1
|
Ye Z, Ding J, Huang J, Hu Z, Jin F, Wu K. Ginsenoside Rg3 activates the immune function of CD8+ T cells via circFOXP1-miR-4477a-PD-L1 axis to induce ferroptosis in gallbladder cancer. Arch Pharm Res 2024; 47:793-811. [PMID: 39466543 DOI: 10.1007/s12272-024-01516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Gallbladder cancer (GBC) is the most common and leading cause of cancer-associated mortality among biliary tract carcinomas worldwide and there is no specific drug for treatment. Activation of CD8+ T cell immune activity is one of the strategies to improve GBC treatment. This study is aimed to investigate the role of Ginsenoside Rg3 on CD8+ T cell activation and pathogenesis of GBC. In GBC cells, Rg3 administration led to the significant reduction of circFOXP1 and PD-L1 as measured by Quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting. Mechanistically, circFOXP1 acted as the sponge of miR-4477a to regulate PD-L1 expression as demonstrated by RNA pull-down assay and dual luciferase reporter assay. Rg3 treatment enhanced the activity of CD8+ T cells by inhibiting the circFOXP1/miR-4477a/PD-L1 signaling axis. Besides, Rg3 administration induced lipid oxidation and ROS reduction as detected by Flow cytometry, resulting in ferroptosis via the inactivation of circFOXP1/miR-4477a/PD-L1 axis. Ferroptosis inhibitor Fer-1 administration could reverse the beneficial effects caused by Rg3 treatment while ferroptosis inducer Erastin treatment enhanced the effects. Moreover, Rg3 gavage alleviated tumor growth and elevated ferroptosis and apoptosis in tumor tissues, which were prevented by PD-L1 overexpression. Furthermore, Rg3 was demonstrated to activate the function of CD8+ T cells via regulating the circFOXP1-miR-4477a-PD-L1 signaling axis in vivo. Rg3 inactivated the circFOXP1-miR-4477a-PD-L1 signaling axis to activate the immune function of CD8+ T cells, thereby inducing ferroptosis and apoptosis in GBC cells. This research recognizes the mechanism of Rg3-mediated anti-cancer effect and offers evidence for the potentiality of Rg3 in clinical application for GBC therapy.
Collapse
Affiliation(s)
- Zhipeng Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Jianfeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Jie Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhao Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Fa Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Keren Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Sun D, Zou Y, Song L, Han S, Yang H, Chu D, Dai Y, Ma J, O'Driscoll CM, Yu Z, Guo J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B 2022; 12:378-393. [PMID: 35127393 PMCID: PMC8799998 DOI: 10.1016/j.apsb.2021.06.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.
Collapse
Key Words
- ATF6, activating transcription factor 6
- ATP, adenosine triphosphate
- CI, combination index
- CRC, colorectal cancer
- CRT, calreticulin
- CTLA-4, cytotoxic T lymphocyte antigen 4
- CXCL10, C-X-C motif chemokine 10
- CXCL9, C-X-C motif chemokine 9
- Chemotherapy
- Colorectal cancer
- Combination therapy
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ECL, enhanced chemiluminescence
- EE, encapsulation efficiency
- ER, endoplasmic reticulum
- FA, folate
- HMGB1, high-mobility group box 1
- ICD, immunogenic cell death
- IFN-γ, interferon-gamma
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-4, interleukin-4
- IL-6, interleukin-6
- IRE1, inositol-requiring enzyme 1
- Immunogenic cell death
- Immunotherapy
- LC, loading capacity
- MDSCs, myeloid derived suppressor cells
- MMR, mismatch repair
- MR, molar ratio
- NAC, N-acetyl-l-cysteine
- NP, nanoparticle
- Nano drug delivery system
- PD-L1, programmed death-ligand 1
- PEG, polyethylene glycol
- PERK, PKR-like ER kinase
- PFA, paraformaldehyde
- PVDF, polyvinylidene fluoride
- QTN, quercetin
- ROS, reactive oxygen species
- Reactive oxygen species
- TAAs, tumor-associated antigens
- TME, tumor microenvironment
- Tumor microenvironment
- UPR, unfolded protein response
- p-IRE1, phosphorylation of IRE1
- p-PERK, phosphorylation of PERK
Collapse
Affiliation(s)
- Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | | | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Liu Z, Liu T, Li W, Li J, Wang C, Zhang K. Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep 2021; 48:2639-2652. [PMID: 33661439 DOI: 10.1007/s11033-021-06187-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Panax ginseng, an ancient herb, belonging to Chinese traditional medicine, is an important herb that has a remarkable impact on various diseases. Ginsenoside Rg3, one of the most abundant ginsenosides, exerts significant functions in the prevention of various types of cancers with few side effects. In the present review, its functional molecular mechanisms are explored, including the improvement of antioxidant and anti-inflammation properties, immune regulation, induction of tumor apoptosis, prevention of tumor invasion and metastasis, tumor proliferation and angiogenesis, and reduction of chemoresistance and radioresistance. On the other hand, metabolism, pharmacokinetics and clinical indications of Rg3 are also discussed. The biological functional role of ginsenoside Rg3 may be associated with that it is a steroid glycoside with diverse biological activities and many signaling pathway can be regulated. Many clinical trials are highly needed to confirm the functions of ginsenoside Rg3.
Collapse
Affiliation(s)
- Zongyu Liu
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Cuizhu Wang
- Department of New Drug Research Office, College of Pharmacy of Jilin University, Changchun, 130000, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China.
| |
Collapse
|
4
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
5
|
Metwaly AM, Lianlian Z, Luqi H, Deqiang D. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects. Molecules 2019; 24:E1856. [PMID: 31091790 PMCID: PMC6572638 DOI: 10.3390/molecules24101856] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
Black ginseng is a type of processed ginseng that is prepared from white or red ginseng by steaming and drying several times. This process causes extensive changes in types and amounts of secondary metabolites. The chief secondary metabolites in ginseng are ginsenosides (dammarane-type triterpene saponins), which transform into less polar ginsenosides in black ginseng by steaming. In addition, apparent changes happen to other secondary metabolites such as the increase in the contents of phenolic compounds, reducing sugars and acidic polysaccharides in addition to the decrease in concentrations of free amino acids and total polysaccharides. Furthermore, the presence of some Maillard reaction products like maltol was also engaged. These obvious chemical changes were associated with a noticeable superiority for black ginseng over white and red ginseng in most of the comparative biological studies. This review article is an attempt to illustrate different methods of preparation of black ginseng, major chemical changes of saponins and other constituents after steaming as well as the reported biological activities of black ginseng, its major saponins and other metabolites.
Collapse
Affiliation(s)
- Ahmed M Metwaly
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Zhu Lianlian
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| | - Huang Luqi
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Mennei South street, Dong-Cheng District, Beijing 100700, China.
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian 116600, China.
| |
Collapse
|
6
|
Wang XJ, Zhou RJ, Zhang N, Jing Z. 20(S)-ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to icotinib through inhibition of autophagy. Eur J Pharmacol 2019; 850:141-149. [PMID: 30772396 DOI: 10.1016/j.ejphar.2019.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/04/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have become a standard therapy for non-small cell lung cancer (NSCLC) patients with sensitive mutations. However, acquired resistance inevitably emerges after a median of 6-12 months. It has been demonstrated that autophagy plays an important role in EGFR-TKI resistance. 20(S)-ginsenoside Rg3 (Rg3) is proposed to sensitize the cancer cells to chemotherapy by inhibiting autophagy. We examined the ability of Rg3 to inhibit autophagy and increase the sensitivity of NSCLC cells to icotinib. We show that the induction of autophagy in response to icotinib contributes to the development of icotinib resistance. Rg3 is capable of inhibiting autophagic flux and enhancing the sensitivity of NSCLC cells to icotinib. The resistance to icotinib could also be reversed through Rg3-induced autophagy inhibition. Autophagy inhibition by Rg3 increases the therapeutic response in both icotinib-sensitive and icotinib-resistant NSCLC cells with an EGFR-activating mutation and may be an effective new treatment strategy for this disease.
Collapse
Affiliation(s)
- Xiao-Ju Wang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 34 Yanguan Lane, Hangzhou 310002, Zhejiang, PR China
| | - Rong-Jin Zhou
- Department of Pathology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, PR China
| | - Ni Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 34 Yanguan Lane, Hangzhou 310002, Zhejiang, PR China
| | - Zhao Jing
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 34 Yanguan Lane, Hangzhou 310002, Zhejiang, PR China.
| |
Collapse
|
7
|
Wang L, Yun L, Wang X, Sha L, Wang L, Sui Y, Zhang H. RETRACTED: Endoplasmic reticulum stress triggered by Soyasapogenol B promotes apoptosis and autophagy in colorectal cancer. Life Sci 2019; 218:16-24. [DOI: 10.1016/j.lfs.2018.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
|
8
|
Ginsenoside Rg3: Potential Molecular Targets and Therapeutic Indication in Metastatic Breast Cancer. MEDICINES 2019; 6:medicines6010017. [PMID: 30678106 PMCID: PMC6473622 DOI: 10.3390/medicines6010017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Breast cancer is still one of the most prevalent cancers and a leading cause of cancer death worldwide. The key challenge with cancer treatment is the choice of the best therapeutic agents with the least possible toxicities on the patient. Recently, attention has been drawn to herbal compounds, in particular ginsenosides, extracted from the root of the Ginseng plant. In various studies, significant anti-cancer properties of ginsenosides have been reported in different cancers. The mode of action of ginsenoside Rg3 (Rg3) in in vitro and in vivo breast cancer models and its value as an anti-cancer treatment for breast cancer will be reviewed.
Collapse
|
9
|
Hispidulin induces ER stress-mediated apoptosis in human hepatocellular carcinoma cells in vitro and in vivo by activating AMPK signaling pathway. Acta Pharmacol Sin 2018; 40:666-676. [PMID: 30218072 DOI: 10.1038/s41401-018-0159-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hispidulin (4',5,7-trihydroxy-6-methoxyflavone) is a phenolic flavonoid isolated from the medicinal plant S. involucrata, which exhibits anti-neoplastic activity against several types of cancer. However, the mechanism underlying its anti-cancer activity against hepatocellular carcinoma (HCC) has not been fully elucidated. In this study, we investigated whether and how hispidulin-induced apoptosis of human HCC cells in vitro and in vivo. We showed that hispidulin (10, 20 μmol/L) dose-dependently inhibited cell growth and promoted apoptosis through mitochondrial apoptosis pathway in human HCC SMMC7721 cells and Huh7 cells. More importantly, we revealed that its pro-apoptotic effects depended on endoplasmic reticulum stress (ERS) and unfolded protein response (UPR), as pretreatment with salubrinal, a selective ERS inhibitor, or shRNA targeting a UPR protein CHOP effectively abrogated hispidulin-induced cell apoptosis. Furthermore, we showed that hispidulin-induced apoptosis was mediated by activation of AMPK/mTOR signaling pathway as pretreatment with Compound C, an AMPK inhibitor, or AMPK-targeting siRNA reversed the pro-apoptotic effect of hispidulin. In HCC xenograft nude mice, administration of hispidulin (25, 50 mg/kg every day, ip, for 27 days) dose-dependently suppressed the tumor growth, accompanied by inducing ERS and apoptosis in tumor tissue. Taken together, our results demonstrate that hispidulin induces ERS-mediated apoptosis in HCC cells via activating the AMPK/mTOR pathway. This study provides new insights into the anti-tumor activity of hispidulin in HCC.
Collapse
|
10
|
Kai D, Yannian L, Yitian C, Dinghao G, Xin Z, Wu J. Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem Biophys Res Commun 2018; 503:863-869. [PMID: 29928876 DOI: 10.1016/j.bbrc.2018.06.088] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
Recent studies have implied that circHIPK3, an abundant circular RNA (circRNA), participates in tumorigenesis and cancer progression. Its expression and potential functions in human gallbladder cancer were examined in this study. We show that circHIPK3 is upregulated in human gallbladder cancer cells. But its level is low in gallbladder epithelial cells. circHIPK3 silencing by targeted siRNA potently inhibited survival and proliferation of established and primary human gallbladder cancer cells, while inducing cell apoptosis. Conversely, ectopic over-expression of circHIPK3 can further promote cancer cell proliferation. In gallbladder cancer cells, circHIPK3 sponged the tumor-suppressive microRNA-124 (miR-124) to sequester and inhibit its activity, thereby leading to increased expression of miR-124 targets, including ROCK1 (rho-associated protein kinase 1) and CDK6 (rho-associated protein kinase). Ectopic over-expression of miR-124 b y a lentiviral vector mimicked and abolished actions by circHIPK3 siRNA in gallbladder cancer cells. At last, we show that circHIPK3 is upregulated in human gallbladder cancer tissues, which is correlated with miR-124 downregulation and ROCK1-CDK6 upregulation. Together, we conclude that circHIPK3 promotes gallbladder cancer cell growth possibly by sponging miR-124. The over-expressed circHIPK3 could be a novel therapeutic target and diagnosis marker of human gallbladder cancer.
Collapse
Affiliation(s)
- Ding Kai
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liao Yannian
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chen Yitian
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gong Dinghao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhao Xin
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Lu XS, Qiao YB, Li Y, Yang B, Chen MB, Xing CG. Preclinical study of cinobufagin as a promising anti-colorectal cancer agent. Oncotarget 2018; 8:988-998. [PMID: 27894091 PMCID: PMC5352212 DOI: 10.18632/oncotarget.13519] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Here, we assessed the anti-colorectal cancer (CRC) cell activity of cinobufagin (CBG). We found that CBG exerted potent cytotoxic and anti-proliferative activity against CRC lines (HCT-116 and HT-29) and primary human CRC cells. Meanwhile, it activated apoptosis, and disrupted cell-cycle progression in the cells. At the signaling level, CBG treatment in CRC cells provoked endoplasmic reticulum stress (ER stress), the latter was evidenced by caspase-12 activation, CHOP expression, as well as PERK and IRE1 phosphorylations. Contrarily, the ER stress inhibitor salubrinal, the caspase-12 inhibitor and CHOP shRNA remarkably attenuated CBG-induced CRC cell death and apoptosis. Further, CBG in-activated mammalian target or rapamycin complex 1 (mTORC1), which appeared responsible for proliferation inhibition in CRC cells. Introduction of a constitutively-active S6K1 (“ca-S6K1”) restored proliferation of CBG-treated CRC cells. Finally, CBG intraperitoneal injection suppressed HCT-116 xenograft tumor growth in the nude mice. CHOP upregulation and mTORC1 in-activation were also noticed in CBG-treated HCT-116 tumors. The results of this preclinical study suggest that CBG could be tested as promising anti-CRC agent.
Collapse
Affiliation(s)
- Xing-Sheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of General Surgery, Suzhou Municipal Hospital, Suzhou, China
| | - Yin-Biao Qiao
- Department of Hepatobiliary Surgery, The Third Hospital Affiliated to Soochow University, Changzhou City, Jiangsu, China
| | - Ya Li
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Hepatobiliary Surgery, The Third Hospital Affiliated to Soochow University, Changzhou City, Jiangsu, China
| | - Min-Bin Chen
- Department of Medical Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Chun-Gen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Pan XP, Wang C, Li Y, Huang LH. Physcion induces apoptosis through triggering endoplasmic reticulum stress in hepatocellular carcinoma. Biomed Pharmacother 2018; 99:894-903. [PMID: 29710489 DOI: 10.1016/j.biopha.2018.01.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive malignancies. The current study aimed to investigate the effect of physcion, a major active ingredient in several traditional herbal medicinal plants, for the treatment of HCC. Our data showed that physcion markedly induced apoptosis in human HCC cell lines Huh7 and Bel7402. The pro-apoptotic role of physcion on HCC cells was mediated by mitochondria dysfunction, which was caused by activation of endoplasmic reticulum(ER) stress. Moreover, our findings revealed that physcion stimulated ER stress by activating AMPK signaling. Besides in HCC cell lines, the anti-cancer activity of physcion was also examined in a xenograft mice model, which showed that physcion could significantly suppressed tumor growth. In conclusion, our results indicated that physcion can be considered as a potential chemotherapeutic agent in the treatment of HCC.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- The People's Hospital of Wuhai, Wuhai, Inner Mongolia, China; Baotou Medical College, Baotou, Inner Mongolia, China.
| | - Chen Wang
- The People's Hospital of Wuhai, Wuhai, Inner Mongolia, China
| | - Yan Li
- The People's Hospital of Wuhai, Wuhai, Inner Mongolia, China
| | - Li-Hua Huang
- Baotou Medical College, Baotou, Inner Mongolia, China.
| |
Collapse
|
13
|
Qu Y, Wang Z, Zhao F, Liu J, Zhang W, Li J, Song Z, Xu H. AFM-detected apoptosis of hepatocellular carcinoma cells induced by American ginseng root water extract. Micron 2017; 104:1-7. [PMID: 29049926 DOI: 10.1016/j.micron.2017.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022]
Abstract
American ginseng as a common and traditional herbal medicine has been used in cancer treatment for many years. However, the effect of American ginseng on the cancer cell response (i.e. apoptosis) has not been fully understood yet. Previous studies demonstrated that cellular apoptosis was associated with the changes of mechanical and morphological properties. Therefore, in this study, mechanical and morphological characterizations were carried out by both atomic force microscope (AFM) and inverted optical microscope to investigate the apoptosis of hepatocellular carcinoma (SMMC-7721) cells affected by American ginseng root water extract (AGRWE). The results showed that the cells treated with AGRWE exhibited significantly larger surface roughness, height and elastic modulus values than control group. Moreover, those parameters were upregulated under the higher concentration of AGRWE and longer culture time. Consequently, it indicates that the mechanical and morphological properties can be used as the apoptotic characteristics of SMMC-7721 cells. Also, the increased surface roughness and elastic modulus of cells under the AGRWE treatment have shown that the apoptosis of SMMC-7721 cells can be enhanced by AGRWE. This will provide an important implication for hepatocelluar carcinoma treatment and drug development.
Collapse
Affiliation(s)
- Yingmin Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, UK.
| | - Feihu Zhao
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Jinyun Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, UK
| | - Wenxiao Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Jingmei Li
- School of Life Sciences, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Hongmei Xu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
14
|
Zhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, Xuan A, He X, Long D, Zhu X, Ma N, Leng S. NF- κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discov 2017; 3:17059. [PMID: 28904818 PMCID: PMC5592653 DOI: 10.1038/cddiscovery.2017.59] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Targeting endoplasmic reticulum (ER) stress is being investigated for its anticancer effect in various cancers, including cervical cancer. However, the molecular pathways whereby ER stress mediates cell death remain to be fully elucidated. In this study, we confirmed that ER stress triggered by compounds such as brefeldin A (BFA), tunicamycin (TM), and thapsigargin (TG) leads to the induction of the unfolded protein response (UPR) in cervical cancer cell lines, which is characterized by elevated levels of inositol-requiring kinase 1α, glucose-regulated protein-78, and C/EBP homologous protein, and swelling of the ER observed by transmission electron microscope (TEM). We found that BFA significantly increased autophagy in tumor cells and induced TC-1 tumor cell death in a dose-dependent manner. BFA increased punctate staining of LC3 and the number of autophagosomes observed by TEM in TC-1 and HeLa cells. The autophagic flux was also assessed. Bafilomycin, which blocked degradation of LC3 in lysosomes, caused both LC3I and LC3II accumulation. BFA initiated apoptosis of TC-1 tumor cells through activation of the caspase-12/caspase-3 pathway. At the same time, BFA enhanced the phosphorylation of IκBα protein and translocation into the nucleus of NF-κB p65. Quinazolinediamine, an NF-κB inhibitor, attenuated both autophagy and apoptosis induced by BFA; meanwhile, it partly enhances survival of cervical cancer cells following BFA treatment. In conclusion, our results indicate that the cross-talk between ER stress, autophagy, apoptosis, and the NF-κB pathways controls the fate of cervical cancer cells. Careful evaluation should be given to the addition of an NF-κB pathway inhibitor to treat cervical cancer in combination with drugs that induce ER stress-mediated cell death.
Collapse
Affiliation(s)
- Xiaolan Zhu
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Li Huang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Jie Gong
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Chun Shi
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Zhiming Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Bingkun Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Aiguo Xuan
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Xiaosong He
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Dahong Long
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Guangdong Medical College, Zhanjiang/Dongguan, People's Republic of China
| | - Ningfang Ma
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Shuilong Leng
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| |
Collapse
|
15
|
Korean Red Ginseng extract and ginsenoside Rg3 have anti-pruritic effects on chloroquine-induced itch by inhibition of MrgprA3/TRPA1-mediated pathway. J Ginseng Res 2017; 42:470-475. [PMID: 30337807 PMCID: PMC6187082 DOI: 10.1016/j.jgr.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Background It was previously found that Korean Red Ginseng water extract (KRGE) inhibits the histamine-induced itch signaling pathway in peripheral sensory neurons. Thus, in the present study, we investigated whether KRGE inhibited another distinctive itch pathway induced by chloroquine (CQ); a representative histamine-independent pathway mediated by MrgprA3 and TRPA1. Methods Intracellular calcium changes were measured by the calcium imaging technique in the HEK293T cells transfected with both MrgprA3 and TRPA1 ("MrgprA3/TRPA1"), and in primary culture of mouse dorsal root ganglia (DRGs). Mouse scratching behavior tests were performed to verify proposed antipruritic effects of KRGE and ginsenoside Rg3. Results CQ-induced Ca2+ influx was strongly inhibited by KRGE (10 μg/mL) in MrgprA3/TRPA1, and notably ginsenoside Rg3 dose-dependently suppressed CQ-induced Ca2+ influx in MrgprA3/TRPA1. Moreover, both KRGE (10 μg/mL) and Rg3 (100 μM) suppressed CQ-induced Ca2+ influx in primary culture of mouse DRGs, indicating that the inhibitory effect of KRGE was functional in peripheral sensory neurons. In vivo tests revealed that not only KRGE (100 mg) suppressed CQ-induced scratching in mice [bouts of scratching: 274.0 ± 51.47 (control) vs. 104.7 ± 17.39 (KRGE)], but also Rg3 (1.5 mg) oral administration significantly reduced CQ-induced scratching as well [bouts of scratching: 216.8 ± 33.73 (control) vs. 115.7 ± 20.94 (Rg3)]. Conclusion The present study verified that KRGE and Rg3 have a strong antipruritic effect against CQ-induced itch. Thus, KRGE is as a promising antipruritic agent that blocks both histamine-dependent and -independent itch at peripheral sensory neuronal levels.
Collapse
|
16
|
Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2017; 42:123-132. [PMID: 29719458 PMCID: PMC5926405 DOI: 10.1016/j.jgr.2017.01.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 11/02/2022] Open
Abstract
Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-d-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| |
Collapse
|
17
|
Sun M, Ye Y, Xiao L, Duan X, Zhang Y, Zhang H. Anticancer effects of ginsenoside Rg3 (Review). Int J Mol Med 2017; 39:507-518. [PMID: 28098857 DOI: 10.3892/ijmm.2017.2857] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 10/20/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer is a life-threatening disease with an alarmingly increased annual mortality rate globally. Although various therapies are employed for cancer, the final effect is not satisfactory. Chemotherapy is currently the most commonly used treatment option. However, the unsatisfactory efficacy, severe side-effects and drug resistance hinder the therapeutic efficacy of chemotherapeutic drugs. There is increasing evidence indicating that ginsenoside Rg3, a naturally occurring phytochemical, plays an important role in the prevention and treatment of cancer. The suggested mechanisms mainly include the induction of apoptosis, and the inhibition of proliferation, metastasis and angiogenesis, as well as the promotion of immunity. In addition, ginsenoside Rg3 can be used as an adjuvant to conventional cancer therapies, improving the efficacy and/or reducing adverse effects via synergistic activities. Ginsenoside Rg3 may be a widely applied natural medicine against cancer. To date however, there is no systematic summary available of the anticancer effects of ginsenoside Rg3. Therefore, in this review, all available literature over the past 10 years was reviewed and discussed in order to facilitate further research of ginsenoside Rg3.
Collapse
Affiliation(s)
- Mengyao Sun
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Ling Xiao
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Xinya Duan
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Yongming Zhang
- Department of Cardiothoracic Surgery, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| |
Collapse
|
18
|
Nie J, Liu A, Tan Q, Zhao K, Hu K, Li Y, Yan B, Zhou L. AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem Biophys Res Commun 2016; 482:246-252. [PMID: 27847321 DOI: 10.1016/j.bbrc.2016.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, its activity in human gallbladder cancer cells was evaluated here. We show that AICAR provoked significant apoptosis in human gallbladder cancer cell lines (Mz-ChA-1, QBC939 and GBC-SD) and primary gallbladder cancer cells. AICAR-induced cytotoxicity in gallbladder cancer cells appears independent of AMPK activation. Inhibition of AMPK, via AMPKα shRNA knockdown or dominant negative mutation (T172A), failed to rescue GBC-SD cells from AICAR. Further, forced-activation of AMPK, by adding two other AMPK activators (A769662 and Compound 13), or expressing a constitutively-active mutant AMPKα (T172D), didn't induce GBC-SD cell death. Remarkably, AICAR treatment in gallbladder cancer cells induced endoplasmic reticulum (ER) stress activation, the latter was tested by caspase-12 activation, C/EBP homologous protein (CHOP) expression and IRE1/PERK phosphorylation. Contrarily, salubrinal (the ER stress inhibitor), z-ATAD-fmk (the caspase-12 inhibitor) or CHOP shRNAs significantly attenuated AICAR-induced gallbladder cancer cell apoptosis. Together, we conclude that AICAR-induced gallbladder cancer cell apoptosis requires ER stress activation, but is independent of AMPK.
Collapse
Affiliation(s)
- Jifeng Nie
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Aidong Liu
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qunya Tan
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Kai Zhao
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Kui Hu
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Yong Li
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Bin Yan
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Lin Zhou
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
19
|
The Natural Occurring Compounds Targeting Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7831282. [PMID: 27563337 PMCID: PMC4987485 DOI: 10.1155/2016/7831282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/04/2016] [Indexed: 12/14/2022]
Abstract
ER stress has been implicated in pathophysiological development of many diseases. Persistent overwhelming stimuli trigger ER stress to initiate apoptosis, autophagy, and cell death. IRE1-JNK and eIF2α-CHOP signaling pathways are the two important players of ER stress, which is also modulated by ROS production, calcium disturbance, and inflammatory factors. ER stress has been developed as a novel strategy for diseases management. Recently, a vast of research focuses on the natural occurring compounds targeting ER stress, which results in medical benefits to human diseases. These small reported molecules mainly include polyphenols, alkaloids, and saponins. Many of them have been developed for use in clinical applications. To better understand the pharmacological mechanism of these molecules in ER stress in diseases, efforts have been made to discover and deliver medical merits. In this paper, we will summarize the natural occurring compounds targeting ER stress.
Collapse
|