1
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
2
|
Chen QY, Jiang YN, Guan X, Ren FF, Wu SJ, Chu MP, Wu LP, Lai TF, Li L. Aerobic Exercise Attenuates Pressure Overload-Induced Myocardial Remodeling and Myocardial Inflammation via Upregulating miR-574-3p in Mice. Circ Heart Fail 2024; 17:e010569. [PMID: 38410978 DOI: 10.1161/circheartfailure.123.010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Exercise training can promote cardiac rehabilitation, thereby reducing cardiovascular disease mortality and hospitalization rates. MicroRNAs (miRs) are closely related to heart disease, among which miR-574-3p plays an important role in myocardial remodeling, but its role in exercise-mediated cardioprotection is still unclear. METHODS A mouse myocardial hypertrophy model was established by transverse aortic coarctation, and a 4-week swimming exercise training was performed 1 week after the operation. After swimming training, echocardiography was used to evaluate cardiac function in mice, and histopathologic staining was used to detect cardiac hypertrophy, myocardial fibrosis, and cardiac inflammation. Quantitative real-time polymerase chain reaction was used to detect the expression levels of miR-574-3p and cardiac hypertrophy markers. Western blotting detected the IL-6 (interleukin-6)/JAK/STAT inflammatory signaling pathway. RESULTS Echocardiography and histochemical staining found that aerobic exercise significantly improved pressure overload-induced myocardial hypertrophy (n=6), myocardial interstitial fibrosis (n=6), and cardiac inflammation (n=6). Quantitative real-time polymerase chain reaction detection showed that aerobic exercise upregulated the expression level of miR-574-3p (n=6). After specific knockdown of miR-574-3p in mouse hearts with adeno-associated virus 9 using cardiac troponin T promoter, we found that the protective effect of exercise training on the heart was significantly reversed. Echocardiography and histopathologic staining showed that inhibiting the expression of miR-574-3p could partially block the effects of aerobic exercise on cardiac function (n=6), cardiomyocyte cross-sectional area (n=6), and myocardial fibrosis (n=6). Western blotting and immunohistochemical staining showed that the inhibitory effects of aerobic exercise on the IL-6/JAK/STAT pathway and cardiac inflammation were partially abolished after miR-574-3p knockdown. Furthermore, we also found that miR-574-3p exerts cardioprotective effects in cardiomyocytes by targeting IL-6 (n=3). CONCLUSIONS Aerobic exercise protects cardiac hypertrophy and inflammation induced by pressure overload by upregulating miR-574-3p and inhibiting the IL-6/JAK/STAT pathway.
Collapse
Affiliation(s)
- Qiao-Ying Chen
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Yi-Na Jiang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Xuan Guan
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Fang-Fang Ren
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Shu-Jie Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Mao-Ping Chu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Lian-Pin Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Teng-Fang Lai
- Department of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Baise, China (T.-F.L)
| | - Lei Li
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| |
Collapse
|
3
|
Deng J, Liao Y, Liu J, Liu W, Yan D. Research Progress on Epigenetics of Diabetic Cardiomyopathy in Type 2 Diabetes. Front Cell Dev Biol 2022; 9:777258. [PMID: 35004678 PMCID: PMC8740193 DOI: 10.3389/fcell.2021.777258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by diastolic relaxation abnormalities in its initial stages and by clinical heart failure (HF) without dyslipidemia, hypertension, and coronary artery disease in its last stages. DCM contributes to the high mortality and morbidity rates observed in diabetic populations. Diabetes is a polygenic, heritable, and complex condition that is exacerbated by environmental factors. Recent studies have demonstrated that epigenetics directly or indirectly contribute to pathogenesis. While epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, have been recognized as key players in the pathogenesis of DCM, some of their impacts remain not well understood. Furthering our understanding of the roles played by epigenetics in DCM will provide novel avenues for DCM therapeutics and prevention strategies.
Collapse
Affiliation(s)
- Jianxin Deng
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University; Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China
| | - Yunxiu Liao
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Jianpin Liu
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Wenjuan Liu
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University; Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China
| |
Collapse
|
4
|
Hu D, Huang X, Zheng C, Zhu Y, Chen L, Lin H, Liao Y. [Contribution of sympathetic activation to antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:495-503. [PMID: 33963707 DOI: 10.12122/j.issn.1673-4254.2021.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether anti-hypertrophic memory exists after regression of exercise-induced physiological myocardial hypertrophy (PMH) and explore the contribution of sympathetic activation to hypertrophic memory formation. OBJECTIVE Seventy-two mice were randomized equally into 6 groups, including sedentary sham-operated group, exercise hypertrophic preconditioning (EHP) + sham operation group, bisoprolol (an adrenergic β1 receptor blocker) + EHP + sham operation group (biso+Exe+Sham group), sedentary group with transverse aortic constriction (TAC) (Sed+TAC group), EHP+ TAC group (Exe+TAC group), and bisoprolol+EHP+TAC group (biso+Exe+TAC group). The mice in the EHP groups were subjected to 3 weeks of swimming training, and in the bisoprolol groups, bisoprolol was administered by gavage once daily from two days before till the end of the training. One week after the training, TAC or sham surgery was performed. Echocardiography and hemodynamic measurements were performed to evaluate cardiac function of the mice, and the myocardial tissues were examined histologically to detect cardiac remodeling. OBJECTIVE Compared with the sedentary group, the mice receiving 3 weeks of swimming training had significantly increased heart weight to body weight ratio (HW/BW), HW to tibia length ratio (HW/TL), and the cross-sectional area of the cardiomyocytes (P < 0.05). One week after the training, exercise-induced PMH rapidly diminished and both HW/BW and HW/TL recovered the baseline levels. Treatment with bisoprolol obviously prevented the occurrence of PMH. Four weeks after TAC, the left ventricular posterior wall thickness, HW/BW, HW/TL, left ventricular end diastolic pressure and cross-sectional area of cardiomyocytes were all significantly lower (P < 0.05) while the left ejection fraction and maximal change rate of left ventricular pressure were significantly higher (P < 0.05) in Exe + TAC group than in Sed + TAC group. No significant difference was found in these parameters between biso + Exe + TAC group and Sed + TAC group. OBJECTIVE Anti-hypertrophic memory exists even after the regression of exercise-induced PMH, which may be attributed to the activation of sympathetic nervous system during exercise.
Collapse
Affiliation(s)
- D Hu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - C Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - H Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Lin H, Zhu Y, Zheng C, Hu D, Ma S, Chen L, Wang Q, Chen Z, Xie J, Yan Y, Huang X, Liao W, Kitakaze M, Bin J, Liao Y. Antihypertrophic Memory After Regression of Exercise-Induced Physiological Myocardial Hypertrophy Is Mediated by the Long Noncoding RNA Mhrt779. Circulation 2021; 143:2277-2292. [PMID: 33757294 PMCID: PMC8177494 DOI: 10.1161/circulationaha.120.047000] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exercise can induce physiological myocardial hypertrophy (PMH), and former athletes can live 5 to 6 years longer than nonathletic controls, suggesting a benefit after regression of PMH. We previously reported that regression of pathological myocardial hypertrophy has antihypertrophic effects. Accordingly, we hypothesized that antihypertrophic memory exists even after PMH has regressed, increasing myocardial resistance to subsequent pathological hypertrophic stress. METHODS C57BL/6 mice were submitted to 21 days of swimming training to develop PMH. After termination of exercise, PMH regressed within 1 week. PMH regression mice (exercise hypertrophic preconditioning [EHP] group) and sedentary mice (control group) then underwent transverse aortic constriction or a sham operation for 4 weeks. Cardiac remodeling and function were evaluated with echocardiography, invasive left ventricular hemodynamic measurement, and histological analysis. LncRNA sequencing, chromatin immunoprecipitation assay, and comprehensive identification of RNA-binding proteins by mass spectrometry and Western blot were used to investigate the role of Mhrt779 involved in the antihypertrophic effect induced by EHP. RESULTS At 1 and 4 weeks after transverse aortic constriction, the EHP group showed less increase in myocardial hypertrophy and lower expression of the Nppa and Myh7 genes than the sedentary group. At 4 weeks after transverse aortic constriction, EHP mice had less pulmonary congestion, smaller left ventricular dimensions and end-diastolic pressure, and a larger left ventricular ejection fraction and maximum pressure change rate than sedentary mice. Quantitative polymerase chain reaction revealed that the long noncoding myosin heavy chain-associated RNA transcript Mhrt779 was one of the markedly upregulated lncRNAs in the EHP group. Silencing of Mhrt779 attenuated the antihypertrophic effect of EHP in mice with transverse aortic constriction and in cultured cardiomyocytes treated with angiotensin II, and overexpression enhanced the antihypertrophic effect. Using chromatin immunoprecipitation assay and quantitative polymerase chain reaction, we found that EHP increased histone 3 trimethylation (H3K4me3 and H3K36me3) at the a4 promoter of Mhrt779. Comprehensive identification of RNA-binding proteins by mass spectrometry and Western blot showed that Mhrt779 can bind SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (Brg1) to inhibit the activation of the histone deacetylase 2 (Hdac2)/phosphorylated serine/threonine kinase (Akt)/phosphorylated glycogen synthase kinase 3β(p-GSK3β) pathway induced by pressure overload. CONCLUSIONS Myocardial hypertrophy preconditioning evoked by exercise increases resistance to pathological stress via an antihypertrophic effect mediated by a signal pathway of Mhrt779/Brg1/Hdac2/p-Akt/p-GSK3β.
Collapse
Affiliation(s)
- Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Donghong Hu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Zhenhuan Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Jiahe Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Yi Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.).,Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affliated Hospital of Guangzhou Medical University, Guangzhou, China (Y.Y.)
| | - Xiaobo Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.)
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China (W.L.)
| | - Masafumi Kitakaze
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.).,Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan (M.K.)
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.).,National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China (J.B., Y.L.)
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.).,National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China (J.B., Y.L.).,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China (Y.L.)
| |
Collapse
|
6
|
Jiang L, Shen X, Dun Y, Xie M, Fu S, Zhang W, Qiu L, Ripley-Gonzalez JW, Liu S. Exercise combined with trimetazidine improves anti-fatal stress capacity through enhancing autophagy and heat shock protein 70 of myocardium in mice. Int J Med Sci 2021; 18:1680-1686. [PMID: 33746584 PMCID: PMC7976563 DOI: 10.7150/ijms.53899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Anti-stress capacity is important to resist the occurrence of adverse events. To observe the effects of exercise, trimetazidine alone or combined on the anti-stress capacity of mice, and further explore its potential mechanism. Methods: Forty-four C57BL/6 male mice aged 8 weeks were randomly divided into four groups (n=11 for each group): control group (group C), exercise group (group E), trimetazidine group (group T), exercise combined with trimetazidine group (group TE). After the intervention, each group was randomly subdivided into the exhaustive exercise (EE, n=6) and the non-EE (n=5) subgroups. The mice in the EE-subgroup underwent EE. Mice were sacrificed 12 hours later after EE. The myocardial ultrastructure and autophagosomes were observed under an electron microscope. The expression of autophagy-related proteins: BNIP3, LC3-II, and P62 were analyzed and the heat shock protein 70 mRNA transcription and protein expression were also investigated. Results: Exercise or trimetazidine increased the expression of BNIP3, LC3-II, and heat shock protein 70, decreased the expression of P62 pre- and post-EE while the combination has the synergistic effect. Conclusion: Exercise and trimetazidine, alone or combined enhanced the anti-stress capacity of mice significantly. The underlying mechanism may be associated with the promotion of autography and the expression of heat shock protein 70.
Collapse
Affiliation(s)
- Lingjun Jiang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China.,Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075, Ulm, Germany
| | - Xuanlin Shen
- Department of Rehabilitation, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu 215500, P.R China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Murong Xie
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Siqian Fu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Wenliang Zhang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Jeffrey W Ripley-Gonzalez
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| |
Collapse
|
7
|
Different Intensity Exercise Preconditions Affect Cardiac Function of Exhausted Rats through Regulating TXNIP/TRX/NF-ĸB p65/NLRP3 Inflammatory Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5809298. [PMID: 32595731 PMCID: PMC7301185 DOI: 10.1155/2020/5809298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022]
Abstract
Objective To investigate whether exercise preconditioning (EP) improves the rat cardiac dysfunction induced by exhaustive exercise (EE) through regulating NOD-like receptor protein 3 (NLRP3) inflammatory pathways and to confirm which intensity of EP is better. Method Ninety healthy male Sprague Dawley rats were randomly divided into five groups: a control group (CON), exhaustive exercise group (EE), low-, middle-, and high-intensity exercise precondition and exhaustive exercise group (LEP + EE, MEP + EE, HEP + EE group). We established the experimental model by referring to Bedford's motion load standard to complete the experiment. Then, the pathological changes of the myocardium were observed under a light microscope. Biomarker of myocardial injury in serum and oxidative stress factor in myocardial tissue were evaluated by ELISAs. The cardiac function parameters were detected using a Millar pressure and volume catheter. The levels of thioredoxin-interacting protein (TXNIP), thioredoxin protein (TRX), nuclear transcription factor kappa Bp65 (NF-ĸBp65), NLRP3, and cysteinaspartate specific proteinase 1 (Caspase-1) protein in rats' myocardium were detected by western blotting. Results 1. The myocardial structures of three EP + EE groups were all improved compared with EE groups. 2. The levels of the creatine phosphating-enzyme MB (CK-MB), reactive oxygen species (ROS), interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor alpha (TNF-α) in three EP + EE groups were all increased compared with CON but decreased compared with the EE group (P < 0.05). 3. Compared with the CON group, slope of end-systolic pressure volume relationship (ESPVR), ejection fraction (EF), and peak rate of the increase in pressure (dP/dtmax) all dropped to the lowest level in the EE group (P < 0.05), while the values of cardiac output (CO), stroke volume (SV), end-systolic volume (Ves), end-diastolic volume (Ved), and relaxation time constant (Tau) increased in the EE group (P < 0.05). 4. Compared with the CON group, the expression levels of TXNIP, NF-ĸBp65, NLRP3, and Caspase-1 all increased obviously in the other groups (P < 0.05); meanwhile, they were all decreased in three EP + EE groups compared with the EE group (P < 0.05). 5. NLRP3 was positively correlated with heart rate, IL-6, and ROS, but negatively correlated with EF (P < 0.01). Conclusion EP protects the heart from EE-induced injury through downregulating TXNIP/TRX/NF-ĸBp65/NLRP3 inflammatory signaling pathways. Moderate intensity EP has the best protective effect.
Collapse
|
8
|
Yuan JQ, Yuan Y, Pan SS, Cai K. Altered expression levels of autophagy-associated proteins during exercise preconditioning indicate the involvement of autophagy in cardioprotection against exercise-induced myocardial injury. J Physiol Sci 2020; 70:10. [PMID: 32066368 PMCID: PMC7026234 DOI: 10.1186/s12576-020-00738-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 01/24/2023]
Abstract
Exercise has been reported to induce autophagy. We hypothesized that exercise preconditioning (EP)-related autophagy in cardiomyocytes could be attributed to intermittent ischemia-hypoxia, allowing the heart to be protected for subsequent high-intensity exercise (HE). We applied approaches, chromotrope-2R brilliant green (C-2R BG) staining and plasma cTnI levels measuring, to characterize two periods of cardioprotection after EP: early EP (EEP) and late EP (LEP). Further addressing the relationship between ischemia-hypoxia and autophagy, key proteins, Beclin1, LC3, Cathepsin D, and p62, were determined by immunohistochemical staining, western blotting, and by their adjacent slices with C-2R BG. Results indicated that exercise-induced ischemia-hypoxia is a key factor in Beclin1-dependent autophagy. High-intensity exercise was associated with the impairment of autophagy due to high levels of LC3II and unchanged levels of p62, intermittent ischemia-hypoxia by EP itself plays a key role in autophagy, which resulted in more favorable cellular effects during EEP-cardioprotection compared to LEP.
Collapse
Affiliation(s)
- Jian-Qi Yuan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| | - Yang Yuan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| | - Shan-Shan Pan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China.
| | - Ke Cai
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| |
Collapse
|
9
|
Tian X, Zhou N, Yuan J, Lu L, Zhang Q, Wei M, Zou Y, Yuan L. Heat shock transcription factor 1 regulates exercise-induced myocardial angiogenesis after pressure overload via HIF-1α/VEGF pathway. J Cell Mol Med 2020; 24:2178-2188. [PMID: 31930683 PMCID: PMC7011135 DOI: 10.1111/jcmm.14872] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Exercise training is believed to have a positive effect on cardiac hypertrophy after hypertension. However, its mechanism is still not fully understood. Herein, our findings suggest that heat shock transcription factor 1 (HSF1) improves exercise‐initiated myocardial angiogenesis after pressure overload. A sustained narrowing of the diagonal aorta (TAC) and moderately‐ intense exercise training protocol were imposed on HSF1 heterozygote (KO) and their littermate wild‐type (WT) male mice. After two months, the cardiac function was assessed using the adaptive responses to exercise training, or TAC, or both of them such as catheterization and echocardiography. The HE stains assessed the area of myocyte cross‐sectional. The Western blot and real‐time PCR measured the levels of expression for heat shock factor 1 (HSF1), vascular endothelial growth factor (VEGF) and hypoxia inducible factor‐1 alpha (HIF‐1α) in cardiac tissues. The anti‐CD31 antibody immunohistochemical staining was done to examine how exercise training influenced cardiac ontogeny. The outcome illustrated that exercise training significantly improved the cardiac ontogeny in TAC mice, which was convoyed by elevated levels of expression for VEGF and HIF‐1α and preserved the heart microvascular density. More importantly, HSF1 deficiency impaired these effects induced by exercise training in TAC mice. In conclusion, exercise training encourages cardiac ontogeny by means of HSF1 activation and successive HIF‐1α/VEGF up‐regulation in endothelial cells during continued pressure overload.
Collapse
Affiliation(s)
- Xu Tian
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| | - Ning Zhou
- Section of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biological Science, Fudan University, Shanghai, China
| | - Le Lu
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| | - Qi Zhang
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| | - Minmin Wei
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biological Science, Fudan University, Shanghai, China
| | - Lingyan Yuan
- Department of Kinesiology, Institute of Physical Education, Shanghai Normal University, Shanghai, China
| |
Collapse
|
10
|
Wang Y, Tian MM, Mi CJ, Chen KL, Ji YC, Wang L, Zhang J, Cheng K. Exercise protects the heart against myocardial infarction through upregulation of miR-1192. Biochem Biophys Res Commun 2020; 521:1061-1069. [DOI: 10.1016/j.bbrc.2019.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022]
|
11
|
Liu Q, Han Q, Lu M, Wang H, Tang F. Lycium barbarum polysaccharide attenuates cardiac hypertrophy, inhibits calpain-1 expression and inhibits NF-κB activation in streptozotocin-induced diabetic rats. Exp Ther Med 2019; 18:509-516. [PMID: 31258688 PMCID: PMC6566019 DOI: 10.3892/etm.2019.7612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiac hypertrophy is one of the key structural changes that occurs in diabetic cardiomyopathy. Previous studies have indicated that the activation of NF-κB by calpain-1, a Ca2+-dependent cysteine protease, serves an important role in cardiac hypertrophy. The aim of the present study was to assess the effect of 30 and 60 mg/kg Lycium barbarum polysaccharide (LBP) treatment, the major active ingredient extracted from Lycium barbarum, on cardiac hypertrophy in streptozotocin (STZ) induced diabetic rats. In addition, the present study examined the possible underlying mechanisms of this effect by assessing calpain-1 expression and the NF-κB pathway. The mRNA expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was determined by reverse transcription-quantitative PCR. Western blotting was used to detect the protein expressions of calpain-1, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and toll-like receptor-4 (TLR-4) in the heart tissue. The results revealed that compared with non-diabetic rats, diabetic rats exhibited cardiac hypertrophy. Cardiac hypertrophy was defined by the following: Dysfunction of the cardiac hemodynamics, an increase in the ratios of left ventricular weight/body weight and heart weight/body weight and the increased expressions of ANP and BNP, which serve as hypertrophic markers in cardiac tissue. However, all of these changes were attenuated in diabetic rats treated with LBP. In addition, the protein expression of calpain-1 was increased in the heart tissue of diabetic rats compared with that of non-diabetic rats, where it was inhibited by LBP. LBP also decreased the protein expression of certain inflammatory mediators, IL-6, TNF-α, ICAM-1, VCAM-1 and TLR-4 in diabetic heart tissue. Furthermore, LBP treatment reduced the production of reactive oxygen species, upregulated the protein expression of endothelial nitric oxide synthase and downregulated the protein expression of inducible nitric-oxide synthase. Additionally, LBP increased the protein expression of p65, the subunit of NF-κB and inhibitory protein кB-α in the cytoplasm and reduced p65 expression in the nucleus. In conclusion, LBP improves cardiac hypertrophy, inhibits the expression of calpain-1 and inhibits the activation of NF-κB in diabetic rats.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Qianqian Han
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
12
|
Yang F, You X, Xu T, Liu Y, Ren Y, Liu S, Wu F, Xu Z, Zou L, Wang G. Screening and Function Analysis of MicroRNAs Involved in Exercise Preconditioning-Attenuating Pathological Cardiac Hypertrophy. Int Heart J 2018; 59:1069-1076. [DOI: 10.1536/ihj.17-498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Fan Yang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Xiaohua You
- Department of Cardiology, Changhai Hospital, The Second Military Medical University
| | - Tongyi Xu
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Yang Liu
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Yudan Ren
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Suxuan Liu
- Department of Cardiology, Changhai Hospital, The Second Military Medical University
| | - Feng Wu
- Department of Cardiology, 98th Military Hospital
| | - Zhiyun Xu
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Liangjian Zou
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| | - Guokun Wang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University
| |
Collapse
|
13
|
Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ongoing contractile and metabolic demands of the heart require a tight control over protein quality control, including the maintenance of protein folding, turnover and synthesis. In heart disease, increases in mechanical and oxidative stresses, post-translational modifications (e.g., phosphorylation), for example, decrease protein stability to favour misfolding in myocardial infarction, heart failure or ageing. These misfolded proteins are toxic to cardiomyocytes, directly contributing to the common accumulation found in human heart failure. One of the critical class of proteins involved in protecting the heart against these threats are molecular chaperones, including the heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy terminus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3 (BCL2-associated athanogene 3). Here, we review their emerging roles in the maintenance of cardiomyocytes in human and experimental models of heart failure, including their roles in facilitating the removal of misfolded and degraded proteins, inhibiting apoptosis and maintaining the structural integrity of the sarcomere and regulation of nuclear receptors. Furthermore, we discuss emerging evidence of increased expression of extracellular HSP70, HSP90 and BAG-3 in heart failure, with complementary independent roles from intracellular functions with important therapeutic and diagnostic considerations. While our understanding of these major HSPs in heart failure is incomplete, there is a clear potential role for therapeutic modulation of HSPs in heart failure with important contextual considerations to counteract the imbalance of protein damage and endogenous protein quality control systems.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, CB#7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
14
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
15
|
Yuan Y, Pan SS, Shen YJ. Cardioprotection of exercise preconditioning involving heat shock protein 70 and concurrent autophagy: a potential chaperone-assisted selective macroautophagy effect. J Physiol Sci 2018; 68:55-67. [PMID: 27928720 PMCID: PMC10717675 DOI: 10.1007/s12576-016-0507-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/23/2022]
Abstract
It has been confirmed that exercise preconditioning (EP) has a protective effect on acute cardiovascular stress. However, how Hsp70 participates in EP-induced cardioprotection is unknown. EP may involve Hsp70 to repair unfolded proteins or may also stabilize the function of the endoplasmic reticulum via Hsp70-related autophagy to work on a protective formation. Our EP protocol involves four periods of 10 min running with 10 min recovery intervals. We added a period of exhaustive running to test this protective effect, using histology and molecular biotechnology methods to detect related markers. EP provided cardioprotection at its early and late phases against exhaustive exercise-induced ischemic myocardial injury. Results showed that Hsp70 co-chaperone protein BAG3, ubiquitin adaptor p62 and critical autophagy protein LC3 were significantly upregulated at the early phase. Meanwhile, Hsp70, Hsp70/BAG3 co-localization extent, LC31 and LC3II were significantly upregulated at the late phase. Hsp70 mRNA levels and LC3II/I ratios were also consistent with the extent of myocardial injury following exhaustive exercise. Hsp70 increase was delayed relative to BAG3 and p62 after EP, indicating a pre-synthesized phenomenon of BAG3 and p62 for chaperone-assisted selective autophagy (CASA). The decreased Hsp70, BAG3 and p62 levels and increased Hsp70/BAG3 co-localization extent and LC3 levels induced by exhaustive exercise after EP suggest that EP-induced cardioprotection might associate with CASA. Hsp70 has a cardioprotective role and has a closer link with CASA in LEP. Additionally, EP may not cause exhaustion-dependent excessive autophagy regulation. Collectively, during early and late EP, CASA potentially plays different roles in cardioprotection.
Collapse
Affiliation(s)
- Yang Yuan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| | - Shan-Shan Pan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China.
| | - Yu-Jun Shen
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| |
Collapse
|
16
|
Panneerselvam L, Raghunath A, Perumal E. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride. Cell Stress Chaperones 2017; 22:743-750. [PMID: 28451878 PMCID: PMC5573692 DOI: 10.1007/s12192-017-0801-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/28/2017] [Accepted: 04/16/2017] [Indexed: 01/21/2023] Open
Abstract
Acute fluoride (F-) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F- induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F--intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F- for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F--intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F--treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F--induced heart failure.
Collapse
Affiliation(s)
- Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
17
|
Shen P, Feng X, Zhang X, Huang X, Liu S, Lu X, Li J, You J, Lu J, Li Z, Ye J, Liu P. SIRT6 suppresses phenylephrine-induced cardiomyocyte hypertrophy though inhibiting p300. J Pharmacol Sci 2016; 132:31-40. [DOI: 10.1016/j.jphs.2016.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/01/2023] Open
|