1
|
Goli RC, Mahar K, Manohar PS, Chishi KG, Prabhu IG, Choudhary S, Rathi P, Chinnareddyvari CS, Haritha P, Metta M, Shetkar M, Kumar A, N D CP, Vidyasagar, Sukhija N, Kanaka KK. Insights from homozygous signatures of cervus nippon revealed genetic architecture for components of fitness. Mamm Genome 2024; 35:657-672. [PMID: 39191871 DOI: 10.1007/s00335-024-10064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
This study investigates the genomic landscape of Sika deer populations, emphasizing the detection and characterization of runs of homozygosity (ROH) and their contribution towards components of fitness. Using 85,001 high-confidence SNPs, the investigation into ROH distribution unveiled nuanced patterns of autozygosity across individuals especially in 2 out of the 8 farms, exhibiting elevated ROH levels and mean genome coverage under ROH segments. The prevalence of shorter ROH segments (0.5-4 Mb) suggests historical relatedness and potential selective pressures within these populations. Intriguingly, despite observed variations in ROH profiles, the overall genomic inbreeding coefficient (FROH) remained relatively low across all farms, indicating a discernible degree of genetic exchange and effective mitigation of inbreeding within the studied Sika deer populations. Consensus ROH (cROH) were found to harbor genes for important functions viz., EGFLAM gene which is involved in the vision function of the eye, SKP2 gene which regulates cell cycle, CAPSL involved in adipogenesis, SPEF2 which is essential for sperm flagellar assembly, DCLK3 involved in the heat stress. This first ever study on ROH in Sika deer, to shed light on the adaptive role of genes in these homozygous regions. The insights garnered from this study have broader implications in the management of genetic diversity in this vulnerable species.
Collapse
Affiliation(s)
- Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Karan Mahar
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Peela Sai Manohar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | | | - Sonu Choudhary
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Chandana Sree Chinnareddyvari
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Pala Haritha
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Muralidhar Metta
- College of Veterinary Science, SVVU, Garividi, Andhra Pradesh, India
| | - Mahantesh Shetkar
- College of Veterinary Sciences and Animal Husbandry, DUVASU, Mathura, Uttar Pradesh, India
| | - Amit Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Chethan Patil N D
- Department of Agricultural Economics & Extension, Lovely Professional University, Punjab, India
| | - Vidyasagar
- Veterinary College, KVAFSU, Bidar, Karnataka, India
| | - Nidhi Sukhija
- CSB-Central Tasar Research and Training Institute, Ranchi, Jharkhand, India.
| | - K K Kanaka
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
2
|
Rha AK, Christensen CL, Kan SH, Harb JF, Andrade-Heckman P, Wang RY. Generation of an infantile GM1 gangliosidosis induced pluripotent stem cell line (CHOCi005-A) for disease modeling and therapeutic testing. Stem Cell Res 2024; 81:103552. [PMID: 39303321 DOI: 10.1016/j.scr.2024.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
GM1 gangliosidosis (GM1) is a rare autosomal recessive neurogenerative lysosomal storage disease characterized by deficiency of beta-galactosidase (β-gal) and intralysosomal accumulation of GM1 ganglioside and other glycoconjugates. Resources for GM1 disease modelling are limited, and access to relevant cell lines from human patients is not possible. Generation of iPSC lines from GM1 patient-derived dermal fibroblasts allows for disease modelling and therapeutic testing in 2D and 3D cell culture models relevant to CNS disorders, including various neuronal subtypes and cerebral organoids. The iPSC line described here will be critical to therapeutic development and set the foundation for translational gene therapy work.
Collapse
Affiliation(s)
- Allisandra K Rha
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Chloe L Christensen
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Shih-Hsin Kan
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Jerry F Harb
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Perla Andrade-Heckman
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County Specialists, Orange, CA 92868, United States; Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA 92697, United States.
| |
Collapse
|
3
|
Rha AK, Kan SH, Andrade-Heckman P, Christensen CL, Harb JF, Wang RY. Base editing of the GLB1 gene is therapeutic in GM1 gangliosidosis patient-derived cells. Mol Genet Metab 2024; 143:108568. [PMID: 39303319 DOI: 10.1016/j.ymgme.2024.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
GM1 gangliosidosis is an autosomal recessive neurodegenerative lysosomal storage disease caused by pathogenic variants in the GLB1 gene, limiting the production of active lysosomal β-galactosidase. Phenotypic heterogeneity is due in part to variant type, location within GLB1, and the amount of residual enzyme activity; in the most severe form, death occurs in infancy. With no FDA approved therapeutics, development of efficacious strategies for the disease is pivotal. CRISPR/Cas based approaches have revolutionized precision medicine and have been indispensable to the development of treatments for several monogenic disorders with bespoke strategies central to current research pipelines. We used CRISPR/Cas-adenine base editing to correct the GLB1 c.380G>A (p.Cys127Tyr) variant in patient-derived dermal fibroblasts compound heterozygous with the GLB1 c.481T>G (p.Trp161Gly) pathogenic variant. Nucleofection of plasmids encoding the target sgRNA and ABEmax restored the canonical guanine (32.2 ± 2.2 % of the target allele) and synthesis of active β-galactosidase. Analysis of cellular markers of pathology revealed normalization of both primary glycoconjugate storage and lysosomal pathology. Furthermore, analysis of off-target sites nominated by the in silico tools Cas-OFFinder and/or CRISTA revealed no significant editing or indels. This study supports the use of CRISPR/Cas-based approaches for the treatment of GM1 gangliosidosis, and provides foundational data for future translational studies.
Collapse
Affiliation(s)
- Allisandra K Rha
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Shih-Hsin Kan
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Perla Andrade-Heckman
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Chloe L Christensen
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Jerry F Harb
- Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County Specialists, Orange, CA 92868, United States; Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA 92697, United States.
| |
Collapse
|
4
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
He Z, Li X, Zhang X, Ouyang Q, Hu J, Hu S, He H, Li L, Liu H, Wang J. Effects of rearing systems (cage versus floor) on the microbial composition and transcriptome of goose ileum. Front Vet Sci 2024; 11:1394290. [PMID: 38846790 PMCID: PMC11155456 DOI: 10.3389/fvets.2024.1394290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
There is a gradual transition from water to dryland rearing of geese. In this study, we performed 16S rRNA sequencing (16S rRNA-seq) and transcriptome sequencing (RNA-seq) to reveal the effects of cage rearing (CR) and floor rearing (FR) systems on the microbial composition and transcriptome of the goose ileum. Through 16S rRNA-seq, Linear Discriminant Analysis Effect Size (LEfSe) analysis identified 2 (hgcI_clade and Faecalibacterium) and 14 (Bacteroides, Proteiniphilum, Proteiniclasticum, etc.) differential microbiota in CR and FR, respectively. The rearing system influenced 4 pathways including biosynthesis of amino acids in ileal microbiota. Moreover, we identified 1,198 differentially expressed genes (DEGs) in the ileum mucosa, with 957 genes up-regulated in CR and 241 genes up-regulated in FR. In CR, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the significant enrichment (p < 0.05) of 28 KEGG pathways, most of which were associated with amino acid metabolism. In FR, up-regulated DEGs were mainly enriched in KEGG pathways associated with cellular processes, including apoptosis, necroptosis, and cellular senescence. Spearman correlation analysis of differential microbiota and amino acid metabolism-related DEGs in CR showed a significant positive correlation. Additionally, differential microbiota of FR, Phascolarctobacterium and Sutterella, were positively correlated with FGF10 (p < 0.05) and PIK3R1 (p < 0.01), respectively. In conclusion, there might be differences in ileal amino acid metabolism levels between CR and FR geese, and the observed increase in harmful bacterial species in FR might impact the activity of ileal cells.
Collapse
Affiliation(s)
- Zhiyu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuejian Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xi Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Zagaynova VA, Nasykhova YA, Tonyan ZN, Danilova MM, Dvoynova NM, Lazareva TE, Ivashchenko TE, Shabanova ES, Krikheli IO, Lesik EA, Bespalova ON, Kogan IY, Glotov AS. Case report: Preimplantation genetic testing for infantile GM1 gangliosidosis. Front Genet 2024; 15:1344051. [PMID: 38404665 PMCID: PMC10884188 DOI: 10.3389/fgene.2024.1344051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Ganglioside-monosialic acid (GM1) gangliosidosis (ICD-10: E75.1; OMIM: 230500, 230600, 230650) is a rare autosomal recessive hereditary disease, lysosomal storage disorder caused by mutations in the GLB1 gene that lead to the absence or insufficiency of β-galactosidase. In this study, we report a case of a Russian family with a history of GM1 gangliosidosis. The family had a child who, from the age of 6 months, experienced a gradual loss of developmental skills, marked by muscle flaccidity, psychomotor retardation, hepatosplenomegaly, and the onset of tonic seizures by the age of 8 months. Funduscopic examination revealed a «cherry red spot» in the macula, which is crucial for the diagnosis of lipid storage disorders. To find the pathogenic variants responsible for these clinical symptoms, the next-generation sequencing approach was used. The analysis revealed two variants in the heterozygous state: a frameshift variant c.699delG (rs1452318343, ClinVar ID 928700) in exon 6 and a missense variant c.809A>C (rs371546950, ClinVar ID 198727) in exon 8 of the GLB1 gene. The spouses were advised to plan the pregnancy with assisted reproductive technology (ART), followed by preimplantation genetic testing for monogenic disorder (PGT-M) on the embryos. Trophectoderm biopsy was performed on 8 out of 10 resulting embryos at the blastocyst stage. To perform PGT-M, we developed a novel testing system, allowing for direct analysis of disease-causing mutations, as well as haplotype analysis based on the study of polymorphic markers-short tandem repeats (STR), located upstream and downstream of the GLB1 gene. The results showed that four embryos were heterozygous carriers of pathogenic variants in the GLB1 gene (#1, 2, 5, 8). Two embryos had a compound heterozygous genotype (#3, 4), while the embryos #7 and 9 did not carry disease-causing alleles of the GLB1 gene. The embryo #7 without pathogenic variants was transferred after consideration of its morphology and growth rate. Prenatal diagnosis in the first trimester showed the absence of the variants analyzed in the GLB1 gene in the fetus. The pregnancy resulted in the delivery of a female infant who did not inherit the disease-causing variants in the GLB1 gene.
Collapse
Affiliation(s)
- Valeria A. Zagaynova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang H, Gu Y, He W, Kuo F, Zhang Y, Wang D, He L, Yang Y, Wang H, Chen Y. Correlation Between Sialidase NEU1 mRNA Expression Changes in Autism Spectrum Disorder. Front Psychiatry 2022; 13:870374. [PMID: 35757207 PMCID: PMC9218098 DOI: 10.3389/fpsyt.2022.870374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal alterations in enzymes functioned in sialic acid modifications may be associated with ASD. In order to study the differences in peripheral blood sialidase (neuraminidase 1; NEU1) mRNA expression between autism spectrum disorder (ASD) children and healthy control, and to examine the correlation between NEU1 mRNA expression and the main behavioral phenotypes in children with ASD, we performed RT-qPCR to measure NEU1 mRNA expression in peripheral blood of 42 children with ASD and 42 healthy controls. In addition, we used the Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) to measure and evaluate the behavioral phenotypes of children with ASD. Our results showed that NEU1 mRNA in the ASD group was significantly higher than in the control group (P < 0.0001). In addition, the ADOS-2 diagnostic scores of 42 children with ASD were correlated with their NEU1 mRNA expression results (R = 0.344, P = 0.0257). Moreover, in general, NEU1 mRNA expression was also positively correlated with the Social Affect (SA) of ADOS-2 (R = 0.3598, P = 0.0193) but not with the Restricted and Repetitive Behavior (RRB) (R = 0.15, P = 0.3432). Our results indicated that sialidase NEU1 mRNA was significantly increased in children with ASD, and its expression was correlated with the SA of children with ASD, which suggested that sialidase NEU1 may affect the SA of ASD. Our data highlighted the potential of NEU1 expression change may play an important role in ASD disease and lay the foundation for further studies on the relationship between NEU1 and ASD.
Collapse
Affiliation(s)
- Haiqing Zhang
- Department of Child Healthcare, Xi'an Children's Hospital, Xi'an, China
| | - Yuhang Gu
- Department of Pediatrics, Ankang Maternal and Child Health Hospital, Ankang, China
| | - Wenxiang He
- Department of Child Healthcare, Xi'an Children's Hospital, Xi'an, China
| | | | - Yiran Zhang
- Department of Child Healthcare, Xi'an Children's Hospital, Xi'an, China
| | - Duan Wang
- Department of Child Healthcare, Xi'an Children's Hospital, Xi'an, China
| | - Li He
- Department of Child Healthcare, Xi'an Children's Hospital, Xi'an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Hepeng Wang
- Department of Pediatrics, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanni Chen
- Department of Child Healthcare, Xi'an Children's Hospital, Xi'an, China.,Department of Pediatrics, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
8
|
Cardiovascular involvement in alpha-n-acetyl neuraminidase deficiency syndromes (sialidosis type I and II). Cardiol Young 2021; 31:862-864. [PMID: 33507140 DOI: 10.1017/s1047951120004953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sialidosis, a rare autosomal recessive disorder, is caused by a deficiency of NEU1 encoded enzyme alpha-N-acetyl neuraminidase. We report a premature male with neonatal-onset type II sialidosis which was associated with left ventricular dysfunction. The clinical presentation and subsequent progression which culminated in his untimely death at 16 months of age are succinctly described. Early-onset cardiovascular involvement as noted in this patient is not well characterised. The case report is supplemented by a comprehensive review of the determinants, characteristics, and the clinical course of cardiovascular involvement in this rare condition.
Collapse
|
9
|
Seol B, Kim YD, Cho YS. Modeling Sialidosis with Neural Precursor Cells Derived from Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22094386. [PMID: 33922276 PMCID: PMC8122832 DOI: 10.3390/ijms22094386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/16/2023] Open
Abstract
Sialidosis, caused by a genetic deficiency of the lysosomal sialidase gene (NEU1), is a systemic disease involving various tissues and organs, including the nervous system. Understanding the neurological dysfunction and pathology associated with sialidosis remains a challenge, partially due to the lack of a human model system. In this study, we have generated two types of induced pluripotent stem cells (iPSCs) with sialidosis-specific NEU1G227R and NEU1V275A/R347Q mutations (sialidosis-iPSCs), and further differentiated them into neural precursor cells (iNPCs). Characterization of NEU1G227R- and NEU1V275A/R347Q- mutated iNPCs derived from sialidosis-iPSCs (sialidosis-iNPCs) validated that sialidosis-iNPCs faithfully recapitulate key disease-specific phenotypes, including reduced NEU1 activity and impaired lysosomal and autophagic function. In particular, these cells showed defective differentiation into oligodendrocytes and astrocytes, while their neuronal differentiation was not notably affected. Importantly, we found that the phenotypic defects of sialidosis-iNPCs, such as impaired differentiation capacity, could be effectively rescued by the induction of autophagy with rapamycin. Our results demonstrate the first use of a sialidosis-iNPC model with NEU1G227R- and NEU1V275A/R347Q- mutation(s) to study the neurological defects of sialidosis, particularly those related to a defective autophagy-lysosome pathway, and may help accelerate the development of new drugs and therapeutics to combat sialidosis and other LSDs.
Collapse
Affiliation(s)
- Binna Seol
- Stem Cell Research Laboratory (SCRL), Immunotherapy Research Center (IRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (B.S.); (Y.-D.K.)
| | - Young-Dae Kim
- Stem Cell Research Laboratory (SCRL), Immunotherapy Research Center (IRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (B.S.); (Y.-D.K.)
| | - Yee Sook Cho
- Stem Cell Research Laboratory (SCRL), Immunotherapy Research Center (IRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (B.S.); (Y.-D.K.)
- Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-42-860-4479; Fax: +82-42-860-4608
| |
Collapse
|
10
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
11
|
An iPSC-based neural model of sialidosis uncovers glycolytic impairment-causing presynaptic dysfunction and deregulation of Ca 2+ dynamics. Neurobiol Dis 2021; 152:105279. [PMID: 33516873 DOI: 10.1016/j.nbd.2021.105279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Sialidosis is a neuropathic lysosomal storage disease caused by a deficiency in the NEU1 gene-encoding lysosomal neuraminidase and characterized by abnormal accumulation of undigested sialyl-oligoconjugates in systemic organs including brain. Although patients exhibit neurological symptoms, the underlying neuropathological mechanism remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts with sialidosis and induced the differentiation into neural progenitor cells (NPCs) and neurons. Sialidosis NPCs and neurons mimicked the disease-like phenotypes including reduced neuraminidase activity, accumulation of sialyl-oligoconjugates and lysosomal expansions. Functional analysis also revealed that sialidosis neurons displayed two distinct abnormalities, defective exocytotic glutamate release and augmented α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)-mediated Ca2+ influx. These abnormalities were restored by overexpression of the wild-type NEU1 gene, demonstrating causative role of neuraminidase deficiency in functional impairments of disease neurons. Comprehensive proteomics analysis revealed the significant reduction of SNARE proteins and glycolytic enzymes in synaptosomal fraction, with downregulation of ATP production. Bypassing the glycolysis by treatment of pyruvate, which is final metabolite of glycolysis pathway, improved both the synaptsomal ATP production and the exocytotic function. We also found that upregulation of AMPAR and L-type voltage dependent Ca2+ channel (VDCC) subunits in disease neurons, with the restoration of AMPAR-mediated Ca2+ over-load by treatment of antagonists for the AMPAR and L-type VDCC. Our present study provides new insights into both the neuronal pathophysiology and potential therapeutic strategy for sialidosis.
Collapse
|
12
|
Eikelberg D, Lehmbecker A, Brogden G, Tongtako W, Hahn K, Habierski A, Hennermann JB, Naim HY, Felmy F, Baumgärtner W, Gerhauser I. Axonopathy and Reduction of Membrane Resistance: Key Features in a New Murine Model of Human G M1-Gangliosidosis. J Clin Med 2020; 9:jcm9041004. [PMID: 32252429 PMCID: PMC7230899 DOI: 10.3390/jcm9041004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
GM1-gangliosidosis is caused by a reduced activity of β-galactosidase (Glb1), resulting in intralysosomal accumulations of GM1. The aim of this study was to reveal the pathogenic mechanisms of GM1-gangliosidosis in a new Glb1 knockout mouse model. Glb1−/− mice were analyzed clinically, histologically, immunohistochemically, electrophysiologically and biochemically. Morphological lesions in the central nervous system were already observed in two-month-old mice, whereas functional deficits, including ataxia and tremor, did not start before 3.5-months of age. This was most likely due to a reduced membrane resistance as a compensatory mechanism. Swollen neurons exhibited intralysosomal storage of lipids extending into axons and amyloid precursor protein positive spheroids. Additionally, axons showed a higher kinesin and lower dynein immunoreactivity compared to wildtype controls. Glb1−/− mice also demonstrated loss of phosphorylated neurofilament positive axons and a mild increase in non-phosphorylated neurofilament positive axons. Moreover, marked astrogliosis and microgliosis were found, but no demyelination. In addition to the main storage material GM1, GA1, sphingomyelin, phosphatidylcholine and phosphatidylserine were elevated in the brain. In summary, the current Glb1−/− mice exhibit a so far undescribed axonopathy and a reduced membrane resistance to compensate the functional effects of structural changes. They can be used for detailed examinations of axon–glial interactions and therapy trials of lysosomal storage diseases.
Collapse
Affiliation(s)
- Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (G.B.); (H.Y.N.)
| | - Witchaya Tongtako
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
- c/o Faculty of Veterinary Science, Prince of Sonkla University, 5 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - Kerstin Hahn
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Andre Habierski
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Julia B. Hennermann
- Villa Metabolica, University of Mainz, Langenbeckstraße 2, D-55131 Mainz, Germany;
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (G.B.); (H.Y.N.)
| | - Felix Felmy
- Department for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
- Correspondence:
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| |
Collapse
|
13
|
Guo T, Dätwyler P, Demina E, Richards MR, Ge P, Zou C, Zheng R, Fougerat A, Pshezhetsky AV, Ernst B, Cairo CW. Selective Inhibitors of Human Neuraminidase 3. J Med Chem 2018; 61:1990-2008. [PMID: 29425031 DOI: 10.1021/acs.jmedchem.7b01574] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human neuraminidases (NEU) are associated with human diseases including cancer, atherosclerosis, and diabetes. To obtain small molecule inhibitors as research tools for the study of their biological functions, we designed a library of 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues with modifications at C4 and C9 positions. This library allowed us to discover selective inhibitors targeting the human NEU3 isoenzyme. Our most selective inhibitor for NEU3 has a Ki of 320 ± 40 nM and a 15-fold selectivity over other human neuraminidase isoenzymes. This inhibitor blocks glycolipid processing by NEU3 in vitro. To improve their pharmacokinetic properties, various esters of the best inhibitors were synthesized and evaluated. Finally, we confirmed that our best compounds exhibited selective inhibition of NEU orthologues from murine brain.
Collapse
Affiliation(s)
- Tianlin Guo
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, Pharmacenter , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Ekaterina Demina
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Peng Ge
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Chunxia Zou
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Anne Fougerat
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Beat Ernst
- Department of Pharmaceutical Sciences, Pharmacenter , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| |
Collapse
|
14
|
Jung KB, Lee H, Son YS, Lee JH, Cho HS, Lee MO, Oh JH, Lee J, Kim S, Jung CR, Kim J, Son MY. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. FASEB J 2018; 32:111-122. [PMID: 28855280 DOI: 10.1096/fj.201700504r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022]
Abstract
Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5mCherry) and intestine-specific homeobox enhanced green fluorescence protein (ISXeGFP). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kwang Bo Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Hana Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Ye Seul Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Ji Hye Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Mi-Ok Lee
- Immunotherapy Covergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jung-Hwa Oh
- Korea Institute of Toxicology, Daejeon, South Korea; and
| | - Jaemin Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seokho Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Cho-Rok Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea,
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea,
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
15
|
Oh JH, Jung CR, Lee MO, Kim J, Son MY. Comparative analysis of human embryonic stem cell‑derived neural stem cells as an in vitro human model. Int J Mol Med 2017; 41:783-790. [PMID: 29207026 PMCID: PMC5752237 DOI: 10.3892/ijmm.2017.3298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
Alternative cell models of human neural stem cells (hNSCs) have been developed and used for investigations ranging from in vitro experiments to in vivo clinical studies. However, a cell model capable of mimicking the 'normal' state of hNSCs is mandatory in order to extrapolate the results of these studies to humans. In the present study, to select a more suitable hNSC model for developing human‑based experimental platforms, two representative hNSC types were compared, namely human embryonic stem cell (hESC)‑derived hNSCs and ReNcell CX cells, which are well‑characterized immortalized hNSC lines. The hNSCs, differentiated from hESCs via human neuroectodermal sphere (hNES) formation, recapitulated the molecular and cellular phenotypes of hNSCs, including NSC marker expression and terminal neuronal differentiation potential. Comparative analyses of the transcriptome profiles of the hESC‑derived hNESs and ReNcell CX hNSCs showed that the differentiated hNESs were analogous to the ReNcell CX cells, as demonstrated by principal component analysis and hierarchical sample clustering. The hNSC‑specific transcriptome was presented, comprising commonly expressed transcripts between hNESs derived from hESCs and ReNcell CX cells. To elucidate the molecular mechanisms associated with the hNSC identity, the hNSC‑specific transcriptome was analyzed using pathway and functional annotation clustering analyses. The results suggested that hESC‑derived hNESs, an expandable and accessible cell source, may be used as a relevant hNSC model in a wide range of neurological investigations.
Collapse
Affiliation(s)
- Jung-Hwa Oh
- Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Cho-Rok Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Ok Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Flor AC, Wolfgeher D, Wu D, Kron SJ. A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov 2017; 3:17075. [PMID: 29090099 PMCID: PMC5661608 DOI: 10.1038/cddiscovery.2017.75] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/01/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
At their proliferative limit, normal cells arrest and undergo replicative senescence, displaying large cell size, flat morphology, and senescence-associated beta-galactosidase (SA-β-Gal) activity. Normal or tumor cells exposed to genotoxic stress undergo therapy-induced senescence (TIS), displaying a similar phenotype. Senescence is considered a DNA damage response, but cellular heterogeneity has frustrated identification of senescence-specific markers and targets. To explore the senescent cell proteome, we treated tumor cells with etoposide and enriched SA-β-GalHI cells by fluorescence-activated cell sorting (FACS). The enriched TIS cells were compared to proliferating or quiescent cells by label-free quantitative LC-MS/MS proteomics and systems analysis, revealing activation of multiple lipid metabolism pathways. Senescent cells accumulated lipid droplets and imported lipid tracers, while treating proliferating cells with specific lipids induced senescence. Senescent cells also displayed increased lipid aldehydes and upregulation of aldehyde detoxifying enzymes. These results place deregulation of lipid metabolism alongside genotoxic stress as factors regulating cellular senescence.
Collapse
Affiliation(s)
- Amy C Flor
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Don Wolfgeher
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Ding Wu
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Son MY, Sim H, Son YS, Jung KB, Lee MO, Oh JH, Chung SK, Jung CR, Kim J. Distinctive genomic signature of neural and intestinal organoids from familial Parkinson's disease patient-derived induced pluripotent stem cells. Neuropathol Appl Neurobiol 2017; 43:584-603. [PMID: 28235153 DOI: 10.1111/nan.12396] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/22/2017] [Accepted: 02/19/2017] [Indexed: 02/06/2023]
Abstract
AIMS The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic cause of Parkinson's disease (PD). There is compelling evidence that PD is not only a brain disease but also a gastrointestinal disorder; nonetheless, its pathogenesis remains unclear. We aimed to develop human neural and intestinal tissue models of PD patients harbouring an LRRK2 mutation to understand the link between LRRK2 and PD pathology by investigating the gene expression signature. METHODS We generated PD patient-specific induced pluripotent stem cells (iPSCs) carrying an LRRK2 G2019S mutation (LK2GS) and then differentiated into three-dimensional (3D) human neuroectodermal spheres (hNESs) and human intestinal organoids (hIOs). To unravel the gene and signalling networks associated with LK2GS, we analysed differentially expressed genes in the microarray data by functional clustering, gene ontology (GO) and pathway analyses. RESULTS The expression profiles of LK2GS were distinct from those of wild-type controls in hNESs and hIOs. The most represented GO biological process in hNESs and hIOs was synaptic transmission, specifically synaptic vesicle trafficking, some defects of which are known to be related to PD. The results were further validated in four independent PD-specific hNESs and hIOs by microarray and qRT-PCR analysis. CONCLUSION We provide the first evidence that LK2GS also causes significant changes in gene expression in the intestinal cells. These hNES and hIO models from the same genetic background of PD patients could be invaluable resources for understanding PD pathophysiology and for advancing the complexity of in vitro models with 3D expandable organoids.
Collapse
Affiliation(s)
- M-Y Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - H Sim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Y S Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - K B Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - M-O Lee
- Immunotherapy Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - J-H Oh
- Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.,Department of human and environmental toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - S-K Chung
- Medical Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - C-R Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - J Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of functional genomics, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
18
|
Son MY, Kim YD, Seol B, Lee MO, Na HJ, Yoo B, Chang JS, Cho YS. Biomarker Discovery by Modeling Behçet's Disease with Patient-Specific Human Induced Pluripotent Stem Cells. Stem Cells Dev 2017; 26:133-145. [DOI: 10.1089/scd.2016.0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Young-Dae Kim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Binna Seol
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee-Jun Na
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Bin Yoo
- Department of Rheumatology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Suk Chang
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yee Sook Cho
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Jung KB, Son YS, Lee H, Jung CR, Kim J, Son MY. Transcriptome dynamics of human pluripotent stem cell-derived contracting cardiomyocytes using an embryoid body model with fetal bovine serum. MOLECULAR BIOSYSTEMS 2017; 13:1565-1574. [DOI: 10.1039/c7mb00174f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current cardiomyocyte (CM) differentiation protocols did not promote the sufficient expression of genes involved in oxidative phosphorylation for generating adult-like mature CMs.
Collapse
Affiliation(s)
- Kwang Bo Jung
- Stem Cell Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
- Department of Functional Genomics
| | - Ye Seul Son
- Stem Cell Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
- Department of Functional Genomics
| | - Hana Lee
- Stem Cell Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
| | - Cho-Rok Jung
- Stem Cell Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
- Department of Functional Genomics
| | - Janghwan Kim
- Stem Cell Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
- Department of Functional Genomics
| | - Mi-Young Son
- Stem Cell Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
- Department of Functional Genomics
| |
Collapse
|
20
|
Chahal HS, Wu W, Ransohoff KJ, Yang L, Hedlin H, Desai M, Lin Y, Dai HJ, Qureshi AA, Li WQ, Kraft P, Hinds DA, Tang JY, Han J, Sarin KY. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma. Nat Commun 2016; 7:12510. [PMID: 27539887 PMCID: PMC4992160 DOI: 10.1038/ncomms12510] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common cancer worldwide with an annual incidence of 2.8 million cases in the United States alone. Previous studies have demonstrated an association between 21 distinct genetic loci and BCC risk. Here, we report the results of a two-stage genome-wide association study of BCC, totalling 17,187 cases and 287,054 controls. We confirm 17 previously reported loci and identify 14 new susceptibility loci reaching genome-wide significance (P<5 × 10(-8), logistic regression). These newly associated SNPs lie within predicted keratinocyte regulatory elements and in expression quantitative trait loci; furthermore, we identify candidate genes and non-coding RNAs involved in telomere maintenance, immune regulation and tumour progression, providing deeper insight into the pathogenesis of BCC.
Collapse
Affiliation(s)
- Harvind S. Chahal
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wenting Wu
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| | - Katherine J. Ransohoff
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lingyao Yang
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Haley Hedlin
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Manisha Desai
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yuan Lin
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| | - Hong-Ji Dai
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, National Clinical Research Center for Cancer, Tianjin & Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Abrar A. Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02903, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02903, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | | | - Jean Y. Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, National Clinical Research Center for Cancer, Tianjin & Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Kavita Y. Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|