1
|
Benítez-King G, Argueta J, Miranda-Riestra A, Muñoz-Delgado J, Estrada-Reyes R. Interaction of the Melatonin/Ca 2+-CaM Complex with Calmodulin Kinase II: Physiological Importance. Mol Pharmacol 2024; 106:3-12. [PMID: 38811168 DOI: 10.1124/molpharm.123.000812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Melatonin N-acetyl-5-methoxytriptamine is an ancient molecule which synchronizes the internal biologic activity with the environmental photoperiod. It is synthesized by the pineal gland during the night and released to the general circulation, where it reaches nanomolar concentrations. The indolamine acts through melatonin receptors and binds to different proteins such as calmodulin: a phylogenetically conserved protein which is the main transductor of the calcium signaling. In this review, we will describe evidence supporting that melatonin binds to calmodulin in presence of calcium, and we discuss the effects of this indolamine on the activity of calmodulin kinase II as an inhibitor and as stimulator of calmodulin-dependent protein kinase II activity. We also provide a literature review supporting the relevance of melatonin binding to calmodulin in the regulation of circadian rhythms in unicellular organisms, as well as in neuronal development in mammals as an ancient, conserved mechanism. Finally, we highlight the importance of antioxidant effects of melatonin on calmodulin preservation. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin binds to calmodulin. We discuss the dual effect of melatonin on the activity of calmodulin kinase II, the possible mechanisms involved, and the relevance on regulation of circadian rhythms and neurodevelopment. Finally, we describe evidence supporting that the binding of melatonin to calmodulin hydrophobic pockets may prevent the oxidation of methionine species with a shielding effect that preserves the functionality of calmodulin.
Collapse
Affiliation(s)
- Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Armida Miranda-Riestra
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Jairo Muñoz-Delgado
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| |
Collapse
|
2
|
Roopnarine O, Thomas DD. Structural Dynamics of Protein Interactions Using Site-Directed Spin Labeling of Cysteines to Measure Distances and Rotational Dynamics with EPR Spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:79-100. [PMID: 38371230 PMCID: PMC10868710 DOI: 10.1007/s00723-023-01623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 02/20/2024]
Abstract
Here we review applications of site-directed spin labeling (SDSL) with engineered cysteines in proteins, to study the structural dynamics of muscle and non-muscle proteins, using and developing the electron paramagnetic resonance (EPR) spectroscopic techniques of dipolar EPR, double electron electron resonance (DEER), saturation transfer EPR (STEPR), and orientation measured by EPR. The SDSL technology pioneered by Wayne Hubbell and collaborators has greatly expanded the use of EPR, including the measurement of distances between spin labels covalently attached to proteins and peptides. The Thomas lab and collaborators have applied these techniques to elucidate dynamic interactions in the myosin-actin complex, myosin-binding protein C, calmodulin, ryanodine receptor, phospholamban, utrophin, dystrophin, β-III-spectrin, and Aurora kinase. The ability to design and engineer cysteines in proteins for site-directed covalent labeling has enabled the use of these powerful EPR techniques to measure distances, while showing that they are complementary with optical spectroscopy measurements.
Collapse
Affiliation(s)
- Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Hussein RA, Ahmed M, Kuldyushev N, Schönherr R, Heinemann SH. Selenomethionine incorporation in proteins of individual mammalian cells determined with a genetically encoded fluorescent sensor. Free Radic Biol Med 2022; 192:191-199. [PMID: 36152916 DOI: 10.1016/j.freeradbiomed.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Selenomethionine (SeMet) randomly replaces methionine (Met) in protein translation. Because of strongly differing redox properties of SeMet and Met, SeMet mis-incorporation may have detrimental effects on protein function, possibly compromising the use of nutritional SeMet supplementation as an anti-oxidant. Studying the functional impact of SeMet in proteins on a cellular level is hampered by the lack of accurate and efficient methods for estimating the SeMet incorporation level in individual viable cells. Here we introduce and apply a method to measure the extent of SeMet incorporation in cellular proteins by utilizing a genetically encoded fluorescent methionine oxidation probe. Supplementation of SeMet in mammalian culture medium resulted in >84% incorporation of SeMet, and SeMet labeling as low as 5% was readily measured. Kinetics and extent of SeMet incorporation on the single-cell level under live-cell imaging conditions provided direct access to protein turn-over kinetics and SeMet redox properties in a cellular context. The method is furthermore suited for experiments utilizing high-throughput fluorescence microplate readers or fluorescence-activated cell sorting (FACS) analysis.
Collapse
Affiliation(s)
- Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany.
| |
Collapse
|
4
|
Bettinger JQ, Simon M, Korotkov A, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S. Accurate Proteomewide Measurement of Methionine Oxidation in Aging Mouse Brains. J Proteome Res 2022; 21:1495-1509. [PMID: 35584362 PMCID: PMC9171897 DOI: 10.1021/acs.jproteome.2c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.
Collapse
Affiliation(s)
- John Q. Bettinger
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Matthew Simon
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Anatoly Korotkov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Andrei Seluanov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States,Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Vera Gorbunova
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States,Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States,University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States,. Phone: 585-275-4829
| |
Collapse
|
5
|
Glockzin K, Meek TD, Katzfuss A. Characterization of adenine phosphoribosyltransferase (APRT) activity in Trypanosoma brucei brucei: Only one of the two isoforms is kinetically active. PLoS Negl Trop Dis 2022; 16:e0009926. [PMID: 35104286 PMCID: PMC8836349 DOI: 10.1371/journal.pntd.0009926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/11/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a Neglected Tropical Disease endemic to 36 African countries, with approximately 70 million people currently at risk for infection. Current therapeutics are suboptimal due to toxicity, adverse side effects, and emerging resistance. Thus, both effective and affordable treatments are urgently needed. The causative agent of HAT is the protozoan Trypanosoma brucei ssp. Annotation of its genome confirms previous observations that T. brucei is a purine auxotroph. Incapable of de novo purine synthesis, these protozoan parasites rely on purine phosphoribosyltransferases to salvage purines from their hosts for the synthesis of purine monophosphates. Complete and accurate genome annotations in combination with the identification and characterization of the catalytic activity of purine salvage enzymes enables the development of target-specific therapies in addition to providing a deeper understanding of purine metabolism in T. brucei. In trypanosomes, purine phosphoribosyltransferases represent promising drug targets due to their essential and central role in purine salvage. Enzymes involved in adenine and adenosine salvage, such as adenine phosphoribosyltransferases (APRTs, EC 2.4.2.7), are of particular interest for their potential role in the activation of adenine and adenosine-based pro-drugs. Analysis of the T. brucei genome shows two putative aprt genes: APRT1 (Tb927.7.1780) and APRT2 (Tb927.7.1790). Here we report studies of the catalytic activity of each putative APRT, revealing that of the two T. brucei putative APRTs, only APRT1 is kinetically active, thereby signifying a genomic misannotation of Tb927.7.1790 (putative APRT2). Reliable genome annotation is necessary to establish potential drug targets and identify enzymes involved in adenine and adenosine-based pro-drug activation.
Collapse
Affiliation(s)
- Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Thomas D. Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (TDM); (AK)
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (TDM); (AK)
| |
Collapse
|
6
|
Lee HM, Choi DW, Kim S, Lee A, Kim M, Roh YJ, Jo YH, Cho HY, Lee HJ, Lee SR, Tarrago L, Gladyshev VN, Kim JH, Lee BC. Biosensor-Linked Immunosorbent Assay for the Quantification of Methionine Oxidation in Target Proteins. ACS Sens 2022; 7:131-141. [PMID: 34936330 DOI: 10.1021/acssensors.1c01819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methionine oxidation is involved in regulating the protein activity and often leads to protein malfunction. However, tools for quantitative analyses of protein-specific methionine oxidation are currently unavailable. In this work, we developed a biological sensor that quantifies oxidized methionine in the form of methionine-R-sulfoxide in target proteins. The biosensor "tpMetROG" consists of methionine sulfoxide reductase B (MsrB), circularly permuted yellow fluorescent protein (cpYFP), thioredoxin, and protein G. Protein G binds to the constant region of antibodies against target proteins, specifically capturing them. Then, MsrB reduces the oxidized methionine in these proteins, leading to cpYFP fluorescence changes. We assessed this biosensor for quantitative analysis of methionine-R-sulfoxide in various proteins, such as calmodulin, IDLO, LegP, Sacde, and actin. We further developed an immunosorbent assay using the biosensor to quantify methionine oxidation in specific proteins such as calmodulin in animal tissues. The biosensor-linked immunosorbent assay proves to be an indispensable tool for detecting methionine oxidation in a protein-specific manner. This is a versatile tool for studying the redox biology of methionine oxidation in proteins.
Collapse
Affiliation(s)
- Hae Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong Wook Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seahyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Aro Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Minseo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Jin Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Ho Jo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hwa Yeon Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ho-Jae Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Research Center for Aging and Geriatrics, Chonnam National University Medical School, Gwangju 61186, Republic of Korea
| | - Lionel Tarrago
- INRAE, Aix Marseille University, BBF, Marseille F13108, France
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byung Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Yang CF, Tsai WC. Calmodulin: The switch button of calcium signaling. Tzu Chi Med J 2022; 34:15-22. [PMID: 35233351 PMCID: PMC8830543 DOI: 10.4103/tcmj.tcmj_285_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Calmodulin (CaM), a calcium sensor, decodes the critical calcium-dependent signals and converts them into the driving force to control various important cellular functions, such as ion transport. This small protein has a short central linker to connect two globular lobes and each unit is composed of a pair of homologous domains (HD) which are responsible for calcium binding. The conformation of each HD is sensitive to the levels of the intracellular Ca2+ concentrations while the flexible structure of the central domain enables its interactions with hundreds of cellular proteins. Apart from calcium binding, posttranslational modifications (PTMs) also contribute to the modulations of CaM functions by affecting its protein-protein interaction networks and hence drawing out the various downstream signaling cascades. In this mini-review, we first aim to elucidate the structural features of CaM and then overview the recent studies on the engagements of calcium binding and PTMs in Ca2+/CaM-mediated conformational alterations and signaling events. The mechanistic understanding of CaM working models is expected to be a key to decipher the precise role of CaM in cardiac physiology and disease pathology.
Collapse
|
8
|
Nde J, Zhang P, Ezerski JC, Lu W, Knapp K, Wolynes PG, Cheung MS. Coarse-Grained Modeling and Molecular Dynamics Simulations of Ca 2+-Calmodulin. Front Mol Biosci 2021; 8:661322. [PMID: 34504868 PMCID: PMC8421859 DOI: 10.3389/fmolb.2021.661322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) is a calcium-binding protein that transduces signals to downstream proteins through target binding upon calcium binding in a time-dependent manner. Understanding the target binding process that tunes CaM’s affinity for the calcium ions (Ca2+), or vice versa, may provide insight into how Ca2+-CaM selects its target binding proteins. However, modeling of Ca2+-CaM in molecular simulations is challenging because of the gross structural changes in its central linker regions while the two lobes are relatively rigid due to tight binding of the Ca2+ to the calcium-binding loops where the loop forms a pentagonal bipyramidal coordination geometry with Ca2+. This feature that underlies the reciprocal relation between Ca2+ binding and target binding of CaM, however, has yet to be considered in the structural modeling. Here, we presented a coarse-grained model based on the Associative memory, Water mediated, Structure, and Energy Model (AWSEM) protein force field, to investigate the salient features of CaM. Particularly, we optimized the force field of CaM and that of Ca2+ ions by using its coordination chemistry in the calcium-binding loops to match with experimental observations. We presented a “community model” of CaM that is capable of sampling various conformations of CaM, incorporating various calcium-binding states, and carrying the memory of binding with various targets, which sets the foundation of the reciprocal relation of target binding and Ca2+ binding in future studies.
Collapse
Affiliation(s)
- Jules Nde
- Department of Physics, University of Houston, Houston, TX, United States.,Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Pengzhi Zhang
- Department of Physics, University of Houston, Houston, TX, United States
| | - Jacob C Ezerski
- Department of Physics, University of Houston, Houston, TX, United States
| | - Wei Lu
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Kaitlin Knapp
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Margaret S Cheung
- Department of Physics, University of Houston, Houston, TX, United States.,Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| |
Collapse
|
9
|
Crosstalk among Calcium ATPases: PMCA, SERCA and SPCA in Mental Diseases. Int J Mol Sci 2021; 22:ijms22062785. [PMID: 33801794 PMCID: PMC8000800 DOI: 10.3390/ijms22062785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium in mammalian neurons is essential for developmental processes, neurotransmitter release, apoptosis, and signal transduction. Incorrectly processed Ca2+ signal is well-known to trigger a cascade of events leading to altered response to variety of stimuli and persistent accumulation of pathological changes at the molecular level. To counterbalance potentially detrimental consequences of Ca2+, neurons are equipped with sophisticated mechanisms that function to keep its concentration in a tightly regulated range. Calcium pumps belonging to the P-type family of ATPases: plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and secretory pathway Ca2+-ATPase (SPCA) are considered efficient line of defense against abnormal Ca2+ rises. However, their role is not limited only to Ca2+ transport, as they present tissue-specific functionality and unique sensitive to the regulation by the main calcium signal decoding protein—calmodulin (CaM). Based on the available literature, in this review we analyze the contribution of these three types of Ca2+-ATPases to neuropathology, with a special emphasis on mental diseases.
Collapse
|
10
|
Nelson SED, Weber DK, Rebbeck RT, Cornea RL, Veglia G, Thomas DD. Met125 is essential for maintaining the structural integrity of calmodulin's C-terminal domain. Sci Rep 2020; 10:21320. [PMID: 33288831 PMCID: PMC7721703 DOI: 10.1038/s41598-020-78270-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
We have used NMR and circular dichroism spectroscopy to investigate the structural and dynamic effects of oxidation on calmodulin (CaM), using peroxide and the Met to Gln oximimetic mutations. CaM is a Ca2+-sensitive regulatory protein that interacts with numerous targets. Due to its high methionine content, CaM is highly susceptible to oxidation by reactive oxygen species under conditions of cell stress and age-related muscle degeneration. CaM oxidation alters regulation of a host of CaM's protein targets, emphasizing the importance of understanding the mechanism of CaM oxidation in muscle degeneration and overall physiology. It has been shown that the M125Q CaM mutant can mimic the functional effects of methionine oxidation on CaM's regulation of the calcium release channel, ryanodine receptor (RyR). We report here that the M125Q mutation causes a localized unfolding of the C-terminal lobe of CaM, preventing the formation of a hydrophobic cluster of residues near the EF-hand Ca2+ binding sites. NMR analysis of CaM oxidation by peroxide offers further insights into the susceptibility of CaM's Met residues to oxidation and the resulting structural effects. These results further resolve oxidation-driven structural perturbation of CaM, with implications for RyR regulation and the decay of muscle function in aging.
Collapse
Affiliation(s)
- Sarah E D Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Steil AW, Kailing JW, Armstrong CJ, Walgenbach DG, Klein JC. The calmodulin redox sensor controls myogenesis. PLoS One 2020; 15:e0239047. [PMID: 32941492 PMCID: PMC7498019 DOI: 10.1371/journal.pone.0239047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Muscle aging is accompanied by blunted muscle regeneration in response to injury and disuse. Oxidative stress likely underlies this diminished response, but muscle redox sensors that act in regeneration have not yet been characterized. Calmodulin contains multiple redox sensitive methionines whose oxidation alters the regulation of numerous cellular targets. We have used the CRISPR-Cas9 system to introduce a single amino acid substitution M109Q that mimics oxidation of methionine to methionine sulfoxide in one or both alleles of the CALM1 gene, one of three genes encoding the muscle regulatory protein calmodulin, in C2C12 mouse myoblasts. When signaled to undergo myogenesis, mutated myoblasts failed to differentiate into myotubes. Although early myogenic regulatory factors were present, cells with the CALM1 M109Q mutation in one or both alleles were unable to withdraw from the cell cycle and failed to express late myogenic factors. We have shown that a single oxidative modification to a redox-sensitive muscle regulatory protein can halt myogenesis, suggesting a molecular target for mitigating the impact of oxidative stress in age-related muscle degeneration.
Collapse
Affiliation(s)
- Alex W. Steil
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| | - Jacob W. Kailing
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| | - Cade J. Armstrong
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| | - Daniel G. Walgenbach
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| | - Jennifer C. Klein
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, WI, United States of America
| |
Collapse
|
12
|
Zeytuni N, Dickey SW, Hu J, Chou HT, Worrall LJ, Alexander JAN, Carlson ML, Nosella M, Duong F, Yu Z, Otto M, Strynadka NCJ. Structural insight into the Staphylococcus aureus ATP-driven exporter of virulent peptide toxins. SCIENCE ADVANCES 2020; 6:eabb8219. [PMID: 32998902 PMCID: PMC7527219 DOI: 10.1126/sciadv.abb8219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/14/2020] [Indexed: 06/06/2023]
Abstract
Staphylococcus aureus is a major human pathogen that has acquired alarming broad-spectrum antibiotic resistance. One group of secreted toxins with key roles during infection is the phenol-soluble modulins (PSMs). PSMs are amphipathic, membrane-destructive cytolytic peptides that are exported to the host-cell environment by a designated adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, the PSM transporter (PmtABCD). Here, we demonstrate that the minimal Pmt unit necessary for PSM export is PmtCD and provide its first atomic characterization by single-particle cryo-EM and x-ray crystallography. We have captured the transporter in the ATP-bound state at near atomic resolution, revealing a type II ABC exporter fold, with an additional cytosolic domain. Comparison to a lower-resolution nucleotide-free map displaying an "open" conformation and putative hydrophobic inner chamber of a size able to accommodate the binding of two PSM peptides provides mechanistic insight and sets the foundation for therapeutic design.
Collapse
Affiliation(s)
- N. Zeytuni
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - S. W. Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J. Hu
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - H. T. Chou
- CryoEM Shared Resources, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - L. J. Worrall
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy facility, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - J. A. N. Alexander
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - M. L. Carlson
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - M. Nosella
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - F. Duong
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Z. Yu
- CryoEM Shared Resources, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - M. Otto
- CryoEM Shared Resources, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - N. C. J. Strynadka
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy facility, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| |
Collapse
|
13
|
McCarthy MR, Savich Y, Cornea RL, Thomas DD. Resolved Structural States of Calmodulin in Regulation of Skeletal Muscle Calcium Release. Biophys J 2020; 118:1090-1100. [PMID: 32049056 DOI: 10.1016/j.bpj.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Calmodulin (CaM) is proposed to modulate activity of the skeletal muscle sarcoplasmic reticulum (SR) calcium release channel (ryanodine receptor, RyR1 isoform) via a mechanism dependent on the conformation of RyR1-bound CaM. However, the correlation between CaM structure and functional regulation of RyR in physiologically relevant conditions is largely unknown. Here, we have used time-resolved fluorescence resonance energy transfer (TR-FRET) to study structural changes in CaM that may play a role in the regulation of RyR1. We covalently labeled each lobe of CaM (N and C) with fluorescent probes and used intramolecular TR-FRET to assess interlobe distances when CaM is bound to RyR1 in SR membranes, purified RyR1, or a peptide corresponding to the CaM-binding domain of RyR (RyRp). TR-FRET resolved an equilibrium between two distinct structural states (conformations) of CaM, each characterized by an interlobe distance and Gaussian distribution width (disorder). In isolated CaM, at low Ca2+, the two conformations of CaM are resolved, centered at 5 nm (closed) and 7 nm (open). At high Ca2+, the equilibrium shifts to favor the open conformation. In the presence of RyRp at high Ca2+, the closed conformation shifts to a more compact conformation and is the major component. When CaM is bound to full-length RyR1, either purified or in SR membranes, strikingly different results were obtained: 1) the two conformations are resolved and more ordered, 2) the open state is the major component, and 3) Ca2+ stabilized the closed conformation by a factor of two. We conclude that the Ca2+-dependent structural distribution of CaM bound to RyR1 is distinct from that of CaM bound to RyRp. We propose that the function of RyR1 is tuned to the Ca2+-dependent structural dynamics of bound CaM.
Collapse
Affiliation(s)
- Megan R McCarthy
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota
| | - Yahor Savich
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota.
| |
Collapse
|
14
|
Bettinger JQ, Welle KA, Hryhorenko JR, Ghaemmaghami S. Quantitative Analysis of in Vivo Methionine Oxidation of the Human Proteome. J Proteome Res 2020; 19:624-633. [PMID: 31801345 DOI: 10.1021/acs.jproteome.9b00505] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of methionine is an important post-translational modification of proteins with numerous roles in physiology and pathology. However, the quantitative analysis of methionine oxidation on a proteome-wide scale has been hampered by technical limitations. Methionine is readily oxidized in vitro during sample preparation and analysis. In addition, there is a lack of enrichment protocols for peptides that contain an oxidized methionine residue, making the accurate quantification of methionine oxidation difficult to achieve on a global scale. Herein, we report a methodology to circumvent these issues by isotopically labeling unoxidized methionines with 18O-labeled hydrogen peroxide and quantifying the relative ratios of 18O- and 16O-oxidized methionines. We validate our methodology using artificially oxidized proteomes made to mimic varying degrees of methionine oxidation. Using this method, we identify and quantify a number of novel sites of in vivo methionine oxidation in an unstressed human cell line.
Collapse
Affiliation(s)
- John Q Bettinger
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States
| | - Kevin A Welle
- University of Rochester Mass Spectrometry Resource Laboratory , Rochester , New York 14627 , United States
| | - Jennifer R Hryhorenko
- University of Rochester Mass Spectrometry Resource Laboratory , Rochester , New York 14627 , United States
| | - Sina Ghaemmaghami
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States.,University of Rochester Mass Spectrometry Resource Laboratory , Rochester , New York 14627 , United States
| |
Collapse
|
15
|
Dalaloyan A, Martorana A, Barak Y, Gataulin D, Reuveny E, Howe A, Elbaum M, Albeck S, Unger T, Frydman V, Abdelkader EH, Otting G, Goldfarb D. Tracking Conformational Changes in Calmodulin in vitro, in Cell Extract, and in Cells by Electron Paramagnetic Resonance Distance Measurements. Chemphyschem 2019; 20:1860-1868. [PMID: 31054266 DOI: 10.1002/cphc.201900341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Indexed: 12/12/2022]
Abstract
It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) in vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The in vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide in vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew Howe
- Department of Chemical and Biological Physics
| | | | - Shira Albeck
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Elwy H Abdelkader
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | |
Collapse
|
16
|
Structural basis for HOCl recognition and regulation mechanisms of HypT, a hypochlorite-specific transcriptional regulator. Proc Natl Acad Sci U S A 2019; 116:3740-3745. [PMID: 30733296 PMCID: PMC6397515 DOI: 10.1073/pnas.1811509116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypochlorous acid (HOCl) is a powerful oxidant that kills microorganisms. HypT has been identified as a HOCl-sensing transcription factor regulating several genes to enhance survival during HOCl stress in Escherichia coli. However, the structure and a detailed action mechanism of HypT have not yet been reported. In this study, we identified Salmonella Typhimurium HypT as a crucial factor in survival within macrophages and presented structures of HypT. The full-length structure shows interesting features describing a type of tetrameric assembly for the LysR family transcription regulator. The regulatory domain structures at various states give important clues to understanding the HOCl-sensing mechanism. Combining these results, we provided a molecular mechanism for HypT that explains its HOCl-sensing ability and structural changes. Hypochlorous acid (HOCl) is generated in the immune system to kill microorganisms. In Escherichia coli, a hypochlorite-specific transcription regulator, HypT, has been characterized. HypT belongs to the LysR-type transcriptional regulator (LTTR) family that contains a DNA-binding domain (DBD) and a regulatory domain (RD). Here, we identified a hypT gene from Salmonella enterica serovar Typhimurium and determined crystal structures of the full-length HypT protein and the RD. The full-length structure reveals a type of tetrameric assembly in the LTTR family. Based on HOCl-bound and oxidation-mimicking structures, we identified a HOCl-driven methionine oxidation mechanism, in which the bound HOCl oxidizes a conserved methionine residue lining the putative ligand-binding site in the RD. Furthermore, we proposed a molecular model for the oxidized HypT, where methionine oxidation by HOCl results in a conformational change of the RD, inducing a counter rotation of the DBD dimers. Target genes that are regulated by HypT and their roles in Salmonella were also investigated. DNase I footprinting experiments revealed a DNA segment containing two pseudopalindromic motifs that are separated by ∼100 bp, suggesting that only the oxidized structure makes a concomitant binding, forming a DNA loop. An understanding of the HypT-mediated mechanism would be helpful for controlling many pathogenic bacteria by counteracting bacterial HOCl defense mechanisms.
Collapse
|
17
|
Gigli L, Andrałojć W, Dalaloyan A, Parigi G, Ravera E, Goldfarb D, Luchinat C. Assessing protein conformational landscapes: integration of DEER data in Maximum Occurrence analysis. Phys Chem Chem Phys 2018; 20:27429-27438. [PMID: 30357188 DOI: 10.1039/c8cp06195e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The properties of the conformational landscape of a biomolecule are of capital importance to understand its function. It is widely accepted that a statistical ensemble is far more representative than a single structure, especially for proteins with disordered regions. While experimental data provide the most important handle on the conformational variability that the system is experiencing, they usually report on either time or ensemble averages. Since the available conformations largely outnumber the (independent) available experimental data, the latter can be equally well reproduced by a variety of ensembles. We have proposed the Maximum Occurrence (MaxOcc) approach to provide an upper bound of the statistical weight of each conformation. This method is expected to converge towards the true statistical weights by increasing the number of independent experimental datasets. In this paper we explore the ability of DEER (Double Electron Electron Resonance) data, which report on the distance distribution between two spin labels attached to a biomolecule, to restrain the MaxOcc values and its complementarity to previously introduced experimental techniques such as NMR and Small-Angle X-ray Scattering. We here present the case of Ca2+ bound calmodulin (CaM) as a test case and show that DEER data impose a sizeable reduction of the conformational space described by high MaxOcc conformations.
Collapse
Affiliation(s)
- Lucia Gigli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Walgenbach DG, Gregory AJ, Klein JC. Unique methionine-aromatic interactions govern the calmodulin redox sensor. Biochem Biophys Res Commun 2018; 505:236-241. [PMID: 30243720 DOI: 10.1016/j.bbrc.2018.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
Abstract
Calmodulin contains multiple redox sensitive methionines whose oxidation alters the regulation of numerous targets. Molecular dynamics simulations were used to define the molecular principles that govern how calmodulin is structurally poised to detect and respond to methionine oxidation. We found that calmodulin's open and closed states were preferentially stabilized by unique, redox sensitive, methionine-aromatic interactions. Key methionine-aromatic interactions were coupled to reorientation of EF hand helices. Methionine to glutamine substitutions designed to mimic methionine oxidation strongly altered conformational transitions by modulating the strength of methionine-aromatic interactions. Together, these results suggest a broadly applicable redox sensing mechanism though which methionine oxidation by cellular oxidants alters the strength of methionine-aromatic interactions critical for functional protein dynamics.
Collapse
Affiliation(s)
| | - Andrew J Gregory
- University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, USA
| | - Jennifer C Klein
- University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI, USA.
| |
Collapse
|
19
|
Structural dynamics of calmodulin-ryanodine receptor interactions: electron paramagnetic resonance using stereospecific spin labels. Sci Rep 2018; 8:10681. [PMID: 30013092 PMCID: PMC6048129 DOI: 10.1038/s41598-018-29064-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/27/2018] [Indexed: 12/30/2022] Open
Abstract
We have used electron paramagnetic resonance, with rigid and stereospecific spin labels, to resolve structural states in calmodulin (CaM), as affected by binding of Ca and a CaM-binding peptide (RyRp) derived from the ryanodine receptor (RyR), the Ca channel that triggers muscle contraction. CaM mutants containing a pair of cysteines in the N-lobe and/or C-lobe were engineered and labeled with a stereospecifically bound bifunctional spin label (BSL). RyRp was synthesized with and without TOAC (a stereospecifically attached spin-labeled amino acid) substituted for a single amino acid near the N-terminus. Intramolecular DEER distance measurements of doubly-labeled BSL-CaM revealed that CaM exists in dynamic equilibrium among multiple states, consistent with open, closed, and compact structural models. Addition of RyRp shifted the equilibrium partially toward the compact state in the absence of Ca, and completely toward the compact state in the presence of Ca, supporting a conformational selection model. Inter-protein distance measurements show that Ca stabilizes the compact state primarily by inducing ordered binding of the CaM N-lobe to RyRp, while only slightly affecting the C-lobe. The results provide insight into the structural mechanism of CaM-mediated RyR regulation, while demonstrating the power of using two types of rigidly and stereospecifically bound spin labels.
Collapse
|
20
|
Kawasaki H, Kretsinger RH. Conformational landscape mapping the difference between N-lobes and C-lobes of calmodulin. J Inorg Biochem 2017; 177:55-62. [PMID: 28923357 DOI: 10.1016/j.jinorgbio.2017.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/20/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
Calmodulin is a calcium binding protein that consists of four EF-hand domains. The two EF-lobes of calmodulin, called the N-lobe and the C-lobe, arose from duplication and fusion of a precursor EF-hand. The amino acid sequences and the structures of the N-lobe and of the C-lobe are quite similar to each other. The N-lobe and the C-lobe, however, have subtle differences in structure and function. We analyzed the helix positions of calmodulin lobes by the alignment with the pseudo-two fold axis of the EF-lobe. We made a map of conformational landscape of helix positions. The four states of the EF-lobe appeared on two lines in the landscape; these two lines show the trajectory of opening and closing of the EF-lobe. For the N-lobe of calmodulin, the calcium bound form and the apo-forms are on the lower line. The two apo-forms of the C-lobe of calmodulin, with target and without target, are on the upper line. The calcium bound form of the C-lobe is on the lower line. The rearrangement of helix interaction between two the EF-hands is necessary for calcium binding in the C-lobe. The hydrophobic packing in the apo-form of the N-lobe is similar to the packing of the N- and C-lobes of the calcium bound form. However, the packing of C-lobe side chains in the apo-form is different from these other three structures. Our detailed analysis should serve as an example that can be applied to other proteins that undergo changes in conformation upon binding effectors.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | | |
Collapse
|
21
|
Her C, McCaffrey JE, Thomas DD, Karim CB. Calcium-Dependent Structural Dynamics of a Spin-Labeled RyR Peptide Bound to Calmodulin. Biophys J 2017; 111:2387-2394. [PMID: 27926840 DOI: 10.1016/j.bpj.2016.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
We have used chemical synthesis, electron paramagnetic resonance (EPR), and circular dichroism to detect and analyze the structural dynamics of a ryanodine receptor (RyR) peptide bound to calmodulin (CaM). The skeletal muscle calcium release channel RyR1 is activated by Ca2+-free CaM and inhibited by Ca2+-bound CaM. To probe the structural mechanism for this regulation, wild-type RyRp and four spin-labeled derivatives were synthesized, each containing the nitroxide probe 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic acid substituted for a single amino acid. In 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic acid, the probe is rigidly and stereospecifically coupled to the α-carbon, enabling direct detection by EPR of peptide backbone structural dynamics. In the absence of CaM, circular dichroism indicates a complete lack of secondary structure, while 40% trifluoroethanol (TFE) induces >90% helicity and is unperturbed by the spin label. The EPR spectrum of each spin-labeled peptide indicates nanosecond dynamic disorder that is substantially reduced by TFE, but a significant gradient in dynamics is observed, decreasing from N- to C-terminus, both in the presence and absence of TFE. When bound to CaM, the probe nearest RyRp's N-terminus shows rapid rotational motion consistent with peptide backbone dynamics of a locally unfolded peptide, while the other three sites show substantial restriction of dynamics, consistent with helical folding. The two N-terminal sites, which bind to the C-lobe of CaM, do not show a significant Ca2+-dependence in mobility, while both C-terminal sites, which bind to the N-lobe of CaM, are significantly less mobile in the presence of bound Ca2+. These results support a model in which the interaction of RyR with CaM is nonuniform along the peptide, and the primary effect of Ca2+ is to increase the interaction of the C-terminal portion of the peptide with the N-terminal lobe of CaM. These results provide, to our knowledge, new insight into the Ca2+-dependent regulation of RyR by CaM.
Collapse
Affiliation(s)
- Cheng Her
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Jesse E McCaffrey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| | - Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
22
|
Bruno J, Nicolas A, Pesenti S, Schwarz J, Simon JL, Léonil J, Plaisancié P. Variants of β-casofensin, a bioactive milk peptide, differently modulate the intestinal barrier: In vivo and ex vivo studies in rats. J Dairy Sci 2017; 100:3360-3372. [DOI: 10.3168/jds.2016-12067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/17/2017] [Indexed: 12/29/2022]
|
23
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
24
|
Jiang G, Xiao L, Yan H, Zhang D, Wu F, Liu X, Su X, Dong X, Wang J, Duan X, Jiang Y. Redox regulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi. Biochim Biophys Acta Gen Subj 2017; 1861:1140-1151. [PMID: 28188859 DOI: 10.1016/j.bbagen.2017.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) play a role in aging and senescence in organisms. The oxidation of methionine (Met) residues in proteins to Met sulfoxide by ROS can cause conformational alteration and functional impairments. Met oxidation is reversed by Met sulfoxide reductase (Msr) A and B. Currently, the repair of oxidized proteins by Msr and Msr-mediated physiological functions are not well understood, especially in higher plants. The down-regulated expression of LcMsrA1/B1 may be involved in the senescence of litchi (Litchi chinensis) fruit. We verified that LcCaM1 is a substrate of LcMsrA1 and LcMsrB1 in vitro and in vivo, and oxidized LcCaM1 could be repaired by LcMsrA1 in combination with LcMsrB1. Moreover, LcMsrA1 and LcMsrB1 play important roles in repairing oxidized Met110 and Met125 residues, respectively, in LcCaM1. Furthermore, the Met oxidation in LcCaM1 did not affect its physical interactions with two LcCaM1-binding senescence-related transcription factors LcNAC13 and LcWRKY1, but enhanced their DNA-binding activities. Therefore, we hypothesized that the down-regulated expression of LcMsrA1/B1 results in the accelerated oxidation of LcCaM1, which enhanced the DNA-binding activities of LcNAC13 and LcWRKY1, thereby activating or repressing the expression of senescence-related genes.
Collapse
Affiliation(s)
- Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany/Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lu Xiao
- Guangdong Provincial Key Laboratory of Applied Botany/Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Yan
- Guangdong Provincial Key Laboratory of Applied Botany/Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany/Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fuwang Wu
- Guangdong Provincial Key Laboratory of Applied Botany/Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany/Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xinguo Su
- Guangdong Food and Drug Vocational College, Guangzhou 510520, China
| | - Xinhong Dong
- College of Chemistry and Biology Engineering, Guilin University of Technology, Gulin 541004, China
| | - Jiasheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany/Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany/Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
25
|
Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions. Sci Rep 2017; 7:40403. [PMID: 28079140 PMCID: PMC5227694 DOI: 10.1038/srep40403] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Protein phosphorylation is one of the most prevalent and well-understood protein modifications. Oxidation of protein-bound methionine, which has been traditionally perceived as an inevitable damage derived from oxidative stress, is now emerging as another modification capable of regulating protein activity during stress conditions. However, the mechanism coupling oxidative signals to changes in protein function remains unknown. An appealing hypothesis is that methionine oxidation might serve as a rheostat to control phosphorylation. To investigate this potential crosstalk between phosphorylation and methionine oxidation, we have addressed the co-occurrence of these two types of modifications within the human proteome. Here, we show that nearly all (98%) proteins containing oxidized methionine were also phosphoproteins. Furthermore, phosphorylation sites were much closer to oxidized methionines when compared to non-oxidized methionines. This proximity between modification sites cannot be accounted for by their co-localization within unstructured clusters because it was faithfully reproduced in a smaller sample of structured proteins. We also provide evidence that the oxidation of methionine located within phosphorylation motifs is a highly selective process among stress-related proteins, which supports the hypothesis of crosstalk between methionine oxidation and phosphorylation as part of the cellular defence against oxidative stress.
Collapse
|