1
|
Chen J, Tsai YH, Linden AK, Kessler JA, Peng CY. YAP and TAZ differentially regulate postnatal cortical progenitor proliferation and astrocyte differentiation. J Cell Sci 2024; 137:jcs261516. [PMID: 38639242 DOI: 10.1242/jcs.261516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of β1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.
Collapse
Affiliation(s)
- Jessie Chen
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anne K Linden
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A Kessler
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Hong J, Kirkland JM, Acheta J, Marziali LN, Beck B, Jeanette H, Bhatia U, Davis G, Herron J, Roué C, Abi-Ghanem C, Feltri ML, Zuloaga K, Bechler ME, Poitelon Y, Belin S. YAP and TAZ regulate remyelination in the central nervous system. Glia 2024; 72:156-166. [PMID: 37724047 PMCID: PMC10659087 DOI: 10.1002/glia.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/20/2023]
Abstract
Myelinating cells are sensitive to mechanical stimuli from their extracellular matrix. Ablation of YAP and TAZ mechanotransducers in Schwann cells abolishes the axon-Schwann cell recognition, myelination, and remyelination in the peripheral nervous system. It was unknown if YAP and TAZ are also required for myelination and remyelination in the central nervous system. Here we define the importance of oligodendrocyte (OL) YAP and TAZ in vivo, by specific deletion in oligodendroglial cells in adult OLs during myelin repair. Blocking YAP and TAZ expression in OL lineage cells did not affect animal viability or any major defects on OL maturation and myelination. However, using a mouse model of demyelination/remyelination, we demonstrate that YAP and TAZ modulate the capacity of OLs to remyelinate axons, particularly during the early stage of the repair process, when OL proliferation is most important. These results indicate that YAP and TAZ signaling is necessary for effective remyelination of the mouse brain.
Collapse
Affiliation(s)
- Jiayue Hong
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Jules M Kirkland
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Jenica Acheta
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Leandro N Marziali
- Institute for Myelin and Glia Exploration, Dept. Biochemistry, University at Buffalo, Buffalo, NY, 14203, USA
| | - Brianna Beck
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Haley Jeanette
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Urja Bhatia
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Grace Davis
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Jacob Herron
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Clémence Roué
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Charly Abi-Ghanem
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Dept. Biochemistry, University at Buffalo, Buffalo, NY, 14203, USA
- Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kristen Zuloaga
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Marie E Bechler
- Department of Cell and Developmental Biology, and Department of Neuroscience and Physiology State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Yannick Poitelon
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| | - Sophie Belin
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, 12208, USA
| |
Collapse
|
3
|
Bhattacharya S, Mukherjee A, Pisano S, Dimri S, Knaane E, Altshuler A, Nasser W, Dey S, Shi L, Mizrahi I, Blum N, Jokel O, Amitai-Lange A, Kaganovsky A, Mimouni M, Socea S, Midlij M, Tiosano B, Hasson P, Feral C, Wolfenson H, Shalom-Feuerstein R. The biophysical property of the limbal niche maintains stemness through YAP. Cell Death Differ 2023:10.1038/s41418-023-01156-7. [PMID: 37095157 DOI: 10.1038/s41418-023-01156-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
The cell fate decisions of stem cells (SCs) largely depend on signals from their microenvironment (niche). However, very little is known about how biochemical niche cues control cell behavior in vivo. To address this question, we focused on the corneal epithelial SC model in which the SC niche, known as the limbus, is spatially segregated from the differentiation compartment. We report that the unique biomechanical property of the limbus supports the nuclear localization and function of Yes-associated protein (YAP), a putative mediator of the mechanotransduction pathway. Perturbation of tissue stiffness or YAP activity affects SC function as well as tissue integrity under homeostasis and significantly inhibited the regeneration of the SC population following SC depletion. In vitro experiments revealed that substrates with the rigidity of the corneal differentiation compartment inhibit nuclear YAP localization and induce differentiation, a mechanism that is mediated by the TGFβ-SMAD2/3 pathway. Taken together, these results indicate that SC sense biomechanical niche signals and that manipulation of mechano-sensory machinery or its downstream biochemical output may bear fruits in SC expansion for regenerative therapy.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Abhishek Mukherjee
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sabrina Pisano
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Eman Knaane
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sunanda Dey
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Lidan Shi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ido Mizrahi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Noam Blum
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ophir Jokel
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Kaganovsky
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Sergiu Socea
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Mohamad Midlij
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Chloe Feral
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Haguy Wolfenson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| |
Collapse
|
4
|
Terry BK, Kim S. The Role of Hippo-YAP/TAZ Signaling in Brain Development. Dev Dyn 2022; 251:1644-1665. [PMID: 35651313 DOI: 10.1002/dvdy.504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
In order for our complex nervous system to develop normally, both precise spatial and temporal regulation of a number of different signaling pathways is critical. During both early embryogenesis and in organ development, one pathway that has been repeatedly implicated is the Hippo-YAP/TAZ signaling pathway. The paralogs YAP and TAZ are transcriptional co-activators that play an important role in cell proliferation, cell differentiation, and organ growth. Regulation of these proteins by the Hippo kinase cascade is therefore important for normal development. In this article, we review the growing field of research surrounding the role of Hippo-YAP/TAZ signaling in normal and atypical brain development. Starting from the development of the neural tube to the development and refinement of the cerebral cortex, cerebellum, and ventricular system, we address the typical role of these transcriptional co-activators, the functional consequences that manipulation of YAP/TAZ and their upstream regulators have on brain development, and where further research may be of benefit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bethany K Terry
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA.,Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
5
|
Cell–Cell Contact Mediates Gene Expression and Fate Choice of Human Neural Stem/Progenitor Cells. Cells 2022; 11:cells11111741. [PMID: 35681435 PMCID: PMC9179342 DOI: 10.3390/cells11111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Transplantation of Neural Stem/Progenitor Cells (NPCs) is a promising regenerative strategy to promote neural repair following injury and degeneration because of the ability of these cells to proliferate, migrate, and integrate with the host tissue. Precise in vitro control of NPC proliferation without compromising multipotency and differentiation ability is critical in stem cell maintenance. This idea was highlighted in recent clinical trials, where discrepancies in NPC culturing protocols produced inconsistent therapeutic benefits. Of note, cell density plays an important role in regulating the survival, proliferation, differentiation, and fate choice of stem cells. To determine the extent of variability produced by inconsistent culturing densities, the present study cultured human-induced pluripotent NPCs (hiPSC-NPCs) at either a low or high plating density. hiPSC-NPCs were then isolated for transcriptomic analysis or differentiation in vitro. Following sequencing analysis, genes involved in cell–cell contact-mediated pathways, including Hippo-signaling, NOTCH, and WNT were differentially expressed. Modulation of these pathways was highly associated with the regulation of pro-neuronal transcription factors, which were also upregulated in response to higher-density hiPSC-NPC culture. Moreover, higher plating density translated into a greater neuronal and less astrocytic differentiation in vitro. This study highlights the importance of precisely controlling culture conditions during the development of NPC transplantation therapies.
Collapse
|
6
|
Terry BK, Park R, Cho SH, Crino PB, Kim S. Abnormal activation of Yap/Taz contributes to the pathogenesis of tuberous sclerosis complex. Hum Mol Genet 2022; 31:1979-1996. [PMID: 34999833 PMCID: PMC9239747 DOI: 10.1093/hmg/ddab374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
The multi-systemic genetic disorder tuberous sclerosis complex (TSC) impacts multiple neurodevelopmental processes including neuronal morphogenesis, neuronal migration, myelination and gliogenesis. These alterations contribute to the development of cerebral cortex abnormalities and malformations. Although TSC is caused by mTORC1 hyperactivation, cognitive and behavioral impairments are not improved through mTORC1 targeting, making the study of the downstream effectors of this complex important for understanding the mechanisms underlying TSC. As mTORC1 has been shown to promote the activity of the transcriptional co-activator Yap, we hypothesized that altered Yap/Taz signaling contributes to the pathogenesis of TSC. We first observed that the levels of Yap/Taz are increased in human cortical tuber samples and in embryonic cortices of Tsc2 conditional knockout (cKO) mice. Next, to determine how abnormal upregulation of Yap/Taz impacts the neuropathology of TSC, we deleted Yap/Taz in Tsc2 cKO mice. Importantly, Yap/Taz/Tsc2 triple conditional knockout (tcKO) animals show reduced cortical thickness and cortical neuron cell size, despite the persistence of high mTORC1 activity, suggesting that Yap/Taz play a downstream role in cytomegaly. Furthermore, Yap/Taz/Tsc2 tcKO significantly restored cortical and hippocampal lamination defects and reduced hippocampal heterotopia formation. Finally, the loss of Yap/Taz increased the distribution of myelin basic protein in Tsc2 cKO animals, consistent with an improvement in myelination. Overall, our results indicate that targeting Yap/Taz lessens the severity of neuropathology in a TSC animal model. This study is the first to implicate Yap/Taz as contributors to cortical pathogenesis in TSC and therefore as potential novel targets in the treatment of this disorder.
Collapse
Affiliation(s)
- Bethany K Terry
- Department of Neural Sciences, Lewis Katz School of Medicine, Shriners Hospitals Pediatrics Research Center, Temple University, Philadelphia, PA 19140, USA,Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raehee Park
- Department of Neural Sciences, Lewis Katz School of Medicine, Shriners Hospitals Pediatrics Research Center, Temple University, Philadelphia, PA 19140, USA
| | - Seo-Hee Cho
- Department of Medicine, Sidney Kimmel Medical College, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Seonhee Kim
- To whom correspondence should be addressed. Tel: 215-926-9360; Fax: 215-926-9325;
| |
Collapse
|
7
|
Niari SA, Rahbarghazi R, Geranmayeh MH, Karimipour M. Biomaterials patterning regulates neural stem cells fate and behavior: The interface of biology and material science. J Biomed Mater Res A 2021; 110:725-737. [PMID: 34751503 DOI: 10.1002/jbm.a.37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022]
Abstract
The combination of nanotechnology and stem cell biology is one of the most promising advances in the field of regenerative medicine. This novel combination has widely been utilized in vitro settings in an attempt to develop efficient therapeutic strategies to overcome the limited capacity of the central nervous system (CNS) in replacing degenerating neural cells with functionally normal cells after the onset of acute and chronic neurological disorders. Importantly, biomaterials, not only, enhance the endogenous CNS neurogenesis and plasticity, but also, could provide a desirable supportive microenvironment to harness the full potential of the in vitro expanded neural stem cells (NSCs) for regenerative purposes. Here, first, we discuss how the physical and biochemical properties of biomaterials, such as their stiffness and elasticity, could influence the behavior of NSCs. Then, since the NSCs niche or microenvironment is of fundamental importance in controlling the dynamic destiny of NSCs such as their quiescent and proliferative states, topographical effects of surface diversity in biomaterials, that is, the micro-and nano-patterned surfaces will be discussed in detail. Finally, the influence of biomaterials as artificial microenvironments on the behavior of NSCs through the specific mechanotransduction signaling pathway mediated by focal adhesion formation will be reviewed.
Collapse
Affiliation(s)
- Shabnam Asghari Niari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Zhang M, Tian Y, Zhang S, Yan H, Ge W, Han B, Yan Z, Cheng S, Shen W. The proliferation role of LH on porcine primordial germ cell-like cells (pPGCLCs) through ceRNA network construction. Clin Transl Med 2021; 11:e560. [PMID: 34709759 PMCID: PMC8516341 DOI: 10.1002/ctm2.560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The transdifferentiation of skin-derived stem cells (SDSCs) into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells research in recent years. This technology provides a new theoretical basis for the treatment of human infertility. However, the transdifferentiation efficiency of SDSCs to PGCLCs is very low, and scientists are still exploring ways to improve this efficiency or promote the proliferation of PGCLCs. This study aims to investigate the molecular mechanism of luteinising hormone (LH) to enhance porcine PGCLCs (pPGCLCs) proliferation. RESULTS In this study, we dissected the proliferation regulatory network of pPGCLCs by whole transcriptome sequencing, and the results showed that the pituitary-secreted reproductive hormone LH significantly promoted the proliferation of pPGCLCs. We combined whole transcriptome sequencing and related validation experiments to explore the mechanism of LH on the proliferation of pPGCLCs, and found that LH could affect the expression of Hippo signalling pathway-related mRNAs, miRNAs and lncRNAs in pPGCLCs. CONCLUSIONS For the first time, we found that LH promotes pPGCLCs proliferation through the competing endogenous RNA (ceRNA) regulatory networks and Hippo signalling pathway. This finding may help to elucidate the molecular mechanism by which LH promotes pPGCLCs proliferation.
Collapse
Affiliation(s)
- Ming‐Yu Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Shu‐Er Zhang
- Animal Husbandry General Station of Shandong ProvinceJinanChina
| | - Hong‐Chen Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Bao‐Quan Han
- Urology DepartmentPeking University Shenzhen HospitalShenzhenChina
| | - Zi‐Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Shun‐Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
9
|
Engel-Pizcueta C, Pujades C. Interplay Between Notch and YAP/TAZ Pathways in the Regulation of Cell Fate During Embryo Development. Front Cell Dev Biol 2021; 9:711531. [PMID: 34490262 PMCID: PMC8417249 DOI: 10.3389/fcell.2021.711531] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cells in growing tissues receive both biochemical and physical cues from their microenvironment. Growing evidence has shown that mechanical signals are fundamental regulators of cell behavior. However, how physical properties of the microenvironment are transduced into critical cell behaviors, such as proliferation, progenitor maintenance, or differentiation during development, is still poorly understood. The transcriptional co-activators YAP/TAZ shuttle between the cytoplasm and the nucleus in response to multiple inputs and have emerged as important regulators of tissue growth and regeneration. YAP/TAZ sense and transduce physical cues, such as those from the extracellular matrix or the actomyosin cytoskeleton, to regulate gene expression, thus allowing them to function as gatekeepers of progenitor behavior in several developmental contexts. The Notch pathway is a key signaling pathway that controls binary cell fate decisions through cell-cell communication in a context-dependent manner. Recent reports now suggest that the crosstalk between these two pathways is critical for maintaining the balance between progenitor maintenance and cell differentiation in different tissues. How this crosstalk integrates with morphogenesis and changes in tissue architecture during development is still an open question. Here, we discuss how progenitor cell proliferation, specification, and differentiation are coordinated with morphogenesis to construct a functional organ. We will pay special attention to the interplay between YAP/TAZ and Notch signaling pathways in determining cell fate decisions and discuss whether this represents a general mechanism of regulating cell fate during development. We will focus on research carried out in vertebrate embryos that demonstrate the important roles of mechanical cues in stem cell biology and discuss future challenges.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
10
|
Currey L, Thor S, Piper M. TEAD family transcription factors in development and disease. Development 2021; 148:269158. [PMID: 34128986 DOI: 10.1242/dev.196675] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The balance between stem cell potency and lineage specification entails the integration of both extrinsic and intrinsic cues, which ultimately influence gene expression through the activity of transcription factors. One example of this is provided by the Hippo signalling pathway, which plays a central role in regulating organ size during development. Hippo pathway activity is mediated by the transcriptional co-factors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which interact with TEA domain (TEAD) proteins to regulate gene expression. Although the roles of YAP and TAZ have been intensively studied, the roles played by TEAD proteins are less well understood. Recent studies have begun to address this, revealing that TEADs regulate the balance between progenitor self-renewal and differentiation throughout various stages of development. Furthermore, it is becoming apparent that TEAD proteins interact with other co-factors that influence stem cell biology. This Primer provides an overview of the role of TEAD proteins during development, focusing on their role in Hippo signalling as well as within other developmental, homeostatic and disease contexts.
Collapse
Affiliation(s)
- Laura Currey
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Antón IM, Wandosell F. WIP, YAP/TAZ and Actin Connections Orchestrate Development and Transformation in the Central Nervous System. Front Cell Dev Biol 2021; 9:673986. [PMID: 34195190 PMCID: PMC8237755 DOI: 10.3389/fcell.2021.673986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are transcription co-regulators that make up the terminal components of the Hippo signaling pathway, which plays a role in organ size control and derived tissue homeostasis through regulation of the proliferation, differentiation and apoptosis of a wide variety of differentiated and stem cells. Hippo/YAP signaling contributes to normal development of the nervous system, as it participates in self-renewal of neural stem cells, proliferation of neural progenitor cells and differentiation, activation and myelination of glial cells. Not surprisingly, alterations in this pathway underlie the development of severe neurological diseases. In glioblastomas, YAP and TAZ levels directly correlate with the amount of the actin-binding molecule WIP (WASP interacting protein), which regulates stemness and invasiveness. In neurons, WIP modulates cytoskeleton dynamics through actin polymerization/depolymerization and acts as a negative regulator of neuritogenesis, dendrite branching and dendritic spine formation. Our working hypothesis is that WIP regulates the YAP/TAZ pools using a Hippo-independent pathway. Thus, in this review we will present some of the data that links WIP, YAP and TAZ, with a focus on their function in cells from the central and peripheral nervous systems. It is hoped that a better understanding of the mechanisms involved in brain and nervous development and the pathologies that arise due to their alteration will reveal novel therapeutic targets for neurologic diseases.
Collapse
Affiliation(s)
- Inés M Antón
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Neuropatología Molecular, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
12
|
Lavrenyuk K, Conway D, Dahl KN. Imaging methods in mechanosensing: a historical perspective and visions for the future. Mol Biol Cell 2021; 32:842-854. [PMID: 33788578 PMCID: PMC8108522 DOI: 10.1091/mbc.e20-10-0671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the past three decades, as mechanobiology has become a distinct area of study, researchers have developed novel imaging tools to discover the pathways of biomechanical signaling. Early work with substrate engineering and particle tracking demonstrated the importance of cell–extracellular matrix interactions on the cell cycle as well as the mechanical flux of the intracellular environment. Most recently, tension sensor approaches allowed directly measuring tension in cell–cell and cell–substrate interactions. We retrospectively analyze how these various optical techniques progressed the field and suggest our vision forward for a unified theory of cell mechanics, mapping cellular mechanosensing, and novel biomedical applications for mechanobiology.
Collapse
Affiliation(s)
- Kirill Lavrenyuk
- Carnegie Mellon University, College of Engineering, Pittsburgh, PA 15213
| | - Daniel Conway
- Virginia Commonwealth University, College of Engineering, Richmond, VA 23284
| | - Kris Noel Dahl
- Carnegie Mellon University, College of Engineering, Pittsburgh, PA 15213
| |
Collapse
|
13
|
YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming. Metabolites 2021; 11:metabo11030154. [PMID: 33800464 PMCID: PMC7999074 DOI: 10.3390/metabo11030154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cell reprogramming can either refer to a direct conversion of a specialized cell into another or to a reversal of a somatic cell into an induced pluripotent stem cell (iPSC). It implies a peculiar modification of the epigenetic asset and gene regulatory networks needed for a new cell, to better fit the new phenotype of the incoming cell type. Cellular reprogramming also implies a metabolic rearrangement, similar to that observed upon tumorigenesis, with a transition from oxidative phosphorylation to aerobic glycolysis. The induction of a reprogramming process requires a nexus of signaling pathways, mixing a range of local and systemic information, and accumulating evidence points to the crucial role exerted by the Hippo pathway components Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ). In this review, we will first provide a synopsis of the Hippo pathway and its function during reprogramming and tissue regeneration, then we introduce the latest knowledge on the interplay between YAP/TAZ and metabolism and, finally, we discuss the possible role of YAP/TAZ in the orchestration of the metabolic switch upon cellular reprogramming.
Collapse
|
14
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Sun R, Wang Z, Claus Henn B, Su L, Lu Q, Lin X, Wright RO, Bellinger DC, Kile M, Mazumdar M, Tellez-Rojo MM, Schnaas L, Christiani DC. Identification of novel loci associated with infant cognitive ability. Mol Psychiatry 2020; 25:3010-3019. [PMID: 30120420 PMCID: PMC6378130 DOI: 10.1038/s41380-018-0205-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 12/02/2022]
Abstract
It is believed that genetic factors play a large role in the development of many cognitive and neurological processes; however, epidemiological evidence for the genetic basis of childhood neurodevelopment is very limited. Identification of the genetic polymorphisms associated with early-stage neurodevelopment will help elucidate biological mechanisms involved in neuro-behavior and provide a better understanding of the developing brain. To search for such variants, we performed a genome-wide association study (GWAS) for infant mental and motor ability at two years of age with mothers and children recruited from cohorts in Bangladesh and Mexico. Infant ability was assessed using mental and motor composite scores calculated with country-specific versions of the Bayley Scales of Infant Development. A missense variant (rs1055153) located in the gene WWTR1 reached genome-wide significance in association with mental composite score (meta-analysis effect size of minor allele βmeta = -6.04; 95% CI: -8.13 to -3.94; P = 1.56×10-8). Infants carrying the minor allele reported substantially lower cognitive scores in both cohorts, and this variant is predicted to be in the top 0.3% of most deleterious substitutions in the human genome. Fine mapping and region-based association testing provided additional suggestive evidence that both WWTR1 and a second gene, LRP1B, were associated with infant cognitive ability. Comparisons with recently conducted GWAS in intelligence and educational attainment indicate that our phenotypes do not possess a high genetic correlation with either adolescent or adult cognitive traits, suggesting that infant neurological assessments should be treated as an independent outcome of interest. Additional functional studies and replication efforts in other cohorts may help uncover new biological pathways and genetic architectures that are crucial to the developing brain.
Collapse
Affiliation(s)
- Ryan Sun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Robert O Wright
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - David C Bellinger
- Department of Psychiatry, Harvard Medical School and Boston Children's Hospital, Boston, MA, 02115, USA
| | - Molly Kile
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Martha Maria Tellez-Rojo
- Center of Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico
| | - Lourdes Schnaas
- Center of Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, 62100, Mexico
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Kothapalli C, Mahajan G, Farrell K. Substrate stiffness induced mechanotransduction regulates temporal evolution of human fetal neural progenitor cell phenotype, differentiation, and biomechanics. Biomater Sci 2020; 8:5452-5464. [PMID: 32996962 PMCID: PMC8500671 DOI: 10.1039/d0bm01349h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the mechanotransduction-induced fate of adult neural stem/progenitor cells (NPCs) is relatively known, how substrate stiffness regulates the temporal evolution of the biomechanics and phenotype of developmentally relevant human fetal NPCs (hNPCs) and their mechanosensing pathways remain unknown. Here, we primed hNPCs on tissue-culture plastic (TCPS) for 3 days in non-differentiating medium before transferring to TCPS or Geltrex™ gels (<1 kPa) for 9-day cultures post-priming, and regularly assessed stemness, differentiation, and cell mechanics (Young's modulus, tether forces, apparent membrane tension, tether radius). hNPCs maintained stemness on TCPS while those on gels co-expressed stemness and neural/glial markers, 3-days post-priming. Biomechanical characteristics remained unchanged in cells on TCPS but were significantly altered in those on gels, 3-days post-priming. However, 9-days post-priming, hNPCs on gels differentiated, with significantly more neurons on softer gels and glia on stiffer gels, while those on TCPS maintained their native stemness. Withdrawal of bFGF and EGF in 9-day cultures induced hNPC differentiation and influenced cell mechanics. Cells on stiffer gels had higher biomechanical properties than those on softer gels throughout the culture period, with NPC-like > neural > glia subtypes. Higher stress fiber density in cells on stiffer gels explains their significantly different biomechanical properties on these gels. Blebbistatin treatment caused cell polarization, lowered elastic modulus, and enhanced tether forces, implicating the role of non-muscle myosin-II in hNPC mechanosensing, adaptability, and thereby mechanics. Such substrate-mediated temporal evolution of hNPCs guide design of smart scaffolds to investigate morphogenesis, disease modeling, stem cell biology, and biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Chandrasekhar Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA.
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA.
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Han D, Lee SM, Kwon M, Noh H, Lee JH, Yoon Y, Cho JY, Yoon K. YAP Enhances FGF2-Dependent Neural Stem Cell Proliferation by Induction of FGF Receptor Expression. Stem Cells Dev 2020; 29:1240-1246. [PMID: 32669047 DOI: 10.1089/scd.2019.0281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Hippo signaling pathway regulates cell proliferation and organ growth, and its activation is mainly reflected by the phosphorylation levels of Yes-associated protein (YAP). In this study, we show that YAP facilitates embryonic neural stem cell proliferation by elevating their responsiveness to fibroblast growth factor 2 (FGF2), one of the major growth factors for neural stem cells, in vivo as well as in vitro. Western blot and quantitative real-time PCR analyses revealed that expression of the FGF receptors (FGFRs) FGFR1 to FGFR4 were greatly increased by YAP expression upon FGF2 treatment, followed by upregulation of the mitogen-activated protein kinase and protein kinase B signaling pathways. Furthermore, as assessed by quantitative real-time PCR analyses, YAP-induced FGFR expression was found to be TEA domain transcription factor (TEAD)-independent, and transcriptional coactivator with PDZ-binding motif, the other homolog of Yorki in the Drosophila Hippo signaling pathway, was found to possess similar activity to YAP. Finally, adjustment of FGFR signaling activity in the YAP-expressing cells to control levels efficiently offset the cell proliferative effects of YAP, suggesting that the increased proliferation of YAP-expressing neural stem cells was mainly attributable to enhanced FGFR signaling. Our data indicate that YAP plays an important role in neural stem cell regulation by elevating FGFR expression, subsequently leading to enhanced cell proliferation.
Collapse
Affiliation(s)
- Dasol Han
- College of Biotechnology and Bioengineering, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun Min Lee
- College of Biotechnology and Bioengineering, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mookwang Kwon
- College of Biotechnology and Bioengineering, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hogyun Noh
- College of Biotechnology and Bioengineering, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ju Hyun Lee
- College of Biotechnology and Bioengineering, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youngik Yoon
- College of Biotechnology and Bioengineering, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- College of Biotechnology and Bioengineering, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Keejung Yoon
- College of Biotechnology and Bioengineering, Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
18
|
Huang L, Li S, Dai Q, Zhang A, Yu Q, Du W, Zhao P, Mo Y, Xu K, Chen S, Wang J. Astrocytic Yes-associated protein attenuates cerebral ischemia-induced brain injury by regulating signal transducer and activator of transcription 3 signaling. Exp Neurol 2020; 333:113431. [PMID: 32750359 DOI: 10.1016/j.expneurol.2020.113431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Astrocytic Yes-associated protein (YAP) has been implicated in astrocytic proliferation and differentiation in the developing neocortex. However, the role of astrocytic YAP in diseases of the nervous system remains poorly understood. Here, we hypothesized that astrocytic YAP exerted a neuroprotective effect against cerebral ischemic injury in rats by regulating signal transducer and activator of transcription 3 (STAT3) signaling. In this study, we investigated whether the expression of nuclear YAP in the astrocytes of rats increased significantly after middle cerebral artery occlusion (MCAO) and its effect on cerebral ischemic injury. We used XMU-MP-1 to trigger localization of YAP into the nucleus and found that XMU-MP-1 treatment decreased ischemia/stroke-induced brain injury including reduced neuronal death and reactive astrogliosis, and extenuated release of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Mechanically, XMU-MP-1 treatment suppressed the expression of phospho-STAT3 (P-STAT3). We established an in-vitro oxygen-glucose deprivation/reperfusion (OGD/R) model to simulate an ischemic condition and further explore the function of astrocytic YAP. We found that nuclear translocation of astrocytic YAP in rats could improve cell vitality, decrease the release of inflammatory cytokines and reduce the expression of P-STAT3 in vitro. In contrast, we also found that inhibition of YAP by verteporfin further aggravated the injury induced by OGD/R via STAT3 signaling. In summary, our results showed that nuclear localization of astrocytic YAP exerted a neuroprotective effect after cerebral ischemic injury in rats via inhibition of the STAT3 signaling.
Collapse
Affiliation(s)
- Luping Huang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Shan Li
- Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Qinxue Dai
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Anqi Zhang
- Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Qimin Yu
- Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Wenwen Du
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Peiqi Zhao
- Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Kaiwei Xu
- Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Sijia Chen
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China.
| | - Junlu Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China.
| |
Collapse
|
19
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
20
|
Ouyang T, Meng W, Li M, Hong T, Zhang N. Recent Advances of the Hippo/YAP Signaling Pathway in Brain Development and Glioma. Cell Mol Neurobiol 2020; 40:495-510. [PMID: 31768921 DOI: 10.1007/s10571-019-00762-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is highly conserved from Drosophila melanogaster to mammals and plays a crucial role in organ size control, tissue regeneration, and tumor suppression. The Yes-associated protein (YAP) is an important transcriptional co-activator that is negatively regulated by the Hippo signaling pathway. The Hippo signaling pathway is also regulated by various upstream regulators, such as cell polarity, adhesion proteins, and other signaling pathways (the Wnt/β-catenin, Notch, and MAPK pathways). Recently, accumulated evidence suggests that the Hippo/YAP signaling pathway plays important roles in central nervous system development and brain tumor, including glioma. In this review, we summarize the results of recent studies on the physiological effect of the Hippo/YAP signaling pathway in neural stem cells, neural progenitor cells, and glial cells. In particular, we also focus on the expression of MST1/2, LATS1/2, and the downstream effector YAP, in glioma, and offer a review of the latest research of the Hippo/YAP signaling pathway in glioma pathogenesis. Finally, we also present future research directions and potential therapeutic strategies for targeting the Hippo/YAP signaling in glioma.
Collapse
Affiliation(s)
- Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, No.17, Yongwai Street, Nanchang, 336000, China.
| |
Collapse
|
21
|
Tead transcription factors differentially regulate cortical development. Sci Rep 2020; 10:4625. [PMID: 32170161 PMCID: PMC7070074 DOI: 10.1038/s41598-020-61490-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Neural stem cells (NSCs) generate neurons of the cerebral cortex with distinct morphologies and functions. How specific neuron production, differentiation and migration are orchestrated is unclear. Hippo signaling regulates gene expression through Tead transcription factors (TFs). We show that Hippo transcriptional coactivators Yap1/Taz and the Teads have distinct functions during cortical development. Yap1/Taz promote NSC maintenance and Satb2+ neuron production at the expense of Tbr1+ neuron generation. However, Teads have moderate effects on NSC maintenance and do not affect Satb2+ neuron differentiation. Conversely, whereas Tead2 blocks Tbr1+ neuron formation, Tead1 and Tead3 promote this early fate. In addition, we found that Hippo effectors regulate neuronal migration to the cortical plate (CP) in a reciprocal fashion, that ApoE, Dab2 and Cyr61 are Tead targets, and these contribute to neuronal fate determination and migration. Our results indicate that multifaceted Hippo signaling is pivotal in different aspects of cortical development.
Collapse
|
22
|
Cheng J, Wang S, Dong Y, Yuan Z. The Role and Regulatory Mechanism of Hippo Signaling Components in the Neuronal System. Front Immunol 2020; 11:281. [PMID: 32140159 PMCID: PMC7042394 DOI: 10.3389/fimmu.2020.00281] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
The Hippo signaling pathway, an evolutionarily conserved protein kinase cascade, plays a critical role in controlling organ size, cancer development, and tissue regeneration. Recently, mounting evidence has suggested that Hippo signaling also has an important role in regulating immunity, including innate and adaptive immune activation. In the neuronal system, Our laboratory results, together with those from other studies, demonstrate that the Hippo signaling pathway is involved in neuroinflammation, neuronal cell differentiation, and neuronal death. In the present review, we summarize the recent findings pertaining to the function and regulatory mechanism of Hippo signaling components in the neuronal system, implicating the potential of Hippo signaling as a therapeutic target for the treatment of neuronal system diseases.
Collapse
Affiliation(s)
- Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shukun Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Abstract
The Hippo pathway and its downstream effectors, the transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), regulate organ growth and cell plasticity during animal development and regeneration. Remarkably, experimental activation of YAP/TAZ in the mouse can promote regeneration in organs with poor or compromised regenerative capacity, such as the adult heart and the liver and intestine of old or diseased mice. However, therapeutic YAP/TAZ activation may cause serious side effects. Most notably, YAP/TAZ are hyperactivated in human cancers, and prolonged activation of YAP/TAZ triggers cancer development in mice. Thus, can the power of YAP/TAZ to promote regeneration be harnessed in a safe way? Here, we review the role of Hippo signalling in animal regeneration, examine the promises and risks of YAP/TAZ activation for regenerative medicine and discuss strategies to activate YAP/TAZ for regenerative therapy while minimizing adverse side effects.
Collapse
|
24
|
Ma W, Suh WH. Cost-Effective Cosmetic-Grade Hyaluronan Hydrogels for ReNcell VM Human Neural Stem Cell Culture. Biomolecules 2019; 9:E515. [PMID: 31547190 PMCID: PMC6843608 DOI: 10.3390/biom9100515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) is a polysaccharide polymer frequently used as a starting material to fabricate hydrogels, especially for recapitulating the brain's extracellular matrix (ECM) for in vitro neural stem cell (NSC) cultures. Here, we report the successful synthesis of a methacrylated HA (MeHA) polymer from an inexpensive cosmetic-grade hyaluronan starting material. The MeHA polymers synthesized from cosmetic-grade HA yielded similar chemical purity to those from pharmaceutical/research-grade HA reported in the literature. Crosslinked MeHA (x-MeHA) hydrogels were formed using radical polymerization which resulted in mechanical properties matching previously reported mechanical property ranges for enhanced neuronal differentiation of NSCs. We assessed cellular adhesion, spreading, proliferation, and stiffness-dependent neuronal differentiation properties of ReNcell VM human neural stem cells (hNSCs) and compared our results to studies reported in the literature (that utilized non-human and human pluripotent cell-derived NSCs).
Collapse
Affiliation(s)
- Weili Ma
- Department of Bioengineering, College of Engineering, Temple University,1947 N. 12th St. Philadelphia, PA 19122, USA.
| | - Won Hyuk Suh
- Department of Bioengineering, College of Engineering, Temple University,1947 N. 12th St. Philadelphia, PA 19122, USA.
| |
Collapse
|
25
|
Zaltsman Y, Masuko S, Bensen JJ, Kiessling LL. Angiomotin Regulates YAP Localization during Neural Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports 2019; 12:869-877. [PMID: 31006631 PMCID: PMC6523060 DOI: 10.1016/j.stemcr.2019.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/02/2022] Open
Abstract
Leveraging the extraordinary potential of human pluripotent stem cells (hPSCs) requires an understanding of the mechanisms underlying cell-fate decisions. Substrate elasticity can induce differentiation by signaling through the transcriptional coactivator Yes-associated protein (YAP). Cells cultured on surfaces mimicking brain elasticity exclude YAP from their nuclei and differentiate to neurons. How YAP localization is controlled during neural differentiation has been unclear. We employed CRISPR/Cas9 to tag endogenous YAP in hPSCs and used this fusion protein to identify YAP's interaction partners. This engineered cell line revealed that neural differentiation promotes a change in YAP interactors, including a dramatic increase in angiomotin (AMOT) interaction with YAP. AMOT regulates YAP localization during differentiation. AMOT expression increases during neural differentiation and leads to YAP nuclear exclusion. Our findings that AMOT-dependent regulation of YAP helps direct hPSC fate provide insight into the molecular mechanisms by which the microenvironment can induce neural differentiation. Endogenous tagging reveals YAP interactors in hPSCs AMOT-YAP complex concentration increases during neural differentiation AMOT regulates YAP localization in hPSCs hPSC cytoskeleton influences YAP localization via AMOT
Collapse
Affiliation(s)
- Yefim Zaltsman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sayaka Masuko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Bensen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura L Kiessling
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
26
|
Madl CM, LeSavage BL, Dewi RE, Lampe KJ, Heilshorn SC. Matrix Remodeling Enhances the Differentiation Capacity of Neural Progenitor Cells in 3D Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801716. [PMID: 30828535 PMCID: PMC6382308 DOI: 10.1002/advs.201801716] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Indexed: 05/14/2023]
Abstract
Neural progenitor cells (NPCs) are a promising cell source to repair damaged nervous tissue. However, expansion of therapeutically relevant numbers of NPCs and their efficient differentiation into desired mature cell types remains a challenge. Material-based strategies, including culture within 3D hydrogels, have the potential to overcome these current limitations. An ideal material would enable both NPC expansion and subsequent differentiation within a single platform. It has recently been demonstrated that cell-mediated remodeling of 3D hydrogels is necessary to maintain the stem cell phenotype of NPCs during expansion, but the role of matrix remodeling on NPC differentiation and maturation remains unknown. By culturing NPCs within engineered protein hydrogels susceptible to degradation by NPC-secreted proteases, it is identified that a critical amount of remodeling is necessary to enable NPC differentiation, even in highly degradable gels. Chemical induction of differentiation after sufficient remodeling time results in differentiation into astrocytes and neurotransmitter-responsive neurons. Matrix remodeling modulates expression of the transcriptional co-activator Yes-associated protein, which drives expression of NPC stemness factors and maintains NPC differentiation capacity, in a cadherin-dependent manner. Thus, cell-remodelable hydrogels are an attractive platform to enable expansion of NPCs followed by differentiation of the cells into mature phenotypes for therapeutic use.
Collapse
Affiliation(s)
| | | | - Ruby E. Dewi
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Kyle J. Lampe
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleVA22904USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| |
Collapse
|
27
|
Gopinath M, Di Liddo R, Marotta F, Murugesan R, Banerjee A, Sriramulu S, Jothimani G, Subramaniam VD, Narasimhan S, Priya K S, Sun XF, Pathak S. Role of Hippo Pathway Effector Tafazzin Protein in Maintaining Stemness of Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSC). Int J Hematol Oncol Stem Cell Res 2018; 12:153-165. [PMID: 30233778 PMCID: PMC6141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/24/2017] [Indexed: 11/22/2022] Open
Abstract
Tafazzin (TAZ) protein has been upregulated in various types of human cancers, although the basis for elevation is uncertain, it has been made definite that the effect of mutation in the hippo pathway, particularly when it is switched off, considerably activates tafazzin transcriptionally and thus this results in tissue or tumor overgrowth. Recent perceptions into the activity of tafazzin, have ascribed to it, a role as stem cell factor in mouse mesenchymal and as well as in neural stem cells. Being a downstream molecule in Hippo signalling, phosphorylation or dephosphorylation of tafazzin gene regulates its transcriptional activity and the stemness of mesenchymal stem cells. Commonly, extracellular matrix controls the stem cell fate commitment and perhaps tafazzin controls stemness through altering the extra cellular matrix. Extracellular matrix is generally made up of prime proteoglycans and the fate stabilization of the resulting lineages is surveilled by engineering these glycans. Tafazzin degradation and addition of proteoglycans affect physical attributes of the extracellular matrix that drives cell differentiation into various lineages. Thus, tafazzin along with major glycans present in the extracellular matrix is involved in imparting stemness. However, there are incoherent molecular events, wherein both tafazzin and the extracellular matrix components, together either activate or inhibit differentiation of stem cells. This review discusses about the role of tafazzin oncoprotein as a stemness factor.
Collapse
Affiliation(s)
- Madhumala Gopinath
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Rosa Di Liddo
- Department of Pharmacology and Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano-Beijing, Italy-China, VCC Preventive Medical Promotion Foundation, Beijing, China
| | - Ramachandran Murugesan
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Antara Banerjee
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Sushmitha Sriramulu
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Ganesan Jothimani
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Vimala Devi Subramaniam
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Srinivasan Narasimhan
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Swarna Priya K
- Department of Gynecology and Pediatrics, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Xiao-Feng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Surajit Pathak
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| |
Collapse
|
28
|
Neural Progenitor Cells Undergoing Yap/Tead-Mediated Enhanced Self-Renewal Form Heterotopias More Easily in the Diencephalon than in the Telencephalon. Neurochem Res 2017; 43:180-189. [PMID: 28879493 PMCID: PMC7550386 DOI: 10.1007/s11064-017-2390-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 01/20/2023]
Abstract
Spatiotemporally ordered production of cells is essential for brain development. Normally, most undifferentiated neural progenitor cells (NPCs) face the apical (ventricular) surface of embryonic brain walls. Pathological detachment of NPCs from the apical surface and their invasion of outer neuronal territories, i.e., formation of NPC heterotopias, can disrupt the overall structure of the brain. Although NPC heterotopias have previously been observed in a variety of experimental contexts, the underlying mechanisms remain largely unknown. Yes-associated protein 1 (Yap1) and the TEA domain (Tead) proteins, which act downstream of Hippo signaling, enhance the stem-like characteristics of NPCs. Elevated expression of Yap1 or Tead in the neural tube (future spinal cord) induces massive NPC heterotopias, but Yap/Tead-induced expansion of NPCs in the developing brain has not been previously reported to produce NPC heterotopias. To determine whether NPC heterotopias occur in a regionally characteristic manner, we introduced the Yap1-S112A or Tead-VP16 into NPCs of the telencephalon and diencephalon, two neighboring but distinct forebrain regions, of embryonic day 10 mice by in utero electroporation, and compared NPC heterotopia formation. Although NPCs in both regions exhibited enhanced stem-like behaviors, heterotopias were larger and more frequent in the diencephalon than in the telencephalon. This result, the first example of Yap/Tead-induced NPC heterotopia in the forebrain, reveals that Yap/Tead-induced NPC heterotopia is not specific to the neural tube, and also suggests that this phenomenon depends on regional factors such as the three-dimensional geometry and assembly of these cells.
Collapse
|
29
|
Joshi S, Davidson G, Le Gras S, Watanabe S, Braun T, Mengus G, Davidson I. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo. PLoS Genet 2017; 13:e1006600. [PMID: 28178271 PMCID: PMC5323021 DOI: 10.1371/journal.pgen.1006600] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/23/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
The TEAD family of transcription factors (TEAD1-4) bind the MCAT element in the regulatory elements of both growth promoting and myogenic differentiation genes. Defining TEAD transcription factor function in myogenesis has proved elusive due to overlapping expression of family members and their functional redundancy. We show that silencing of either Tead1, Tead2 or Tead4 did not effect primary myoblast (PM) differentiation, but that their simultaneous knockdown strongly impaired differentiation. In contrast, Tead1 or Tead4 silencing impaired C2C12 differentiation showing their different contributions in PMs and C2C12 cells. Chromatin immunoprecipitation identified enhancers associated with myogenic genes bound by combinations of Tead4, Myod1 or Myog. Tead4 regulated distinct gene sets in C2C12 cells and PMs involving both activation of the myogenic program and repression of growth and signaling pathways. ChIP-seq from mature mouse muscle fibres in vivo identified a set of highly transcribed muscle cell-identity genes and sites bound by Tead1 and Tead4. Although inactivation of Tead4 in mature muscle fibres caused no obvious phenotype under normal conditions, notexin-induced muscle regeneration was delayed in Tead4 mutants suggesting an important role in myogenic differentiation in vivo. By combining knockdown in cell models in vitro with Tead4 inactivation in muscle in vivo, we provide the first comprehensive description of the specific and redundant roles of Tead factors in myogenic differentiation.
Collapse
Affiliation(s)
- Shilpy Joshi
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch, France
| | - Guillaume Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch, France
| | - Stéphanie Le Gras
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch, France
| | - Shuichi Watanabe
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse, Bad Nauheim, Germany
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, Illkirch, France
- * E-mail:
| |
Collapse
|
30
|
Byun SH, Kim J, Han D, Kwon M, Cho JY, Ng HX, Pleasure SJ, Yoon K. TRBP maintains mammalian embryonic neural stem cell properties by acting as a novel transcriptional coactivator of the Notch signaling pathway. Development 2017; 144:778-783. [PMID: 28174252 DOI: 10.1242/dev.139493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022]
Abstract
Transactivation response element RNA-binding protein (TRBP; TARBP2) is known to play important roles in human immunodeficiency virus (HIV) replication and microRNA biogenesis. However, recent studies implicate TRBP in a variety of biological processes as a mediator of cross-talk between signal transduction pathways. Here, we provide the first evidence that TRBP is required for efficient neurosphere formation and for the expression of neural stem cell markers and Notch target genes in primary neural progenitor cells in vitro Consistent with this, introduction of TRBP into the mouse embryonic brain in utero increased the fraction of cells expressing Sox2 in the ventricular zone. We also show that TRBP physically interacts with the Notch transcriptional coactivation complex through C promoter-binding factor 1 (CBF1; RBPJ) and strengthens the association between the Notch intracellular domain (NICD) and CBF1, resulting in increased NICD recruitment to the promoter region of a Notch target gene. Our data indicate that TRBP is a novel transcriptional coactivator of the Notch signaling pathway, playing an important role in neural stem cell regulation during mammalian brain development.
Collapse
Affiliation(s)
- Sung-Hyun Byun
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Juwan Kim
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Dasol Han
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Mookwang Kwon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hui Xuan Ng
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Samuel J Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Keejung Yoon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| |
Collapse
|
31
|
TAZ promotes cell growth and inhibits Celastrol-induced cell apoptosis. Biosci Rep 2016; 36:BSR20160135. [PMID: 27515420 PMCID: PMC5041157 DOI: 10.1042/bsr20160135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/11/2016] [Indexed: 02/05/2023] Open
Abstract
Hippo pathway is a highly conservative signalling pathway related to the development of organisms, which has been demonstrated to be strongly linked to the tumorigenesis and tumour progression. As the major downstream effector of Hippo pathway, yes-associated protein (YAP), is a transcriptional activator of target genes that are involved in cell proliferation and survival. As an oncogene, YAP can promote cell growth and inhibit cell apoptosis. Another major downstream effector of Hippo pathway, transcriptional co-activators with PDZ-binding motif (TAZ), is nearly 60% homologous with YAP. In the present study, we assume that TAZ probably has the similar function to YAP. To test this issue, we established an inducible and a stable expression system of TAZ in T-Rex-293 and HEK293 cells respectively. The results of cell growth curves, colony formation assay and tumour xenograft growth showed that overexpression of TAZ could promote cell growth in vitro and in vivo Meanwhile, we found that up-regulated expression of TAZ could partially restore Celastrol-induced cell apoptosis. Induced overexpression of TAZ could up-regulate its target genes including ankyrin repeat domain-containing protein (ANKRD), cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF), increase the expression of B-cell lymphoma-2 (Bcl-2), decrease the expression of Bcl-2 associated X protein (Bax) and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which may be the mechanism underlying anti-apoptosis of TAZ. All these findings indicated that TAZ acts as an oncogene that could be a key regulator of cell proliferation and apoptosis.
Collapse
|
32
|
Thompson R, Chan C. Signal transduction of the physical environment in the neural differentiation of stem cells. TECHNOLOGY 2016; 4:1-8. [PMID: 27785459 PMCID: PMC5077250 DOI: 10.1142/s2339547816400070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural differentiation is largely dependent on extracellular signals within the cell microenvironment. These extracellular signals are mainly in the form of soluble factors that activate intracellular signaling cascades that drive changes in the cell nucleus. However, it is becoming increasingly apparent that the physical microenvironment provides signals that can also influence lineage commitment and very low modulus surfaces has been repeatedly demonstrated to promote neurogenesis. The molecular mechanisms governing mechano-induced neural differentiation are still largely uncharacterized; however, a growing body of evidence indicates that physical stimuli can regulate known signaling cascades and transcription factors involved in neural differentiation. Understanding how the physical environment affects neural differentiation at the molecular level will enable research and design of materials that will eventually enhance neural stem cell (NSC) differentiation, homogeneity and specificity.
Collapse
Affiliation(s)
- Ryan Thompson
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA
| | - Christina Chan
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA; Department of Chemical Engineering and Materials Science, East Lansing, Michigan 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
33
|
Deel MD, Li JJ, Crose LES, Linardic CM. A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas. Front Oncol 2015; 5:190. [PMID: 26389076 PMCID: PMC4557106 DOI: 10.3389/fonc.2015.00190] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway is an evolutionarily conserved developmental network vital for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. The Hippo pathway has also been shown to have tumor suppressor properties. Hippo transduction involves a series of kinases and scaffolding proteins that are intricately connected to proteins in developmental cascades and in the tissue microenvironment. This network governs the downstream Hippo transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs, as well as other transcription factors responsible for cellular proliferation, self-renewal, differentiation, and survival. Surprisingly, there are few oncogenic mutations within the core components of the Hippo pathway. Instead, dysregulated Hippo signaling is a versatile accomplice to commonly mutated cancer pathways. For example, YAP and TAZ can be activated by oncogenic signaling from other pathways, or serve as co-activators for classical oncogenes. Emerging evidence suggests that Hippo signaling couples cell density and cytoskeletal structural changes to morphogenic signals and conveys a mesenchymal phenotype. While much of Hippo biology has been described in epithelial cell systems, it is clear that dysregulated Hippo signaling also contributes to malignancies of mesenchymal origin. This review will summarize the known molecular alterations within the Hippo pathway in sarcomas and highlight how several pharmacologic compounds have shown activity in modulating Hippo components, providing proof-of-principle that Hippo signaling may be harnessed for therapeutic application in sarcomas.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA
| | - Jenny J Li
- Duke University School of Medicine , Durham, NC , USA
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA ; Department of Pharmacology and Cancer Biology, Duke University School of Medicine , Durham, NC , USA
| |
Collapse
|