role in regulating the stability and function of proteins present in the cell. We studied the role of cosolvents, urea and guanidinium chloride (GdmCl), which act as protein denaturants, in the catalytic activity and structural stability of the protein lysozyme using activity measurements, spectroscopy, and molecular dynamics simulations. We find that the activity of lysozyme increases on the addition of urea, whereas it decreases sharply on the addition of GdmCl. At low GdmCl concentrations ([GdmCl] < 4 M), the activity of lysozyme decreases, even though there is no significant perturbation in the structure of the lysozyme folded state. We find that this is due to the strong interaction of the Gdm+ ion with the residues Asp52 and Glu35, which are present in the lysozyme catalytic site. In contrast, urea interacts with Trp63 present in the loop region present near the active site of lysozyme, inducing minor conformational changes in lysozyme, which can increase the activity of lysozyme. At higher denaturant concentrations, experiments show that GdmCl completely denatures the protein, whereas the folded state is stable in the presence of urea. We further show that GdmCl denatures lysozyme with the disulfide bonds intact in the protein, whereas urea denatures the protein only when the disulfide bonds are broken using reducing agents.
Collapse
Affiliation(s)
- Biswajit Biswas
- Department
of Spectroscopy, Indian Association for
the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Aswathy N. Muttathukattil
- Solid
State and Structural Chemistry Unit, Indian
Institute of Science, Bengaluru 560012, Karnataka, India
| | - Govardhan Reddy
- Solid
State and Structural Chemistry Unit, Indian
Institute of Science, Bengaluru 560012, Karnataka, India
- E-mail: (G.R.)
| | - Prashant Chandra Singh
- Department
of Spectroscopy, Indian Association for
the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- E-mail: (P.C.S.)
| |
Collapse
|
12
|
Li S, Ye S, Liu G. Specific Ion Effects on Protein Thermal Aggregation from Dilute Solutions to Crowded Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4289-4297. [PMID: 29566333 DOI: 10.1021/acs.langmuir.8b00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have investigated specific ion effects on protein thermal aggregation from dilute solutions to crowded environments. Ovalbumin and poly(ethylene glycol) have been employed as the model protein and crowding agent, respectively. Our studies demonstrate that the rate-limiting step of ovalbumin thermal aggregation is changed from the aggregation of unfolded protein molecules to the unfolding of the protein molecules, when the solution conditions are varied from a dilute solution to a crowded environment. The specific ion effects acting on the thermal aggregation of ovalbumin generated by kosmotropic and chaotropic ions are different. The thermal aggregation of ovalbumin molecules is promoted by kosmotropic anions in dilute solutions via an increase in protein hydrophobic interactions. In contrast, ovalbumin thermal aggregation is facilitated by chaotropic ions in crowded environments through accelerated unfolding of protein molecules. Therefore, there are distinct mechanisms causing the ion specificities of protein thermal aggregation between dilute solutions and crowded environments. The ion specificities are dominated by ion-specific hydrophobic interactions between protein molecules and ion-specific unfolding of protein molecules in dilute solutions and crowded environments, respectively.
Collapse
Affiliation(s)
- Shuling Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei , P. R. China 230026
| |
Collapse
|
13
|
Seraj Z, Seyedarabi A, Saboury AA, Habibi-Rezaei M, Ahmadian S, Ghasemi A. Unraveling the novel effects of aroma from small molecules in preventing hen egg white lysozyme amyloid fibril formation. PLoS One 2018; 13:e0189754. [PMID: 29357364 PMCID: PMC5777642 DOI: 10.1371/journal.pone.0189754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
This study investigated for the first time the molecular effectiveness of 'aroma' from three small molecules including a phenol (phenyl ethyl alcohol; PEA) and an aldehyde (cinnamaldehyde; Cin) both containing an aromatic ring, and a diamine (N,N,N,N'- Tetramethylethylenediamine; TEMED) at two different amounts (small; S and large; L) in preventing hen egg white lysozyme (HEWL) amyloid fibril formation using Thioflavin T and Nile red fluorescence assays, circular dichroism spectroscopy, SDS-polyacrylamide gel electrophoresis, atomic force microscopy, dynamic light scattering and HEWL activity test. Interestingly, the results revealed that (1) the aroma of PEA, identified as an active constituent of Rosa damascena, prevented fibril formation since PEA-L was able to trap the oligomeric form of HEWL in contrast to PEA-S where protofibrils but not mature fibrils were formed; (2) Cin, previously shown to prevent fibril formation in the liquid form, was also shown to do so in the aroma form by producing protofibrils and not mature fibrils in both Cin- L and Cin-S aroma forms and (3) the aroma of TEMED-L was able to retain HEWL's native structure completely and prevented both aggregation and fibril formation, while TEMED-S prevented HEWL fibril formation and instead directed the pathway towards amorphous aggregate formation. Furthermore, the ability to trap oligomeric species (by PEA-L aroma) is of great importance for further research as it provides routes for preventing the formation of toxic oligomeric intermediates along the fibrillation pathway. Last but not least, the novelty of this in vitro study on the effect of aroma at the molecular level with a unique experimental set-up using HEWL as a model protein in assessing amyloid fibril formation paves the way for more and detailed studies on the importance of aroma producing molecules and their effects.
Collapse
Affiliation(s)
- Zahra Seraj
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehran Habibi-Rezaei
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Botsios S, Tittman S, Manuelidis L. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms. Virulence 2016; 6:787-801. [PMID: 26556670 DOI: 10.1080/21505594.2015.1098804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections.
Collapse
Affiliation(s)
- Sotirios Botsios
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Sarah Tittman
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| | - Laura Manuelidis
- a Yale Medical School; Section of Neuropathology (Surgery) ; New Haven , CT USA
| |
Collapse
|
15
|
Fazili NA, Bhat IA, Bhat WF, Naeem A. Anti-fibrillation propensity of a flavonoid baicalein against the fibrils of hen egg white lysozyme: potential therapeutics for lysozyme amyloidosis. J Biomol Struct Dyn 2016; 34:2102-14. [DOI: 10.1080/07391102.2015.1108232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Naveed Ahmad Fazili
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| | - Imtiyaz Ahmad Bhat
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, , India
| | - Waseem Feeroze Bhat
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| |
Collapse
|
16
|
Bisht M, Kumar A, Venkatesu P. Refolding effects of partially immiscible ammonium-based ionic liquids on the urea-induced unfolded lysozyme structure. Phys Chem Chem Phys 2016; 18:12419-22. [DOI: 10.1039/c6cp01022a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Refolding ability of partially-immiscible ammonium-based ionic liquids on the urea-induced unfolded lysozyme.
Collapse
Affiliation(s)
- Meena Bisht
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Awanish Kumar
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | | |
Collapse
|
17
|
Tihonov MM, Milyaeva OY, Noskov BA. Dynamic surface properties of lysozyme solutions. Impact of urea and guanidine hydrochloride. Colloids Surf B Biointerfaces 2015; 129:114-20. [PMID: 25835146 DOI: 10.1016/j.colsurfb.2015.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Abstract
Urea and guanidine hydrochloride (GuHCl) have different influence on surface properties of lysozyme solutions. The increase of GuHCl concentration leads to noticeable changes of kinetic dependencies of the dynamic surface elasticity and ellipsometric angles while the main effect of urea reduces to a strong drop of the static surface tension. The difference between the effects of these two denaturants on the surface properties of other investigated globular proteins is significantly weaker and is mainly a consequence of a different extent of the globule unfolding in the surface layer at equal concentrations of the denaturants. The obtained results for lysozyme solutions are connected with the strongly different denaturation mechanisms under the influence of urea and GuHCl. In the former case the protein preserves its globular structure in the adsorption layer at high urea concentrations (up to 9M) but without tightly packed interior of the globule and with a dynamic tertiary structure (molten globule state). On the contrary, the increase of GuHCl concentration leads to partial destruction of the protein tertiary structure in the surface layer, although this effect is not as strong as in the case of previously studied bovine serum albumin and β-lactoglobulin.
Collapse
Affiliation(s)
- M M Tihonov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - O Yu Milyaeva
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - B A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia.
| |
Collapse
|
18
|
Carvalho FAO, Alves FR, Carvalho JWP, Tabak M. Guanidine hydrochloride and urea effects upon thermal stability of Glossoscolex paulistus hemoglobin (HbGp). Int J Biol Macromol 2014; 74:18-28. [PMID: 25433131 DOI: 10.1016/j.ijbiomac.2014.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 11/16/2022]
Abstract
Glossoscolex paulistus hemoglobin (HbGp) has a molecular mass of 3600kDa. It belongs to the hexagonal bilayer hemoglobin class, which consists of highly cooperative respiratory macromolecules found in mollusks and annelids. The present work focusses on oxy-HbGp thermal stability, in the presence of urea and guanidine hydrochloride (GuHCl), monitored by several techniques. Initially, dynamic light scattering data show that the presence of GuHCl induces the protein oligomeric dissociation, followed by a significant 11-fold increase in the hydrodynamic diameter (DH) values, due to the formation of protein aggregates in solution. In contrast, urea promotes the HbGp oligomeric dissociation, followed by unfolding process at high temperatures, without aggregation. Circular dichroism data show that unfolding critical temperature (Tc) of oxy-HbGp decreases from 57°C, at 0.0 mol/L of the denaturant, to 45°C, in the presence of 3.5 mol/L of urea, suggesting the reduction of HbGp oligomeric stability. Moreover, differential scanning calorimetry results show that at lower GuHCl concentrations, some thermal stabilization of the hemoglobin is observed, whereas at higher concentrations, the reduction of stability takes place. Besides, HbGp is more stable in the presence of urea when compared with the guanidine effect, as deduced from the differences in the concentration range of denaturants.
Collapse
Affiliation(s)
| | - Fernanda R Alves
- Instituto de Química de São Carlos-Universidade de São Paulo, Brazil
| | - José W P Carvalho
- Instituto de Química de São Carlos-Universidade de São Paulo, Brazil; Universidade do Estado de Mato Grosso, MT, Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos-Universidade de São Paulo, Brazil
| |
Collapse
|