1
|
Kim BS, Kim JU, Lee JW, Ryu KM, Koh RH, So KH, Hwang NS. Comparative analysis of supercritical fluid-based and chemical-based decellularization techniques for nerve tissue regeneration. Biomater Sci 2024; 12:1847-1863. [PMID: 38411258 DOI: 10.1039/d3bm02072j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Axon regeneration and Schwann cell proliferation are critical processes in the repair and functional recovery of damaged neural tissues. Biomaterials can play a crucial role in facilitating cell proliferative processes that can significantly impact the target tissue repair. Chemical decellularization and supercritical fluid-based decellularization methods are similar approaches that eliminate DNA from native tissues for tissue-mimetic biomaterial production by using different solvents and procedures to achieve the final products. In this study, we conducted a comparative analysis of these two methods in the context of nerve regeneration and neuron cell differentiation efficiency. We evaluated the efficacy of each method in terms of biomaterial quality, preservation of extracellular matrix components, promotion of neuronal cell differentiation and nerve tissue repair ability in vivo. Our results indicate that while both methods produce high-quality biomaterials, supercritical fluid-based methods have several advantages over conventional chemical decellularization, including better preservation of extracellular matrix components and mechanical properties and superior promotion of cellular responses. We conclude that supercritical fluid-based methods show great promise for biomaterial production for nerve regeneration and neuron cell differentiation applications.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Data K, Kulus M, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Decellularization of Dense Regular Connective Tissue-Cellular and Molecular Modification with Applications in Regenerative Medicine. Cells 2023; 12:2293. [PMID: 37759515 PMCID: PMC10528602 DOI: 10.3390/cells12182293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiolgy Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
3
|
Kanta J, Zavadakova A, Sticova E, Dubsky M. Fibronectin in hyperglycaemia and its potential use in the treatment of diabetic foot ulcers: A review. Int Wound J 2022; 20:1750-1761. [PMID: 36537075 PMCID: PMC10088845 DOI: 10.1111/iwj.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein. Degradation prevails over fibronectin synthesis in the proteolytic inflammatory environment in the ulcers. Because of the lack of fibronectin in the wound bed, the assembly of the extracellular matrix and the deposition of the granulation tissue cannot be started. A number of methods have been designed that prevents fibronectin degradation, replace lacking fibronectin or support its formation in non-healing wounds in animal models of diabetes. The aim of this article is to review the metabolism of fibronectin in DFUs and to emphasise that it would be useful to pay more attention to fibronectin matrix assembly in the ulcers when laboratory methods are translated to clinical practice.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine Charles University Hradec Kralove Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine Charles University Pilsen Czech Republic
| | - Eva Sticova
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Michal Dubsky
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- First Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
4
|
Weng J, Chen B, Xie M, Wan X, Wang P, Zhou X, Zhou Z, Mei J, Wang L, Huang D, Wang Z, Wang Z, Chen C. Rabbit thyroid extracellular matrix as a 3D bioscaffold for thyroid bioengineering: a preliminary in vitro study. Biomed Eng Online 2021; 20:18. [PMID: 33563294 PMCID: PMC7871622 DOI: 10.1186/s12938-021-00856-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Advances in regenerative medicine technologies have been strongly proposed in the management of thyroid diseases. Mechanistically, the adoption of thyroid bioengineering requires a scaffold that shares a similar three-dimensional (3D) space structure, biomechanical properties, protein component, and cytokines to the native extracellular matrix (ECM). METHODS 24 male New Zealand white rabbits were used in this experimental study. The rabbit thyroid glands were decellularized by immersion/agitation decellularization protocol. The 3D thyroid decellularization scaffolds were tested with histological and immunostaining analyses, scanning electron microscopy, DNA quantification, mechanical properties test, cytokine assay and cytotoxicity assays. Meanwhile, the decellularization scaffold were seeded with human thyroid follicular cells, cell proliferation and thyroid peroxidase were determined to explore the biocompatibility in vitro. RESULTS Notably, through the imaging studies, it was distinctly evident that our protocol intervention minimized cellular materials and maintained the 3D spatial structure, biomechanical properties, ECM composition, and biologic cytokine. Consequently, the decellularization scaffold was seeded with human thyroid follicular cells, thus strongly revealing its potential in reinforcing cell adhesion, proliferation, and preserve important protein expression. CONCLUSIONS The adoption of our protocol to generate a decellularized thyroid scaffold can potentially be utilized in transplantation to manage thyroid diseases through thyroid bioengineering.
Collapse
Affiliation(s)
- Jie Weng
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bi Chen
- Department of Surgical Oncology, Wenzhou People's Hospital, The Wenzhou Third Clinical Institute Affiliated With Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengying Xie
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinlong Wan
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Wang
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoming Zhou
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhiliang Zhou
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jin Mei
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Duping Huang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiyi Wang
- Department of Emergency Medicine and General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Center for Health Assessment, Wenzhou Medical University, Wenzhou, China.
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Keller S, Liedek A, Shendi D, Bach M, Tovar GEM, Kluger PJ, Southan A. Eclectic characterisation of chemically modified cell-derived matrices obtained by metabolic glycoengineering and re-assessment of commonly used methods. RSC Adv 2020; 10:35273-35286. [PMID: 35515672 PMCID: PMC9056897 DOI: 10.1039/d0ra06819e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 01/28/2023] Open
Abstract
Azide-bearing cell-derived extracellular matrices ("clickECMs") have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs). Yet, thorough qualitative and quantitative analysis of the overall material composition, organisation, localisation, and distribution of typical ECM-specific biomolecules is essential for consistent advancement of CDMs and the understanding of the prospective functions of the developed biomaterial. In this study, we evaluated frequently used methods for the analysis of complex CDMs. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and (immune)histochemical staining methods in combination with several microscopic techniques were found to be highly eligible. Commercially available colorimetric protein assays turned out to deliver inaccurate information on CDMs. In contrast, we determined the nitrogen content of CDMs by elementary analysis and converted it into total protein content using conversion factors which were calculated from matching amino acid compositions. The amount of insoluble collagens was assessed based on the hydroxyproline content. The Sircol™ assay was identified as a suitable method to quantify soluble collagens while the Blyscan™ assay was found to be well-suited for the quantification of sulphated glycosaminoglycans (sGAGs). Eventually, we propose a series of suitable methods to reliably characterise the biomolecular composition of fibroblast-derived clickECM.
Collapse
Affiliation(s)
- Silke Keller
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany .,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Anke Liedek
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Dalia Shendi
- Department of Biomedical Engineering, Worcester Polytechnic Institute Worcester MA USA
| | - Monika Bach
- University of Hohenheim, Core Facility, Module 3: Analytical Chemistry Unit Emil-Wolff-Str. 12 70599 Stuttgart Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany .,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Petra J Kluger
- School of Applied Chemistry, Reutlingen University Alteburgstraße 150 72762 Reutlingen Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| |
Collapse
|
6
|
Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020; 120:10608-10661. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Sogorkova J, Zapotocky V, Cepa M, Stepankova V, Vagnerova H, Batova J, Pospisilova M, Betak J, Nesporova K, Hermannova M, Daro D, Duffy G, Velebny V. Optimization of cell growth on palmitoyl-hyaluronan knitted scaffolds developed for tissue engineering applications. J Biomed Mater Res A 2018; 106:1488-1499. [PMID: 29377555 DOI: 10.1002/jbm.a.36353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
Abstract
Polysaccharides meet several criteria for a suitable biomaterial for tissue engineering, which include biocompatibility and ability to support the delivery and growth of cells. Nevertheless, most of these polysaccharides, for example dextran, alginate, and glycosaminoglycans, are highly soluble in aqueous solutions. Hyaluronic acid hydrophobized by palmitic acid and processed to the form of wet-spun fibers and the warp-knitted textile scaffold is water non-soluble, but biodegradable material, which could be used for the tissue engineering purpose. However, its surface quality does not allow cell attachment. To enhance the biocompatibility the surface of palmitoyl-hyaluronan was roughened by freeze drying and treated by different cell adhesive proteins (fibronectin, fibrinogen, laminin, methacrylated gelatin and collagen IV). Except for collagen IV, these proteins covered the fibers uniformly for an extended period of time and supported the adhesion and cultivation of dermal fibroblasts and mesenchymal stem cells. Interestingly, adipose stem cells cultivated on the fibronectin-modified scaffold secreted increasing amount of HGF, SDF-1, and VEGF, three key growth factors involved in cardiac regeneration. These results suggested that palmitoyl-hyaluronan scaffold may be a promising material for various applications in tissue regeneration, including cardiac tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1488-1499, 2018.
Collapse
Affiliation(s)
- Jana Sogorkova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Martin Cepa
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Hana Vagnerova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | - Jana Batova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Jiri Betak
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | | | - Dorothée Daro
- Celyad, Rue Edouard Belin 2, Mont-Saint-Guibert, 1435, Belgium
| | - Garry Duffy
- Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | | |
Collapse
|
8
|
Vaicik MK, Blagajcevic A, Ye H, Morse MC, Yang F, Goddi A, Brey EM, Cohen RN. The Absence of Laminin α4 in Male Mice Results in Enhanced Energy Expenditure and Increased Beige Subcutaneous Adipose Tissue. Endocrinology 2018; 159:356-367. [PMID: 28973559 PMCID: PMC5761598 DOI: 10.1210/en.2017-00186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/05/2017] [Indexed: 01/27/2023]
Abstract
Laminin α4 (LAMA4) is located in the extracellular basement membrane that surrounds each individual adipocyte. Here we show that LAMA4 null (Lama4-/-) mice exhibit significantly higher energy expenditure (EE) relative to wild-type (WT) mice at room temperature and when exposed to a cold challenge, despite similar levels of food intake and locomotor activity. The Lama4-/- mice are resistant to age- and diet-induced obesity. Expression of uncoupling protein 1 is higher in subcutaneous white adipose tissue of Lama4-/- mice relative to WT animals on either a chow diet or a high-fat diet. In contrast, uncoupling protein 1 expression was not increased in brown adipose tissue. Lama4-/- mice exhibit significantly improved insulin sensitivity compared with WT mice, suggesting improved metabolic function. Overall, these data provide critical evidence for a role of the basement membrane in EE, weight gain, and systemic insulin sensitivity.
Collapse
Affiliation(s)
- Marcella K. Vaicik
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois 60141
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Alen Blagajcevic
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Honggang Ye
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Mallory C. Morse
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Feipeng Yang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Anna Goddi
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Eric M. Brey
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois 60141
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Ronald N. Cohen
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
9
|
Wang Z, Wang Z, Yu Q, Xi H, Weng J, Du X, Chen D, Ma J, Mei J, Chen C. Comparative study of two perfusion routes with different flow in decellularization to harvest an optimal pulmonary scaffold for recellularization. J Biomed Mater Res A 2016; 104:2567-75. [PMID: 27227902 DOI: 10.1002/jbm.a.35794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiyi Wang
- Department of Emergency Medicine; The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University; Wenzhou 325000 China
| | - Zhibin Wang
- Anatomy Department & Institute of Bioscaffold Transplantation and Immunology; Wenzhou Medical University; Wenzhou 325000 China
| | - Qing Yu
- Department of Emergency Medicine; The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University; Wenzhou 325000 China
| | - Haitao Xi
- Department of Emergency Medicine; The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University; Wenzhou 325000 China
| | - Jie Weng
- Department of Emergency Medicine; The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University; Wenzhou 325000 China
| | - Xiaohong Du
- Department of Geriatric Medicine; The First Affiliated Hospital, Wenzhou Medical University; Wenzhou 325000 China
| | - Daqing Chen
- Department of Emergency Medicine; The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University; Wenzhou 325000 China
| | - Jianshe Ma
- Anatomy Department & Institute of Bioscaffold Transplantation and Immunology; Wenzhou Medical University; Wenzhou 325000 China
| | - Jin Mei
- Anatomy Department & Institute of Bioscaffold Transplantation and Immunology; Wenzhou Medical University; Wenzhou 325000 China
| | - Chan Chen
- Department of Geriatric Medicine; The First Affiliated Hospital, Wenzhou Medical University; Wenzhou 325000 China
| |
Collapse
|