1
|
Cui S, Wei G, Zhou L, Zhao E, Wang T, Ma F. Predicting line of therapy transition via similar patient augmentation. J Biomed Inform 2023; 147:104511. [PMID: 37813326 DOI: 10.1016/j.jbi.2023.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Analyzing large EHR databases to predict cancer progression and treatments has become a hot trend in recent years. An increasing number of modern deep learning models have been proposed to find the milestones of essential patient medical journey characteristics to predict their disease status and give healthcare professionals valuable insights. However, most of the existing methods are lack of consideration for the inter-relationship among different patients. We believe that more valuable information can be extracted, especially when patients with similar disease statuses visit the same doctors. Towards this end, a similar patient augmentation-based approach named SimPA is proposed to enhance the learning of patient representations and further predict lines of therapy transition. Our experiment results on a real-world multiple myeloma dataset show that our proposed approach outperforms state-of-the-art baseline approaches in terms of standard evaluation metrics for classification tasks.
Collapse
Affiliation(s)
- Suhan Cui
- College of Information Sciences and Technology, Pennsylvania State University, State College, PA, 16802, USA
| | - Guanhao Wei
- Advanced Analytics, IQVIA Inc, Wayne, PA, 19087, USA
| | - Li Zhou
- Advanced Analytics, IQVIA Inc, Wayne, PA, 19087, USA
| | - Emily Zhao
- Advanced Analytics, IQVIA Inc, Wayne, PA, 19087, USA
| | - Ting Wang
- College of Information Sciences and Technology, Pennsylvania State University, State College, PA, 16802, USA
| | - Fenglong Ma
- College of Information Sciences and Technology, Pennsylvania State University, State College, PA, 16802, USA.
| |
Collapse
|
2
|
He B, Hou F, Ren C, Bing P, Xiao X. A Review of Current In Silico Methods for Repositioning Drugs and Chemical Compounds. Front Oncol 2021; 11:711225. [PMID: 34367996 PMCID: PMC8340770 DOI: 10.3389/fonc.2021.711225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Drug repositioning is a new way of applying the existing therapeutics to new disease indications. Due to the exorbitant cost and high failure rate in developing new drugs, the continued use of existing drugs for treatment, especially anti-tumor drugs, has become a widespread practice. With the assistance of high-throughput sequencing techniques, many efficient methods have been proposed and applied in drug repositioning and individualized tumor treatment. Current computational methods for repositioning drugs and chemical compounds can be divided into four categories: (i) feature-based methods, (ii) matrix decomposition-based methods, (iii) network-based methods, and (iv) reverse transcriptome-based methods. In this article, we comprehensively review the widely used methods in the above four categories. Finally, we summarize the advantages and disadvantages of these methods and indicate future directions for more sensitive computational drug repositioning methods and individualized tumor treatment, which are critical for further experimental validation.
Collapse
Affiliation(s)
- Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Fangxing Hou
- Queen Mary School, Nanchang University, Jiangxi, China
| | - Changjing Ren
- School of Science, Dalian Maritime University, Dalian, China.,Genies Beijing Co., Ltd., Beijing, China
| | - Pingping Bing
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Xiangzuo Xiao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
3
|
Monraz Gomez LC, Kondratova M, Sompairac N, Lonjou C, Ravel JM, Barillot E, Zinovyev A, Kuperstein I. Atlas of Cancer Signaling Network: A Resource of Multi-Scale Biological Maps to Study Disease Mechanisms. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
4
|
Chang JW, Ding Y, Tahir Ul Qamar M, Shen Y, Gao J, Chen LL. A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations. Carcinogenesis 2020; 40:624-632. [PMID: 30944926 DOI: 10.1093/carcin/bgz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/06/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022] Open
Abstract
Prioritization of cancer-related genes from gene expression profiles and proteomic data is vital to improve the targeted therapies research. Although computational approaches have been complementing high-throughput biological experiments on the understanding of human diseases, it still remains a big challenge to accurately discover cancer-related proteins/genes via automatic learning from large-scale protein/gene expression data and protein-protein interaction data. Most of the existing methods are based on network construction combined with gene expression profiles, which ignore the diversity between normal samples and disease cell lines. In this study, we introduced a deep learning model based on a sparse auto-encoder to learn the specific characteristics of protein interactions in cancer cell lines integrated with protein expression data. The model showed learning ability to identify cancer-related proteins/genes from the input of different protein expression profiles by extracting the characteristics of protein interaction information, which could also predict cancer-related protein combinations. Comparing with other reported methods including differential expression and network-based methods, our model got the highest area under the curve value (>0.8) in predicting cancer-related genes. Our study prioritized ~500 high-confidence cancer-related genes; among these genes, 211 already known cancer drug targets were found, which supported the accuracy of our method. The above results indicated that the proposed auto-encoder model could computationally prioritize candidate proteins/genes involved in cancer and improve the targeted therapies research.
Collapse
Affiliation(s)
- Ji-Wei Chang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yuduan Ding
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Muhammad Tahir Ul Qamar
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yin Shen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Junxiang Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ling-Ling Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
5
|
Kondratova M, Czerwinska U, Sompairac N, Amigorena SD, Soumelis V, Barillot E, Zinovyev A, Kuperstein I. A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat Commun 2019; 10:4808. [PMID: 31641119 PMCID: PMC6805895 DOI: 10.1038/s41467-019-12270-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
The lack of integrated resources depicting the complexity of the innate immune response in cancer represents a bottleneck for high-throughput data interpretation. To address this challenge, we perform a systematic manual literature mining of molecular mechanisms governing the innate immune response in cancer and represent it as a signalling network map. The cell-type specific signalling maps of macrophages, dendritic cells, myeloid-derived suppressor cells and natural killers are constructed and integrated into a comprehensive meta map of the innate immune response in cancer. The meta-map contains 1466 chemical species as nodes connected by 1084 biochemical reactions, and it is supported by information from 820 articles. The resource helps to interpret single cell RNA-Seq data from macrophages and natural killer cells in metastatic melanoma that reveal different anti- or pro-tumor sub-populations within each cell type. Here, we report a new open source analytic platform that supports data visualisation and interpretation of tumour microenvironment activity in cancer. The complexity of the innate immune response to cancer makes interpretation of large data sets challenging. Here, the authors provide an integrated multi-scale map of signalling networks representing the different immune cells and their interactions and show its utility for data interpretation.
Collapse
Affiliation(s)
- Maria Kondratova
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Urszula Czerwinska
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.,Université Paris Descartes, Centre de Recherches Interdisciplinaires, Paris, France
| | - Nicolas Sompairac
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.,Université Paris Descartes, Centre de Recherches Interdisciplinaires, Paris, France
| | | | - Vassili Soumelis
- Institut Curie, PSL Research University, Inserm, U932, 75005, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.
| |
Collapse
|
6
|
Sun X, Hu B. Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinform 2019; 19:1382-1399. [PMID: 28981626 PMCID: PMC6402530 DOI: 10.1093/bib/bbx065] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic–pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Zhong-shan School of Medicine, Sun Yat-Sen University
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University
| |
Collapse
|
7
|
Lefranc F, Koutsaviti A, Ioannou E, Kornienko A, Roussis V, Kiss R, Newman D. Algae metabolites: from in vitro growth inhibitory effects to promising anticancer activity. Nat Prod Rep 2019; 36:810-841. [PMID: 30556575 DOI: 10.1039/c8np00057c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 1957 to 2017 Algae constitute a heterogeneous group of eukaryotic photosynthetic organisms, mainly found in the marine environment. Algae produce numerous metabolites that help them cope with the harsh conditions of the marine environment. Because of their structural diversity and uniqueness, these molecules have recently gained a lot of interest for the identification of medicinally useful agents, including those with potential anticancer activities. In the current review, which is not a catalogue-based one, we first highlight the major biological events that lead to various types of cancer, including metastatic ones, to chemoresistance, thus to any types of current anticancer treatment relating to the use of chemotherapeutics. We then review algal metabolites for which scientific literature reports anticancer activity. Lastly, we focus on algal metabolites with promising anticancer activity based on their ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. Thus, we highlight compounds that have, among others, one or more of the following characteristics: selectivity in reducing the proliferation of cancer cells over normal ones, potential for killing cancer cells through non-apoptotic signaling pathways, ability to circumvent MDR-related efflux pumps, and activity in vivo in relevant pre-clinical models.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, ULB, 1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ostaszewski M, Gebel S, Kuperstein I, Mazein A, Zinovyev A, Dogrusoz U, Hasenauer J, Fleming RMT, Le Novère N, Gawron P, Ligon T, Niarakis A, Nickerson D, Weindl D, Balling R, Barillot E, Auffray C, Schneider R. Community-driven roadmap for integrated disease maps. Brief Bioinform 2019; 20:659-670. [PMID: 29688273 PMCID: PMC6556900 DOI: 10.1093/bib/bby024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/02/2018] [Indexed: 01/07/2023] Open
Abstract
The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share information and develop systems biomedicine tools. The project aims for an integrated, highly curated and user-friendly platform for disease-related knowledge. The primary focus of disease maps is on interconnected signaling, metabolic and gene regulatory network pathways represented in standard formats. The involvement of domain experts ensures that the key disease hallmarks are covered and relevant, up-to-date knowledge is adequately represented. Expert-curated and computer readable, disease maps may serve as a compendium of knowledge, allow for data-supported hypothesis generation or serve as a scaffold for the generation of predictive mathematical models. This article summarizes the 2nd Disease Maps Community meeting, highlighting its important topics and outcomes. We outline milestones on the roadmap for the future development of disease maps, including creating and maintaining standardized disease maps; sharing parts of maps that encode common human disease mechanisms; providing technical solutions for complexity management of maps; and Web tools for in-depth exploration of such maps. A dedicated discussion was focused on mathematical modeling approaches, as one of the main goals of disease map development is the generation of mathematically interpretable representations to predict disease comorbidity or drug response and to suggest drug repositioning, altogether supporting clinical decisions.
Collapse
Affiliation(s)
- Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Stephan Gebel
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Inna Kuperstein
- Institut Curie, PSL Research University, INSERM U900, F-75005 Paris, France and CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, F-75006 Paris, France
| | - Alexander Mazein
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, INSERM U900, F-75005 Paris, France and CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, F-75006 Paris, France
| | - Ugur Dogrusoz
- Computer Engineering Department, Faculty of Engineering, Bilkent University, Ankara 06800, Turkey
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Ronan M T Fleming
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, Netherlands
| | - Nicolas Le Novère
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Thomas Ligon
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Anna Niarakis
- GenHotel EA3886, Univ Evry, Université Paris-Saclay, Evry 91025, France
| | - David Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Daniel Weindl
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, INSERM U900, F-75005 Paris, France and CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, F-75006 Paris, France
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, Universite du Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
9
|
Kondratova M, Sompairac N, Barillot E, Zinovyev A, Kuperstein I. Signalling maps in cancer research: construction and data analysis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4964960. [PMID: 29688383 PMCID: PMC5890450 DOI: 10.1093/database/bay036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Generation and usage of high-quality molecular signalling network maps can be augmented by standardizing notations, establishing curation workflows and application of computational biology methods to exploit the knowledge contained in the maps. In this manuscript, we summarize the major aims and challenges of assembling information in the form of comprehensive maps of molecular interactions. Mainly, we share our experience gained while creating the Atlas of Cancer Signalling Network. In the step-by-step procedure, we describe the map construction process and suggest solutions for map complexity management by introducing a hierarchical modular map structure. In addition, we describe the NaviCell platform, a computational technology using Google Maps API to explore comprehensive molecular maps similar to geographical maps and explain the advantages of semantic zooming principles for map navigation. We also provide the outline to prepare signalling network maps for navigation using the NaviCell platform. Finally, several examples of cancer high-throughput data analysis and visualization in the context of comprehensive signalling maps are presented.
Collapse
Affiliation(s)
- Maria Kondratova
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Nicolas Sompairac
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, F-75005 Paris, France.,INSERM, U900, F-75005 Paris, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| |
Collapse
|
10
|
Mazein A, Ostaszewski M, Kuperstein I, Watterson S, Le Novère N, Lefaudeux D, De Meulder B, Pellet J, Balaur I, Saqi M, Nogueira MM, He F, Parton A, Lemonnier N, Gawron P, Gebel S, Hainaut P, Ollert M, Dogrusoz U, Barillot E, Zinovyev A, Schneider R, Balling R, Auffray C. Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms. NPJ Syst Biol Appl 2018; 4:21. [PMID: 29872544 PMCID: PMC5984630 DOI: 10.1038/s41540-018-0059-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
The development of computational approaches in systems biology has reached a state of maturity that allows their transition to systems medicine. Despite this progress, intuitive visualisation and context-dependent knowledge representation still present a major bottleneck. In this paper, we describe the Disease Maps Project, an effort towards a community-driven computationally readable comprehensive representation of disease mechanisms. We outline the key principles and the framework required for the success of this initiative, including use of best practices, standards and protocols. We apply a modular approach to ensure efficient sharing and reuse of resources for projects dedicated to specific diseases. Community-wide use of disease maps will accelerate the conduct of biomedical research and lead to new disease ontologies defined from mechanism-based disease endotypes rather than phenotypes.
Collapse
Affiliation(s)
- Alexander Mazein
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Marek Ostaszewski
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Inna Kuperstein
- 3Institut Curie, Paris, France.,4INSERM, U900 Paris, France.,5Mines ParisTech, Fontainebleau, France.,6PSL Research University, Paris, France
| | - Steven Watterson
- 7Northern Ireland Centre for Stratified Medicine, Ulster University, C-Tric, Altnagelvin Hospital Campus, Derry, Co Londonderry, Northern Ireland, BT47 6SB UK
| | - Nicolas Le Novère
- 8The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Diane Lefaudeux
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Bertrand De Meulder
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Johann Pellet
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Irina Balaur
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Mansoor Saqi
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Maria Manuela Nogueira
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Feng He
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of BioHealth, 29 Rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg
| | - Andrew Parton
- 7Northern Ireland Centre for Stratified Medicine, Ulster University, C-Tric, Altnagelvin Hospital Campus, Derry, Co Londonderry, Northern Ireland, BT47 6SB UK
| | - Nathanaël Lemonnier
- 10Institute for Advanced Biosciences, University Grenoble-Alpes-INSERM U1209-CNRS UMR5309, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Piotr Gawron
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Stephan Gebel
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Pierre Hainaut
- 10Institute for Advanced Biosciences, University Grenoble-Alpes-INSERM U1209-CNRS UMR5309, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of BioHealth, 29 Rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.,11Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Ugur Dogrusoz
- 12Faculty of Engineering, Computer Engineering Department, Bilkent University, Ankara, 06800 Turkey
| | - Emmanuel Barillot
- 3Institut Curie, Paris, France.,4INSERM, U900 Paris, France.,5Mines ParisTech, Fontainebleau, France.,6PSL Research University, Paris, France
| | - Andrei Zinovyev
- 3Institut Curie, Paris, France.,4INSERM, U900 Paris, France.,5Mines ParisTech, Fontainebleau, France.,6PSL Research University, Paris, France
| | - Reinhard Schneider
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Rudi Balling
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Charles Auffray
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
11
|
Monraz Gomez LC, Kondratova M, Ravel JM, Barillot E, Zinovyev A, Kuperstein I. Application of Atlas of Cancer Signalling Network in preclinical studies. Brief Bioinform 2018; 20:701-716. [DOI: 10.1093/bib/bby031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/28/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- L Cristobal Monraz Gomez
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Maria Kondratova
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Jean-Marie Ravel
- Genetic Laboratory, Nancy's Regional University Hospital, Vandœuvre-lès-Nancy and INSERM UMR 954, Lorraine University, Vandœuvre-lès-Nancy
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| |
Collapse
|
12
|
Talevi A. Drug repositioning: current approaches and their implications in the precision medicine era. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1424535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alan Talevi
- Laboratory of Research and Development of Bioactive Compounds – Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata, La Plata, Argentina
| |
Collapse
|
13
|
Abstract
In this review we address to what extent computational techniques can augment our ability to predict toxicity. The first section provides a brief history of empirical observations on toxicity dating back to the dawn of Sumerian civilization. Interestingly, the concept of dose emerged very early on, leading up to the modern emphasis on kinetic properties, which in turn encodes the insight that toxicity is not solely a property of a compound but instead depends on the interaction with the host organism. The next logical step is the current conception of evaluating drugs from a personalized medicine point of view. We review recent work on integrating what could be referred to as classical pharmacokinetic analysis with emerging systems biology approaches incorporating multiple omics data. These systems approaches employ advanced statistical analytical data processing complemented with machine learning techniques and use both pharmacokinetic and omics data. We find that such integrated approaches not only provide improved predictions of toxicity but also enable mechanistic interpretations of the molecular mechanisms underpinning toxicity and drug resistance. We conclude the chapter by discussing some of the main challenges, such as how to balance the inherent tension between the predicitive capacity of models, which in practice amounts to constraining the number of features in the models versus allowing for rich mechanistic interpretability, i.e., equipping models with numerous molecular features. This challenge also requires patient-specific predictions on toxicity, which in turn requires proper stratification of patients as regards how they respond, with or without adverse toxic effects. In summary, the transformation of the ancient concept of dose is currently successfully operationalized using rich integrative data encoded in patient-specific models.
Collapse
|
14
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
15
|
Dorel M, Viara E, Barillot E, Zinovyev A, Kuperstein I. NaviCom: a web application to create interactive molecular network portraits using multi-level omics data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3098441. [PMID: 28415074 PMCID: PMC5467574 DOI: 10.1093/database/bax026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/08/2017] [Indexed: 12/21/2022]
Abstract
Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. Database URL: NaviCom is available at https://navicom.curie.fr
Collapse
Affiliation(s)
- Mathurin Dorel
- Institut Curie, 26 rue d'Ulm, F-75005 Paris, France.,Inserm, U900 F-75005, Paris France.,Mines Paris Tech, F-77305 Cedex Fontainebleau, France.,PSL Research University, Paris F-75005, France.,Ecole Normale Supérieure, 46 rue d'Ulm, Paris, France.,Institute of Pathology and Institute for Theoretical Biology, Charite - Universitätsmedizin Berlin, Chariteplatz 1, Berlin 10117, Germany
| | | | - Emmanuel Barillot
- Institut Curie, 26 rue d'Ulm, F-75005 Paris, France.,Inserm, U900 F-75005, Paris France.,Mines Paris Tech, F-77305 Cedex Fontainebleau, France.,PSL Research University, Paris F-75005, France
| | - Andrei Zinovyev
- Institut Curie, 26 rue d'Ulm, F-75005 Paris, France.,Inserm, U900 F-75005, Paris France.,Mines Paris Tech, F-77305 Cedex Fontainebleau, France.,PSL Research University, Paris F-75005, France
| | - Inna Kuperstein
- Institut Curie, 26 rue d'Ulm, F-75005 Paris, France.,Inserm, U900 F-75005, Paris France.,Mines Paris Tech, F-77305 Cedex Fontainebleau, France.,PSL Research University, Paris F-75005, France
| |
Collapse
|
16
|
Roukos DH. Spatiotemporal diversification of intrapatient genomic clones and early drug development concepts realize the roadmap of precision cancer medicine. Drug Discov Today 2017; 22:1148-1164. [PMID: 28400153 DOI: 10.1016/j.drudis.2017.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/21/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
The unmet clinical needs of high relapse and cancer-related death rates are reflected by the poor understanding of the genome-wide mutational landscape and molecular mechanisms orchestrating therapeutic resistance. Emerging potential solutions to this challenge include the exploration of cancer genome dynamic evolution in time and space. Breakthrough next-generation sequencing (NGS) applications including multiregional NGS for intratumor heterogeneity identification, repeated cell-free DNA/circulating tumor DNA-NGS for detecting circulating genomic subclones and their comparison to reveal intrapatient heterogeneity (IPH) could identify the dynamic emergence of resistant subclones in the neoadjuvant, adjuvant and metastatic setting. Based on genome-phenotype map, and potential promising findings, rigorous evaluation of IPH spatiotemporal evolution and early drug development concepts in innovative clinical trials could dramatically speed up the translational process to achieve clinical precision oncology.
Collapse
Affiliation(s)
- Dimitrios H Roukos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece.
| |
Collapse
|
17
|
Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, Lezhnina K, Ozerov I, Labat I, Zhavoronkov A. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today 2016; 22:210-222. [PMID: 27693712 DOI: 10.1016/j.drudis.2016.09.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/26/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Here, we provide a comprehensive overview of the current status of in silico repurposing methods by establishing links between current technological trends, data availability and characteristics of the algorithms used in these methods. Using the case of the computational repurposing of fasudil as an alternative autophagy enhancer, we suggest a generic modular organization of a repurposing workflow. We also review 3D structure-based, similarity-based, inference-based and machine learning (ML)-based methods. We summarize the advantages and disadvantages of these methods to emphasize three current technical challenges. We finish by discussing current directions of research, including possibilities offered by new methods, such as deep learning.
Collapse
Affiliation(s)
- Quentin Vanhaelen
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA.
| | - Polina Mamoshina
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Alexander M Aliper
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Artem Artemov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ksenia Lezhnina
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ivan Ozerov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ivan Labat
- BioTime Inc., 1010 Atlantic Avenue, 102, Alameda, CA 94501, USA
| | - Alex Zhavoronkov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| |
Collapse
|
18
|
Jackson RA, Chen ES. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacol Ther 2016; 162:69-85. [DOI: 10.1016/j.pharmthera.2016.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Brustugun OT. Stratification in advanced non-small cell lung cancer: precision medicine in practice. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1176861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Roukos DH. Crossroad between linear and nonlinear transcription concepts in the discovery of next-generation sequencing systems-based anticancer therapies. Drug Discov Today 2016; 21:663-73. [PMID: 26912452 DOI: 10.1016/j.drudis.2016.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 01/06/2023]
Abstract
The unprecedented potential of standard and new next-generation sequencing applications and methods to explore cancer genome evolution and tumor heterogeneity as well as transcription networks in time and space shapes the development of next-generation therapeutics. However, biomedical and pharmaceutical research for overcoming heterogeneity-based therapeutic resistance is at an important crossroads. Focus on linear transcription-based drug development targeting dynamics of simple intrapatient structured genome diversity represents a realistic medium-term goal. By contrast, the discovery of nonlinear transcription drugs for targeting structural and functional genome and transcriptome heterogeneity represents a long-term rational strategy. This review compares effectiveness, challenges and expectations between linear and nonlinear drugs targeting simple intrapatient variation and aberrant transcriptional biocircuits, respectively.
Collapse
Affiliation(s)
- Dimitrios H Roukos
- Centre for Biosystems and Genomic Network Medicine and Research & Innovation Commission of Ioannina University, School of Medicine, Ioannina, Greece; Hellenic Genomic Center and Systems Biology Unit of Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| |
Collapse
|
21
|
Levesque BG, Ghosh S. Targeting Integrins and Safety in an Emerging Class of Targeted Oral Therapies: Are We Prepared for Rational and Precision Choices? Gastroenterology 2015; 149:1669-72. [PMID: 26505818 DOI: 10.1053/j.gastro.2015.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Barrett G Levesque
- Robarts Clinical Trials, University of Western Ontario, London, Ontario, Canada; Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - Subrata Ghosh
- Department of Medicine, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|