1
|
Saini D, Chaudhary PK, Chaudhary JK, Kaur H, Verma GK, Pramanik SD, Roy P, Mirza-Shariff AA, Prasad R. Molecular mechanisms of antiproliferative and pro-apoptotic effects of essential oil active constituents in MCF7 and T24 cancer cell lines: in vitro insights and in silico modelling of proapoptotic gene product-compound interactions. Apoptosis 2024:10.1007/s10495-024-02065-x. [PMID: 39738801 DOI: 10.1007/s10495-024-02065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
This study aims to investigate the in vitro antiproliferative and pro-apoptotic/apoptotic potential of active constituents of essential oils on two cancer cell lines; namely, breast adenocarcinoma (MCF-7) and urinary bladder cancer (T24). Essential oils active constituents (EO-ACs) entail a spectrum of phytochemicals with widely demonstrated anticancer potential. We assessed the effects of eight essential oils active constituents on T24 and MCF-7 cell lines in both dose- (16-1024 µg/mL) and time-dependent manners. Among these, five EO-ACs (citral, carvacrol, eugenol, geraniol, and thymol) exhibited IC50 values, ranging from 24 µg/mL to 34 µg/mL, as determined by the MTT assay over 72 h. It was observed that the mitochondrial membrane potential decreased while ROS generation increased substantially in treated cells compared to the control. The underlying apoptotic pathway with regard to pro-apoptotic/apoptotic genes was explored through qRT-PCR and western blotting, which showed significant (p < 0.05) upregulation of Bax, Bak, caspase 7, caspase 9, and downregulation of Bcl-2, pERK, and pAkt. The in-silico study showed strong interaction of thymol and carvacrol with Caspase 9, with complex binding energies of -6.1 Kcal/mol and - 6.3 Kcal/mol, respectively. In conclusion, EO-ACs, particularly thymol and carvacrol, effectively reduced cell viability, and triggered caspase-dependent apoptosis in both MCF-7 and T-24 cell lines. These findings categorically underscore EO-ACs as promising active compounds for anticancer therapy, warranting further in-depth exploration through in vivo studies.
Collapse
Affiliation(s)
- Deepika Saini
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh, 249201, India
| | - Pankaj Kumar Chaudhary
- Molecular Biology & Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, 247667, India
| | | | - Harry Kaur
- Molecular Biology & Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, 247667, India
| | - Ganesh Kumar Verma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh, 249201, India
| | - Siddhartha Das Pramanik
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, 247667, India
| | - Anissa Atif Mirza-Shariff
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rishikesh, 249201, India.
| | - Ramasare Prasad
- Molecular Biology & Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, 247667, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Bass NI, Parekh MY, Satyal P, Soni S, Jacob JA, Mack JP, Lobo DE. Manuka Essential Oil Triggers Apoptosis and Activation of c-Jun N-Terminal Kinase in Fibroblasts and Fibrosarcoma Cells. Molecules 2024; 29:5168. [PMID: 39519810 PMCID: PMC11547341 DOI: 10.3390/molecules29215168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Manuka essential oil has long been used in traditional medicine, though the effects of the oil on cancer cells have limited studies. The goal of this project was to treat cancer cell lines with manuka essential oil at different concentrations and to ascertain the effects on the cell proliferation of normal fibroblast (CUA-4) and on fibrosarcoma (HT-1080) cells. Cell lines were grown on 24-well plates, and subconfluent cultures were treated with varying concentrations of manuka oil for 24 h. The effect of the oil on proliferation and viability was measured through direct cell counting using trypan blue dye exclusion and through the use of an MTT assay. As the concentration of oil increased, proliferation of all cell lines tested decreased with increasing dosage, concurrently with a decrease in MTT activity. To determine if the decrease in cell numbers observed from manuka oil treatment is the result of apoptosis, PARP cleavage assays were performed, confirming that the treatment caused apoptosis in both normal fibroblasts and fibrosarcoma cells. The stress-activated MAPK protein, JNK, was activated by manuka essential oil treatment, occurring synergistically with a decrease in MKP-1 expression.
Collapse
Affiliation(s)
- Noa I. Bass
- Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA (J.P.M.)
| | - Mruga Y. Parekh
- Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA (J.P.M.)
| | | | - Subah Soni
- Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA (J.P.M.)
| | - Jive A. Jacob
- Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA (J.P.M.)
| | - James P. Mack
- Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA (J.P.M.)
| | - Dorothy E. Lobo
- Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA (J.P.M.)
| |
Collapse
|
3
|
Luang-In V, Saengha W, Karirat T, Senakun C, Siriamornpun S. Phytochemical Profile of Cymbopogon citratus (DC.) Stapf Lemongrass Essential Oil from Northeastern Thailand and Its Antioxidant and Antimicrobial Attributes and Cytotoxic Effects on HT-29 Human Colorectal Adenocarcinoma Cells. Foods 2024; 13:2928. [PMID: 39335857 PMCID: PMC11431795 DOI: 10.3390/foods13182928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer is the third most prevalent cancer in Thailand, prompting the search for alternative or preventive treatments using natural constituents. In this study, the authors employed hydrodistillation to extract Cymbopogon citratus (DC.) Stapf (lemongrass) essential oil (LEO) from plants in northeastern Thailand and assessed its chemical profile, antioxidant, antimicrobial, and anticancer properties. The LEO displayed potent antioxidant activities in DPPH and hydroxyl scavenging assays with IC50 values of 2.58 ± 0.08 and 4.05 ± 0.12 mg/mL, respectively, and demonstrated antimicrobial activities against Escherichia coli, Cutibacterium acnes, Streptococcus agalactiae, and Staphylococcus aureus at 8-10 µg/mL. At 48 h, the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay showed the LEO exhibiting low cell viability (3%) at concentrations of 200-400 µg/mL, with an IC50 value of 82.46 ± 1.73 µg/mL, while in the clonogenic assay it exhibited a lower IC50 value of 23.11 ± 1.80 µg/mL. The GC-MS analysis identified citral (79.24%) consisting of 44.52% geranial and 34.72% neral, and β-myrcene (5.56%). The addition of LEO significantly influenced apoptotic genes (Bcl-2, Bax, p21, and Caspase-3) and proteins, as indicated by real-time polymerase chain reaction (RT-PCR) and Western blot studies. Results suggested that LEO initiated apoptosis through intrinsic pathways and demonstrated potential as a chemopreventive, antimicrobial, and antioxidant agent with substantial health advantages.
Collapse
Affiliation(s)
- Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand; (V.L.-I.); (W.S.); (T.K.)
| | - Worachot Saengha
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand; (V.L.-I.); (W.S.); (T.K.)
| | - Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand; (V.L.-I.); (W.S.); (T.K.)
| | - Chadaporn Senakun
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand;
| | - Sirithon Siriamornpun
- Research Unit of Thai Food Innovation (TFI), Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand
| |
Collapse
|
4
|
Lechkova B, Benbassat N, Karcheva-Bahchevanska D, Ivanov K, Peychev L, Peychev Z, Dyankov S, Georgieva-Dimova Y, Kraev K, Ivanova S. A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations. Molecules 2024; 29:1969. [PMID: 38731460 PMCID: PMC11085318 DOI: 10.3390/molecules29091969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tanacetum parthenium L. (Asteraceae) is a perennial herbaceous plant with a long-standing historical use in traditional medicine. Recently Tanacetum parthenium L. essential oil has been associated with a promising potential for future applications in the pharmaceutical industry, in the cosmetics industry, and in agriculture. Investigations on the essential oil (EO) have indicated antimicrobial, antioxidant, and repellent activity. The present study aimed to evaluate the chemical composition of Bulgarian T. parthenium essential oil from two different regions, to compare the results to those reported previously in the literature, and to point out some of its future applications. The essential oils of the air-dried flowering aerial parts were obtained by hydrodistillation using a Clevenger-type apparatus. The chemical composition was evaluated using gas chromatography with mass spectrometry (GC-MS). It was established that the oxygenated monoterpenes were the predominant terpene class, followed by the monoterpene hydrocarbons. Significant qualitative and quantitative differences between both samples were revealed. Camphor (50.90%), camphene (16.12%), and bornyl acetate (6.05%) were the major constituents in the feverfew EO from the western Rhodope Mountains, while in the EO from the central Balkan mountains camphor (45.54%), trans-chrysanthenyl acetate (13.87%), and camphene (13.03%) were the most abundant components.
Collapse
Affiliation(s)
- Borislava Lechkova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Lyudmil Peychev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Zhivko Peychev
- Department of Medical Informatics, Biostatistics and E-Learning, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Stanislav Dyankov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yoana Georgieva-Dimova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Mansour RB, Wasli H, Bourgou S, Khamessi S, Ksouri R, Megdiche-Ksouri W, Cardoso SM. Insights on Juniperus phoenicea Essential Oil as Potential Anti-Proliferative, Anti-Tyrosinase, and Antioxidant Candidate. Molecules 2023; 28:7547. [PMID: 38005268 PMCID: PMC10673065 DOI: 10.3390/molecules28227547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, the anti-cancer, anti-tyrosinase, and antioxidant activities of essential oils (EOs) of berries and leaves of Juniperus phoenicea grown wild in North of Tunisia were investigated. The EO yields from leaves and berries were 1.69% and 0.45%, respectively. GC-MS analysis revealed that α-pinene is the predominant component in both EOs (44.17 and 83.56%, respectively). Leaves essential oil presented high levels of β-phellandrene (18%) and camphene (15%). The EOs displayed cytotoxic effects against MCF-7 breast cancer cell, HT-29 colon cancer, and the normal cells H9C2 cardiomyoblasts. Leaves oil strongly inhibited colon cell line proliferation (IC50 of 38 µg/mL), while berries essential oil was more potent against breast cancerous cells MCF-7 (IC50 of 60 µg/mL). Interestingly, berries essential oil exhibited high ability to inhibit melanin synthesis by inhibiting enzyme mono and diphenolase activities. Overall, the results suggested that the two oils are significant sources of healthy natural chemicals.
Collapse
Affiliation(s)
- Rim Ben Mansour
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (H.W.); (S.B.); (S.K.); (R.K.); (W.M.-K.)
| | - Hanen Wasli
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (H.W.); (S.B.); (S.K.); (R.K.); (W.M.-K.)
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
- Department of Education and Teaching, Higher Institute of Applied Studies in Humanities of Tozeur, Campus University, University of Gafsa, Gafsa 2100, Tunisia
| | - Soumaya Bourgou
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (H.W.); (S.B.); (S.K.); (R.K.); (W.M.-K.)
| | - Saber Khamessi
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (H.W.); (S.B.); (S.K.); (R.K.); (W.M.-K.)
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (H.W.); (S.B.); (S.K.); (R.K.); (W.M.-K.)
| | - Wided Megdiche-Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (H.W.); (S.B.); (S.K.); (R.K.); (W.M.-K.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Ivanova S, Pashova S, Dyankov S, Georgieva Y, Ivanov K, Benbassat N, Koleva N, Bozhkova M, Karcheva-Bahchevanska D. Chemical Composition and Future Perspectives of Essential Oil Obtained from a Wild Population of Stachys germanica L. Distributed in the Balkan Mountains in Bulgaria. Int J Anal Chem 2023; 2023:4275213. [PMID: 37942231 PMCID: PMC10630024 DOI: 10.1155/2023/4275213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Stachys germanica L. (Lamiaceae) is a plant associated with a rich history in the traditional medicine of Iran, Turkey, and Serbia. However, researchers have not fully investigated the pharmacological potential of the herb, and scientific data on this plant species are limited. The aim of the current study was to evaluate the chemical composition of the essential oil (EO) obtained from the aerial parts of S. germanica L. growing wild in Bulgaria and to perform a comparative analysis of the chemical composition of EOs obtained from the same plant species from other geographical regions. For the evaluation of the chemical profile of the isolated EO, gas chromatographic analysis with mass spectrometry was performed. The most abundant terpene class was oxygenated monoterpenes, which accounted for 59.30% of the total EO composition. The bicyclic monoterpene camphor, as a compound of this class, was identified as the major constituent in the EO, accounting for 52.96% of the total oil composition. The chemical profile of Bulgarian EO is quite different compared to that of EOs from other regions. It is the only one to contain more than 50% camphor. In addition, EO contains significant amounts of the diterpene geranyl p-cymene (10.49%). This is the first study describing the chemical composition of EO from Bulgarian Stachys germanica L., and our results reveal some future perspectives for the evaluation of the biological activity of EO from the studied plant species as a new therapeutic agent or natural remedy targeting different medical conditions. The EO has a promising potential to be used as a biopesticide and repellent as well, an environmentally friendly and safer alternative to standard pesticides.
Collapse
Affiliation(s)
- Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| | - Stela Pashova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| | - Stanislav Dyankov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| | - Yoana Georgieva
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| | - Nina Koleva
- Medical College, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| | - Maria Bozhkova
- Medical College, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
8
|
Środa B, Dymerska AG, Miądlicki P, Wróblewska A, Zielińska B. Ti 3C 2 MXenes-based catalysts for the process of α-pinene isomerization. RSC Adv 2023; 13:30281-30292. [PMID: 37849709 PMCID: PMC10577641 DOI: 10.1039/d3ra05055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023] Open
Abstract
In this study, the catalytic performance of Ti3C2 MXene materials in the reaction of α-pinene isomerization was demonstrated. The influence of etching agents (HF, HF/H2SO4, and HF/HCl; weight ratios of mixed acids: 1 : 3, 1 : 4, and 1 : 5) on removing Al atoms from MAX phase, creation of an accordion-like structure typical for MXenes and catalytic activity of the produced samples have been revealed. The MXene HF obtained by MAX phase HF treatment exhibited the highest activity (conversion of α-pinene 74.65 mol%), while materials produced with the mixed acids (HF/H2SO4 and HF/HCl) showed a significant reduction in the conversion of α-pinene (on average about 28-fold). However, these last samples displayed an increase of about 10 mol% in the selectivity to the most desirable product-camphene. The high activity of MXene HF is a result of a high concentration of acid sites (11.62 mmol g-1) - the concentration of acid sites in the samples obtained by MAX phase mixed acids treatment was about 2.5-5.5 times smaller. This work proposes possible mechanisms for the α-pinene isomerization reaction on the MXene HF and on the MXene HF/H2SO4X : Y and MXene HF/HCl X : Y in connection with their structure.
Collapse
Affiliation(s)
- Bartosz Środa
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Piastów Ave. 42 71-065 Szczecin Poland
| | - Anna G Dymerska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Piastów Ave. 42 71-065 Szczecin Poland
| | - Piotr Miądlicki
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Piastów Ave. 42 71-065 Szczecin Poland
| | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Piastów Ave. 42 71-065 Szczecin Poland
| | - Beata Zielińska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Piastów Ave. 42 71-065 Szczecin Poland
| |
Collapse
|
9
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. Exploring the Potent Anticancer Activity of Essential Oils and Their Bioactive Compounds: Mechanisms and Prospects for Future Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:1086. [PMID: 37631000 PMCID: PMC10458506 DOI: 10.3390/ph16081086] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, affecting millions of people each year. Fortunately, the last decades have been marked by considerable advances in the field of cancer therapy. Researchers have discovered many natural substances, some of which are isolated from plants that have promising anti-tumor activity. Among these, essential oils (EOs) and their constituents have been widely studied and shown potent anticancer activities, both in vitro and in vivo. However, despite the promising results, the precise mechanisms of action of EOs and their bioactive compounds are still poorly understood. Further research is needed to better understand these mechanisms, as well as their effectiveness and safety in use. Furthermore, the use of EOs as anticancer drugs is complex, as it requires absolute pharmacodynamic specificity and selectivity, as well as an appropriate formulation for effective administration. In this study, we present a synthesis of recent work on the mechanisms of anticancer action of EOs and their bioactive compounds, examining the results of various in vitro and in vivo studies. We also review future research prospects in this exciting field, as well as potential implications for the development of new cancer drugs.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| | | | - Jalludin Mohamed
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti;
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| |
Collapse
|
11
|
Machado TQ, Lima MED, da Silva RC, Macedo AL, de Queiroz LN, Angrisani BRP, da Fonseca ACC, Câmara PR, Rabelo VVH, Carollo CA, de Lima Moreira D, de Almeida ECP, Vasconcelos TRA, Abreu PA, Valverde AL, Robbs BK. Anticancer Activity and Molecular Targets of Piper cernuum Substances in Oral Squamous Cell Carcinoma Models. Biomedicines 2023; 11:1914. [PMID: 37509552 PMCID: PMC10377665 DOI: 10.3390/biomedicines11071914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a worldwide public health problem, with high morbidity and mortality rates. The development of new drugs to treat OSCC is paramount. Piper plant species have shown many biological activities. In the present study, we show that dichloromethane partition of Piper cernuum (PCLd) is nontoxic in chronic treatment in mice, reduces the amount of atypia in tongues of chemically induced OSCC, and significantly increases animal survival. To identify the main active compounds, chromatographic purification of PCLd was performed, where fractions 09.07 and 14.05 were the most active and selective. These fractions promoted cell death by apoptosis characterized by phosphatidyl serine exposition, DNA fragmentation, and activation of effector caspase-3/7 and were nonhemolytic. LC-DAD-MS/MS analysis did not propose matching spectra for the 09.07 fraction, suggesting compounds not yet known. However, aporphine alkaloids were annotated in fraction 14.05, which are being described for the first time in P. cernuum and corroborate the observed cytotoxic activity. Putative molecular targets were determined for these alkaloids, in silico, where the androgen receptor (AR), CHK1, CK2, DYRK1A, EHMT2, LXRβ, and VEGFR2 were the most relevant. The results obtained from P. cernuum fractions point to promising compounds as new preclinical anticancer candidates.
Collapse
Affiliation(s)
- Thaíssa Queiróz Machado
- Postgraduate Program in Applied Science for Health Products, Faculty of Pharmacy, Fluminense Federal University, Niteroi 24241-000, RJ, Brazil
| | - Maria Emanuelle Damazio Lima
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Rafael Carriello da Silva
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Arthur Ladeira Macedo
- Pharmaceutical Sciences, Food and Nutrition Faculty, Mato Grosso do Sul Federal University, Campo Grande 79070-900, MS, Brazil
| | - Lucas Nicolau de Queiroz
- Postgraduate Program in Applied Science for Health Products, Faculty of Pharmacy, Fluminense Federal University, Niteroi 24241-000, RJ, Brazil
| | | | - Anna Carolina Carvalho da Fonseca
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Priscilla Rodrigues Câmara
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Vitor Von-Held Rabelo
- Biodiversity and Sustainability Institute, Macaé Campus, Federal University of Rio de Janeiro, Macae 21941-901, RJ, Brazil
| | - Carlos Alexandre Carollo
- Pharmaceutical Sciences, Food and Nutrition Faculty, Mato Grosso do Sul Federal University, Campo Grande 79070-900, MS, Brazil
| | - Davyson de Lima Moreira
- Research Directorate, Laboratory of Natural Products and Biochemistry, Rio de Janeiro Botanical Garden Research Institute, Rio de Janeiro 22460-030, RJ, Brazil
| | - Elan Cardozo Paes de Almeida
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | | | - Paula Alvarez Abreu
- Biodiversity and Sustainability Institute, Macaé Campus, Federal University of Rio de Janeiro, Macae 21941-901, RJ, Brazil
| | - Alessandra Leda Valverde
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Bruno Kaufmann Robbs
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| |
Collapse
|
12
|
Kurban B, Tuncel T, Görgülü Ş, Kar F, Öztürk A, Özek T. Elemi essential oil nanocapsulated drug ameliorates lung cancer via oxidative stress, apoptosis and inflammation pathway. J Cell Mol Med 2023. [PMID: 37285457 DOI: 10.1111/jcmm.17801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Lung cancer is one of the most common causes of death in the world. Considering the severe side effects, toxicity and high costs of chemotherapeutics used in cancer treatment, there is a need for more economical and natural treatment methods such as essential oils. The purpose of this study is to determine the efficacy of Canarium commune (Elemi) essential oil (EO) and nanoparticles. Elemi EO is analysed by GC-FID/MS. The antiproliferative effect of Elemi EO and prepared nanoparticles on human lung adenocarcinoma (A549) and their effect on normal fibroblast cells (CCD-19Lu) were determined by the MTT test. The levels of TAS, TOS, CYCS, CASP3, TNF-α and IL-6 parameters of the experimental groups were determined using specific ELISA. BAX and Bcl-2 genes were studied with qRT-PCR to investigate the different ways that cancer cells undergo apoptosis. Limonene (53.7%), a-phellandrene (14.5%) and elemol (10.1%) were the major components of Elemi EO. 24-Hour IC50 values in the cells were measured for Elemi EO; A549: 1199 μg/mL, CCD-19Lu: 37.181 μg/mL. TAS and TOS values were found to be higher in cancer cells than in normal cells, and it was found that cancerous cells were dragged into stress and that cancer cells were directed to apoptosis. BAX genes stimulation supported the results. It was determined that Elemi EO and nanoparticles showed anticancer activity without damaging normal cells. Based on these promising results, potential drug candidate Elemi EO loaded nanoparticles may be cell-specific targeted, oral use possible, new generation nanoparticular drugs.
Collapse
Affiliation(s)
- Beril Kurban
- Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Tuğba Tuncel
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şennur Görgülü
- Medicinal Plant, Drug and Scientific Reasearch and Application Center (AUBİBAM), Anadolu University, Eskişehir, Turkey
| | - Fatih Kar
- Department of Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
13
|
Jažo Z, Glumac M, Paštar V, Bektić S, Radan M, Carev I. Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091794. [PMID: 37176852 PMCID: PMC10181471 DOI: 10.3390/plants12091794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
In our study, we investigated the chemical composition and cytotoxic activity of essential oils isolated from Dalmatian sage (Salvia officinalis L.) collected along the Adriatic coast of Croatia. Scanning electron microscopy (SEM) was used to examine the morphology of the stem and leaf surfaces. Essential oil excretory glands were detected on both the leaves and stem surfaces. The essential oils were isolated by hydrodistillation, and their chemical composition was determined by gas chromatography and mass spectrometry (GC-MS). Sage essential oils were mixtures of terpene compounds, among which the most common were: α- and β-thujone, camphor, and 1,8-cineol. Cytotoxic activity was tested using MTS assay on multiple cell lines: normal and immortalized fibroblasts (HF77FA and HDF-Tert), immortalized lung line (BEAS-2B), and breast adenocarcinoma (MDA-MB-231). The growth of treated cells was determined relative to control conditions without treatment. The immortalized lung line was the least resistant to the activity of the essential oils, whereas immortalized fibroblasts were the most resistant. Statistical analysis has connected the cytotoxic effect and chemical composition of the studied essential oils. To the best of our knowledge, this work is the first testing of the cytotoxic activity of S. officinalis EO's on the BEAS-2B, HF77FA, and HDF-Tert cell lines. The presented data on essential oil chemical composition and cytotoxic effect on 4 types of human cells supports pharmacotherapeutic potential this plant is known to have.
Collapse
Affiliation(s)
- Zvonimir Jažo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Regional Laboratory Split, Croatian Veterinary Institute, Poljička Cesta 33, 21000 Split, Croatia
| | - Mateo Glumac
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Vlatka Paštar
- Mediterranean Institute for Life Science, Meštrovićevo Šetalište 45, 21000 Split, Croatia
| | - Sanida Bektić
- Faculty of Sciences, University of Tuzla, Univerzitetska 4, 75000 Tuzla, Bosnia and Herzegovina
| | - Mila Radan
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Ivana Carev
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Mediterranean Institute for Life Science, Meštrovićevo Šetalište 45, 21000 Split, Croatia
- NAOS Institute of Life Science, 355, Rue Pierre-Simon Laplace, 13290 Aix, France
| |
Collapse
|
14
|
A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int J Mol Sci 2023; 24:ijms24043266. [PMID: 36834673 PMCID: PMC9959544 DOI: 10.3390/ijms24043266] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Natural products are compounds produced by living organisms and can be divided into two main categories: primary (PMs) and secondary metabolites (SMs). Plant PMs are crucial for plant growth and reproduction since they are directly involved in living cell processes, whereas plant SMs are organic substances directly involved in plant defense and resistance. SMs are divided into three main groups: terpenoids, phenolics and nitrogen-containing compounds. The SMs contain a variety of biological capabilities that can be used as flavoring agents, food additives, plant-disease control, strengthen plant defenses against herbivores and, additionally, it can help plant cells to be better adapted to the physiological stress response. The current review is mainly focusing on certain key elements related to the significance, biosynthesis, classification, biochemical characterization and medical/pharmaceutical uses of the major categories of plant SMs. In addition, the usefulness of SMs in controlling plant diseases, boosting plant resistance and as potential natural, safe, eco-friendly substitutes for chemosynthetic pesticides were also reported in this review.
Collapse
|
15
|
Bonsignore G, Martinotti S, Ranzato E. Endoplasmic Reticulum Stress and Cancer: Could Unfolded Protein Response Be a Druggable Target for Cancer Therapy? Int J Mol Sci 2023; 24:ijms24021566. [PMID: 36675080 PMCID: PMC9865308 DOI: 10.3390/ijms24021566] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive response which is used for re-establishing protein homeostasis, and it is triggered by endoplasmic reticulum (ER) stress. Specific ER proteins mediate UPR activation, after dissociation from chaperone Glucose-Regulated Protein 78 (GRP78). UPR can decrease ER stress, producing an ER adaptive response, block UPR if ER homeostasis is restored, or regulate apoptosis. Some tumour types are linked to ER protein folding machinery disturbance, highlighting how UPR plays a pivotal role in cancer cells to keep malignancy and drug resistance. In this review, we focus on some molecules that have been revealed to target ER stress demonstrating as UPR could be a new target in cancer treatment.
Collapse
|
16
|
Schoss K, Kočevar Glavač N, Kreft S. Volatile Compounds in Norway Spruce ( Picea abies) Significantly Vary with Season. PLANTS (BASEL, SWITZERLAND) 2023; 12:188. [PMID: 36616317 PMCID: PMC9824094 DOI: 10.3390/plants12010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Norway spruce (Picea abies) is one of the most important commercial conifer species naturally distributed in Europe. In this paper, the composition and abundance of essential oil and hydrosol from the needles and branches of P. abies were investigated with an additional evaluation of changes related to different times of the year, annual shoots and branches, and differences in composition under different microenvironments. Essential oils and hydrosols obtained via hydrodistillation were analyzed using gas chromatography-mass spectrometry (GC-MS), where 246 compounds in essential oil and 53 in hydrosols were identified. The relative amounts of monoterpenes, sesquiterpenes, and diterpenes in essential oil changed significantly during the year, with the highest peak of monoterpenes observed in April (72%), the highest abundance of sesquiterpenes observed in August (21%), and the highest abundance of diterpenes observed in June (27%). The individual compound with the highest variation was manool, with variation from 1.5% (April) to 18.7% (June). Our results also indicate that the essential oil with the lowest allergenic potential (lowest quantity of limonene and linalool) was obtained in late spring or summer. Location had no significant influence on composition, while the method of collection for distillation (whole branch or annual shoots) had a minor influence on the composition. All nine main compounds identified in the hydrosol samples were oxygenated monoterpenes. The composition of P. abies hydrosol was also significantly affected by season. The method of preparing the branches for distillation did not affect the composition of P. abies hydrosol, while the location had a minor effect on composition.
Collapse
|
17
|
Maia MA, Jurcevic JD, Malheiros A, Cazarin CA, Dalmagro AP, do Espírito Santo C, Mota da Silva L, Maria de Souza M. Neuropharmacology Potential of the Hydroalcoholic Extract from the Leaves of Piper cernuum: Anxiolytic, Hypnotic, and Antidepressant-Like Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1183809. [PMID: 37078066 PMCID: PMC10110373 DOI: 10.1155/2023/1183809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 04/21/2023]
Abstract
Aim The use of medicinal plants in the treatment of mental illnesses is a reality that accompanies the history of civilizations, and the Piper genus exhibits many species with pharmacologically proven central effects. Then, this study evaluated the neuropharmacological effects of the hydroalcoholic extract from Piper cernuum (HEPC) leaves to validate its uses in folk medicine. Materials and Methods Primarily Swiss mice (female, 25-30 g) were pretreated with HEPC (50-150 mg/kg, p.o.), vehicle, or the positive control, and submitted to open-field test (OFT), inhibitory avoidance test (IAT), tail suspension test (TST), and forced swim test (FST). Also, mice were exposed to pentylenetetrazol- and strychnine-induced seizure assay, pentobarbital-induced hypnosis test, and elevated plus-maze (EPM). The GABA levels and MAO-A activity were measured in the animal's brain after 15 days of HEPC administration (150 mg/kg, p.o.). Results Mice pretreated with HEPC (100 and 150 mg/kg) and exposed to pentobarbital presented decreased sleep latency and increased sleep duration (HEPC 150 mg/kg). In EPM, the HEPC (150 mg/kg) increased the frequency of entry and the time of exploration of mice in the open arms. The antidepressant-like properties of HEPC were demonstrated by the decrease in the mice's immobility time when tested in FST and TST. The extract did not show anticonvulsant activity, in addition to not improving the memory parameters of animals (IAT) or interfering with their locomotor activity (OFT). Besides, HEPC administration decreased the MAO-A activity and increased the GABA levels in the animal's brain. Conclusion HEPC induces sedative-hypnotic, anxiolytic-, and antidepressant-like effects. These neuropharmacological effects of HEPC could be, at least in part, related to the modulation of the GABAergic system and/or MAO-A activity.
Collapse
Affiliation(s)
- Marcel Andrigo Maia
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | | | - Angela Malheiros
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Camila André Cazarin
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Ana Paula Dalmagro
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Camila do Espírito Santo
- Nucleus of Chemical-PharmaceuticalResearch-NIQFAR, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Márcia Maria de Souza
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| |
Collapse
|
18
|
Dudek T, Marć M, Zabiegała B. Chemical Composition of Atmospheric Air in Nemoral Scots Pine Forests and Submountainous Beech Forests: The Potential Region for the Introduction of Forest Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15838. [PMID: 36497918 PMCID: PMC9736340 DOI: 10.3390/ijerph192315838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Studies show that forests are one of the main recreational destinations. This can be explained by their beneficial effects on the health of their visitors, which can be attributed to compounds from the terpene group. The aim of this research was to determine the chemical composition of air in the interiors of Nemoral Scots pine forests and submountainous beech forests, with the determination of compounds of the terpene group. Samples of organic compounds present in the air were collected with the use of Tenax TA sorbent tubes. The process of separation, identification, and determination of the extracted organic compounds was carried out with the use of the gas chromatography technique integrated with a flame ionization detector. Additional identification of the extracted compounds was carried out with the use of GC coupled with mass spectrometry. The most abundant group of compounds was the aliphatic hydrocarbons, both saturated (linear and branched) and unsaturated (terpenes). Carbonyl compounds were also found in the collected samples, but they constituted no more than 10% of all compounds present on the chromatograms. The concentrations of terpenes and terpenoids in the forest atmosphere varied from 10 to 74 µg·m-3, representing on average 33% of the total volatile organic compounds.
Collapse
Affiliation(s)
- Tomasz Dudek
- Department of Agroecology and Forest Utilization, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Bożena Zabiegała
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
19
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy. Mol Divers 2022; 26:2473-2502. [PMID: 34743299 DOI: 10.1007/s11030-021-10345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022]
Abstract
The deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant-based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand-based virtual screening to identify similar drug molecules using a large collection of 376,342 compounds from DrugBank. The results suggested that several structural analogs (e.g., tramadol, nabumetone, DGLA and hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend further in vitro and in vivo trials for the experimental validation of the findings.
Collapse
Affiliation(s)
- Anik Banik
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anamika Deb
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shiuly Sinha
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Faculté de Pharmacie, Université de Tours, 37200, Tours, France.
| |
Collapse
|
20
|
First Report on Comparative Essential Oil Profile of Stem and Leaves of Blepharispermum hirtum Oliver and Their Antidiabetic and Anticancer Effects. Metabolites 2022; 12:metabo12100907. [PMID: 36295808 PMCID: PMC9611305 DOI: 10.3390/metabo12100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022] Open
Abstract
The current research was designed to explore the Blepharispermum hirtum Oliver (Asteraceae) stem and leaves essential oil (EO) composition extracted through hydro-distillation using gas chromatography-mass spectrometry (GC-MS) analysis for the first time. The EOs of the stem and leaves of B. hirtum were comparatively studied for the in vitro antidiabetic and anticancer potential using in vitro α-glucosidase and an MTT inhibition assay, respectively. In both of the tested samples, the same number of fifty-eight compounds were identified and contributed 93.88% and 89.07% of the total oil composition in the EOs of the stem and leaves of B. hirtum correspondingly. However, camphene was observed as a major compound (23.63%) in the stem EO, followed by β-selinene (5.33%) and β-elemene (4.66%) and laevo-β-pinene (4.38%). While in the EO of the leaves, the dominant compound was found to be 24-norursa-3,12-diene (9.08%), followed by β-eudesmol (7.81%), β-selinene (7.26%), thunbergol (5.84%), and caryophyllene oxide (5.62%). Significant antidiabetic potential was observed with an IC50 of 2.10 ± 0.57 µg/mL by the stem compared to the EO of the leaves of B. hirtum, having an IC50 of 4.30 ± 1.56 µg/mL when equated with acarbose (IC50 = 377.71 ± 1.34 µg/mL). Furthermore, the EOs offered considerable cytotoxic capabilities for MDA-MB-231. However, the EO of the leaves presented an IC50 = 88.4 ± 0.5 μg/mL compared to the EO of the stem of B. hirtum against the triple-negative breast cancer (MDA-MB-231) cell lines with an IC50 = 123.6 ± 0.8 μg/mL. However, the EOs were also treated with the human breast epithelial (MCF-10A) cell line, and from the results, it has been concluded that these oils did not produce much harm to the normal cell lines. Hence, the present research proved that the EOs of B. hirtum might be used to cure diabetes mellitus and human breast cancer. Moreover, further studies are considered to be necessary to isolate the responsible bioactive constituents to devise drugs for the observed activities.
Collapse
|
21
|
Qoorchi Moheb Seraj F, Heravi-Faz N, Soltani A, Ahmadi SS, Shahbeiki F, Talebpour A, Afshari AR, Ferns GA, Bahrami A. Thymol has anticancer effects in U-87 human malignant glioblastoma cells. Mol Biol Rep 2022; 49:9623-9632. [PMID: 35997850 DOI: 10.1007/s11033-022-07867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thymol (2-isopropyl-5-methylphenol) is a colorless crystalline derivative of cymene, that possesses pleotropic pharmacological properties, including analgesic, antibacterial, antispasmodic, and anti-inflammatory activities. Thymol has also been recognized for its beneficial effect as an anti-tumor agent, but the precise mechanism for this has not been fully elucidated. We aimed to identifying whether thymol exerts anti-cancer activity in human U-87 malignant glioblastoma (GB) cells (U-87). METHODS AND RESULTS Cell viability and apoptosis was evaluated in U-87 cells treated with thymol at different concentrations. Reactive oxygen species (ROS) production, mRNA expressions of apoptosis-related genes and cell cycle characteristics were assessed. The cytotoxic activity of the co-exposure of thymol and temozolomide (TMZ) was also evaluated. The half-maximal inhibitory concentration (IC50) of thymol in the U-87 cells was 230 μM assessed at 24 h after exposure. Thymol did not exhibit any cytotoxic effects on normal L929 cells at this concentration. Thymol treatment increased the expression of Bax and p53, and also increased apoptotic cell death, and excessive generation of ROS. Moreover, the cytotoxic activity of thymol on the U-87 cells may be related to the arrest of the cell cycle at the G0/G1 interface. Combination therapy showed that the cytotoxic effects of thymol synergized with TMZ, and combined treatment had more cytotoxic potential compared to either of the agents alone. CONCLUSIONS Our data indicate the potential cytotoxic activities of thymol on U-87 cells. Further studies are required to evaluate the spectrum of the antitumor activity of thymol on GB cells.
Collapse
Affiliation(s)
- Farid Qoorchi Moheb Seraj
- Endovascular Section, Neurosurgical Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Heravi-Faz
- Department of Molecular Genetics, Faculty of Sciences, Neyshabour branch, Islamic Azad University, Neyshabour, Iran
| | - Arash Soltani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Shahbeiki
- Department of Medical Laboratory Sciences, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Amir Talebpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. .,Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer’s Disease. Molecules 2022; 27:molecules27134175. [PMID: 35807418 PMCID: PMC9268689 DOI: 10.3390/molecules27134175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence of AD necessitates the rapid development of efficient therapy options. Despite substantial study, only a few medications are capable of delaying the disease. Several substances with pharmacological activity, derived from plants, have been shown to have positive benefits for the treatment of AD by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets. Medicinal plants have already contributed a number of lead molecules to medicine development, with many of them currently undergoing clinical trials. A variety of medicinal plants have been shown to diminish the degenerative symptoms associated with AD, either in their raw form or as isolated compounds. The aim of this review was to provide a brief summary of AD and its current therapies, followed by a discussion of the natural compounds examined as therapeutic agents and the processes underlying the positive effects, particularly the management of AD.
Collapse
|
23
|
A Narrative Review of the Antitumor Activity of Monoterpenes from Essential Oils: An Update. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6317201. [PMID: 35655488 PMCID: PMC9155973 DOI: 10.1155/2022/6317201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/17/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Monoterpenes are a group of natural products that have been widely studied due to their therapeutic potential against various pathologies. These compounds are abundant in the chemical composition of essential oils. Cancer is a term that covers more than 100 different types of malignant diseases and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options applicable to cancer is urgent. In this review, studies on the antitumor activity of monoterpenes found in essential oils were selected, and botanical, chemical, and pharmacological aspects were discussed. The most investigated monoterpenes were carvacrol and linalool with highly significant in vitro and in vivo tumor inhibition in several types of cancers. The action mechanisms of these natural products are also presented and are wildly varied being apoptosis the most prevalent followed by cell cycle impairment, ROS production, autophagy, necroptosis, and others. The studies reported here confirm the antitumor properties of monoterpenes and their anticancer potential against various types of tumors, as demonstrated in in vitro and in vivo studies using various types of cancer cells and tumors in animal models. The data described serve as a reference for the advancement in the mechanistic studies of these compounds and in the preparation of synthetic derivatives or analogues with a better antitumor profile.
Collapse
|
24
|
LAİB I, DJAHRA AB. Phytochemical investigation of Helianthemum lippii l. aerial Dum.Cours part and evaluation for its antioxidant activities. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.999518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
AL-ataby IA, Talib WH. Daily Consumption of Lemon and Ginger Herbal Infusion Caused Tumor Regression and Activation of the Immune System in a Mouse Model of Breast Cancer. Front Nutr 2022; 9:829101. [PMID: 35495945 PMCID: PMC9043650 DOI: 10.3389/fnut.2022.829101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
The Mediterranean diet includes the consumption of various fruits and vegetables. Lemon and ginger are highly popular in Mediterranean cuisine. The current study aims to evaluate both anticancer and immunomodulatory activities of lemon and ginger combination. The antiproliferative activities of the combination were tested against different cancer cell lines using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The degree of apoptosis induction and vascular endothelial growth factor expression were detected using ELISA. Balb/C mice were inoculated with the EMT6/P breast cancer cells and received combination water extract orally for 14 days. The effect of the water extract on splenocytes proliferation was measured using the mitogen proliferation assay. Macrophage function was evaluated using the nitro blue tetrazolium assay and pinocytosis was assessed using the neutral red method. Gas chromatography coupled to the tandem mass spectrometry was used to determine the composition of the combination. The lemon and ginger combination showed significant apoptosis induction and angiogenesis suppression effects. Fifty percent of the mice taking this combination did not develop tumors with a percentage of tumor reduction of 32.8%. This combination showed a potent effect in stimulating pinocytosis. Alpha-pinene and α-terpineol were detected in high percentages in the combination water extract. The lemon and ginger combination represents promising options to develop anticancer infusions for augmenting conventional anticancer therapies. Further testing is required to understand the exact molecular mechanisms of this combination.
Collapse
|
26
|
Alghamdi MD, Nazreen S, Ali NM, Amna T. ZnO Nanocomposites of Juniperus procera and Dodonaea viscosa Extracts as Antiproliferative and Antimicrobial Agents. NANOMATERIALS 2022; 12:nano12040664. [PMID: 35214995 PMCID: PMC8875860 DOI: 10.3390/nano12040664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023]
Abstract
Cancer and microbial infections constitute a major burden and leading cause of death globally. The development of therapeutic compounds from natural products is considered a cornerstone in drug discovery. Therefore, in the present study, the ethanolic extract and the fractions of Dodonaea viscosa and Juniperus procera were evaluated for anticancer and antimicrobial activities. It was found that two fractions, JM and DC, exhibited promising anticancer and antimicrobial activities. The JM and DC fractions were further modified into ZnO nanocomposites, which were characterized by SEM, XRD, TGA, and EDX. It was noted that the synthesized nanocomposites displayed remarkable enhancement in cytotoxicity as well as antibacterial activity. Nanocomposite DC–ZnO NRs exhibited cytotoxicity with IC50 values of 16.4 ± 4 (HepG2) and 29.07 ± 2.7 μg/mL (HCT-116) and JM–ZnO NRs with IC50 values of 12.2 ± 10.27 (HepG2) and 24.1 ± 3.0 μg/mL (HCT-116). In addition, nanocomposites of DC (i.e., DC–ZnO NRs) and JM (i.e., JM–ZnO NRs) displayed excellent antimicrobial activity against Staphylococcus aureus with MICs of 2.5 and 1.25 μg/mL, respectively. Moreover, these fractions and nanocomposites were tested for cytotoxicity against normal fibroblasts and were found to be non-toxic. GC-MS analysis of the active fractions were also carried out to discover the possible phytochemicals that are responsible for these activities.
Collapse
Affiliation(s)
- Maha D. Alghamdi
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
| | - Syed Nazreen
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
- Correspondence: (S.N.); (T.A.)
| | - Nada M. Ali
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
| | - Touseef Amna
- Department of Biology, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia
- Correspondence: (S.N.); (T.A.)
| |
Collapse
|
27
|
Plant-Derived Terpenoids: A Promising Tool in the Fight against Melanoma. Cancers (Basel) 2022; 14:cancers14030502. [PMID: 35158770 PMCID: PMC8833325 DOI: 10.3390/cancers14030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite the numerous therapies, melanoma remains the deadliest of all skin cancers; however, plant-derived terpenoids are defense molecules that have proven anti-cancer properties. In this review, we present the results of the search for anti-melanoma plant terpenoids. Additionally, we show the effects of combining terpenoids with standard drugs, radiation therapy, or other plant substances on melanoma cell lines and animal models. Finally, we present some examples of drug delivery systems that increase the uptake of terpenoids by melanoma tissue. Abstract Melanoma is responsible for the highest number of skin cancer-caused deaths worldwide. Despite the numerous melanoma-treating options, the fight against it remains challenging, mainly due to its great heterogeneity and plasticity, as well as the high toxicity of standard drugs. Plant-derived terpenoids are a group of plant defense molecules that have been proven effective in killing many different types of cancer cells, both in in vitro experiments and in vivo models. In this review, we focus on recent results in the search for plant terpenoids with anti-melanoma activity. We also report on the synergistic action of combining terpenoids with other plant-derived substances, MAP kinase inhibitors, or radiation. Additionally, we present examples of terpenoid-loaded nanoparticle carriers as anti-melanoma agents that have increased permeation through the cancer tissue.
Collapse
|
28
|
Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother 2021; 146:112514. [PMID: 34963087 DOI: 10.1016/j.biopha.2021.112514] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India
| | - Kamaljit Grewal
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | - Rupali Jandrotia
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India.
| | | |
Collapse
|
29
|
Kim MH, Lee SM, An KW, Lee MJ, Park DH. Usage of Natural Volatile Organic Compounds as Biological Modulators of Disease. Int J Mol Sci 2021; 22:ijms22179421. [PMID: 34502333 PMCID: PMC8430758 DOI: 10.3390/ijms22179421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Plants produce a wide variety of natural volatile organic compounds (NVOCs), many of which are unique to each species. These compounds serve many purposes, such as fending off herbivores and adapting to changes in temperature and water supply. Interestingly, although NVOCs are synthesized to deter herbivores, many of these compounds have been found to possess several therapeutic qualities, such as promoting nerve stability, enhancing sleep, and suppressing hyperresponsiveness, in addition to acting as antioxidants and anti-inflammatory agents. Therefore, many NVOCs are promising drug candidates for disease treatment and prevention. Given their volatile nature, these compounds can be administered to patients through inhalation, which is often more comfortable and convenient than other administration routes. However, the development of NVOC-based drug candidates requires a careful evaluation of the molecular mechanisms that drive their therapeutic properties to avoid potential adverse effects. Furthermore, even compounds that appear generally safe might have toxic effects depending on their dose, and therefore their toxicological assessment is also critical. In order to enhance the usage of NVOCs this short review focuses not only on the biological activities and therapeutic mode of action of representative NVOCs but also their toxic effects.
Collapse
Affiliation(s)
- Min-Hee Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
| | - Seung-Min Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Wan An
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Jae Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| |
Collapse
|
30
|
Silva BIM, Nascimento EA, Silva CJ, Silva TG, Aguiar JS. Anticancer activity of monoterpenes: a systematic review. Mol Biol Rep 2021; 48:5775-5785. [PMID: 34304392 DOI: 10.1007/s11033-021-06578-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Secondary metabolites have been recognized for centuries as medicinal agents, in particular monoterpenes which have been the target of research in the discovery of antineoplastic drugs, as they have potential antitumor effect and low toxicity and are used as additives in foods and cosmetics. Another advantage of monoterpenes is structural diversity, which gives greater plasticity when interacting with cells. The purpose of this review was to summarize and critically discuss the anticancer potential of monoterpenes and their respective mechanisms of action. A systematic review of articles in the MEDLINE/PubMed, Web of Science, Scopus and Science Direct electronic databases was independently conducted by three reviewers using the combination of the following keywords: monoterpenes AND anticancer AND in vitro. Restriction in selecting articles followed pre-established inclusion and exclusion criteria by the reviewers, and also a time limitation with works published between 2015 and 2019 being selected. In total, 39 works were deemed eligible for inclusion in the final review. Monoterpenes have cytotoxic activity in a wide variety of tumor cell lines, and mainly appear to exert this effect by inducing apoptosis caused by oxidative stress. In addition, improved use of monoterpenes when used in drug delivery systems and the synergistic effect with conventional chemotherapeutic drugs are reported. These findings validate this class of compounds as a promising source of chemotherapeutic drugs yet to be explored.
Collapse
Affiliation(s)
- Bruno I M Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Erika A Nascimento
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Cleber J Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Teresinha G Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jaciana S Aguiar
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
31
|
Hachlafi NEL, Aanniz T, Menyiy NE, Baaboua AE, Omari NE, Balahbib A, Shariati MA, Zengin G, Fikri-Benbrahim K, Bouyahya A. In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Morocco
| | - Tariq Aanniz
- Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Health and of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz. University Sidi Mohamed Ben Abdellah, Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Fez, Morocco
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammad Ali Shariati
- Departement of Technology of Food Production, K.G. Razumoysky Moscow State University of Technologies and Management (The First Cossack University) 109004, Moscow, Russian Federation
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| | - Kawtar Fikri-Benbrahim
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Mohammed V University in Rabat, Morocco
| |
Collapse
|
32
|
Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models. Cell Death Dis 2021; 7:127. [PMID: 34059622 PMCID: PMC8165351 DOI: 10.1038/s41420-021-00510-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Essential oils (EOs) have been recently emerging for their promising biological activities in preventing tumorigenesis or progression of different tumor histotypes, including melanoma. In this study, we investigated the antitumor activity of a panel of EOs in different tumor models. The ability of Melaleuca alternifolia (tea tree oil) and its main component, terpinen-4-ol, to sensitize the target therapy currently used for melanoma treatment was also assessed. Our results demonstrated that EOs differently affect the viability of human cancer cells and led us to select six EOs effective in melanoma and lung cancer cells, without toxic effects in human fibroblasts. When combined with dabrafenib and/or trametinib, Melaleuca alternifolia synergistically reduced the viability of melanoma cells by activating apoptosis. Through machine learning classification modeling, α-terpineol, tepinolene, and terpinen-4-ol, three components of Melaleuca alternifolia, were identified as the most likely relevant components responsible for the EO's antitumor effect. Among them, terpinen-4-ol was recognized as the Melaleuca alternifolia component responsible for its antitumor and proapoptotic activity. Overall, our study holds promise for further analysis of EOs as new anticancer agents and supports the rationale for their use to improve target therapy response in melanoma.
Collapse
|
33
|
Prediction of Natural Volatile Organic Compounds Emitted by Bamboo Groves in Urban Forests. FORESTS 2021. [DOI: 10.3390/f12050543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to the COVID-19 outbreak, people in countries around the world including the United Kingdom, Denmark, Canada, and South Korea are seeking physiological and psychological healing by visiting forests as stay-at-home orders continue. NVOCs (natural volatile organic compounds), a major healing factor of forests, have several positive effects on human health. This study specifically researched the NVOC characteristics of bamboo groves. This study revealed that α-pinene, 3-carene, and camphene were observed to emit the most, and the largest amount of NVOC emitted was seen during the early morning and late afternoon within bamboo groves. Furthermore, NVOC emission was found to have normal correlations with temperature and humidity, and inverse correlations with solar radiation, PAR (photosynthetically active radiation), and wind speed. A regression analysis conducted to predict the effect of microclimate factors on NVOC emissions resulted in a regression equation with 82.9% explanatory power, finding that PAR, temperature, and humidity had a significant effect on NVOC emission prediction. In conclusion, this study investigated NVOC emission of bamboo groves, examined the relationship between NVOC emissions and microclimate factors, and derived a prediction equation of NVOC emissions to figure out bamboo groves’ forest healing effects. These results are expected to provide a basis for establishing more effective forest healing programs in bamboo groves.
Collapse
|
34
|
Machado TQ, Felisberto JRS, Guimarães EF, Queiroz GAD, Fonseca ACCD, Ramos YJ, Marques AM, Moreira DDL, Robbs BK. Apoptotic effect of β-pinene on oral squamous cell carcinoma as one of the major compounds from essential oil of medicinal plant Piper rivinoides Kunth. Nat Prod Res 2021; 36:1636-1640. [PMID: 33678083 DOI: 10.1080/14786419.2021.1895148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck malignancy. Research on essential oils (EOs) has shown important cytotoxic and anti-tumor properties, among others. Piperaceae species are rich in EOs and here we highlight Piper rivinoides Kunth. We investigated the crude EOs from P. rivinoides, their pure major constituents and an enriched fraction with the main EO compounds (EF) as cytotoxic and selective OSCC agents. EOs presented as main compounds (-)-α-pinene, (-)-β-pinene and limonene. EOs showed an IC50 lower than all isolated compounds, except for (-)-β-pinene in OSCC cells. The (-)-β-pinene induced cell death with apoptotic characteristics. Commercial standards showed greater selectivity than EOs, and (-)-β-pinene was the most selective among them. EF showed higher selectivity compared to crude EOs and carboplatin, turning it into a good candidate as an anticancer fraction. These results are important for the possible development of new treatments for OSCC.
Collapse
Affiliation(s)
- Thaíssa Queiróz Machado
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo (ISNF), Fluminense Federal University (UFF), Nova Friburgo, RJ, Brazil
| | | | | | - George Azevedo de Queiroz
- Rio de Janeiro Botanical Garden Research Institute, Rio de Janeiro, RJ, Brazil.,Federal University of Rio de Janeiro, National Museum, São Cristóvão, Rio de Janeiro, RJ, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo (ISNF), Fluminense Federal University (UFF), Nova Friburgo, RJ, Brazil
| | - Ygor Jessé Ramos
- Rio de Janeiro Botanical Garden Research Institute, Rio de Janeiro, RJ, Brazil
| | - André Mesquita Marques
- Natural Products Department, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Davyson de Lima Moreira
- Natural Products Department, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, Manguinhos, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
35
|
Grover M, Behl T, Sanduja M, Habibur Rahman M, Ahmadi A. Exploring the Potential of Aromatherapy as an Adjuvant Therapy in Cancer and its Complications: A Comprehensive Update. Anticancer Agents Med Chem 2021; 22:629-653. [PMID: 33563202 DOI: 10.2174/1871520621666210204201937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aromatherapy is a traditional practice of employing essential oils for the therapeutic purposes, currently headed under the category of complementary and adjuvant medicine. OBJECTIVE The aim of this review article is to summarize the potential health benefits of aromatic essential oil from traditional times till the present. It also proposed some mechanisms which can be utilized as basis for using aromatherapy in cancer and cancer linked complications. METHODS To find out the relevant and authentic data, several search engines like Science direct, Pubmed, research gate, etc. were thoroughly checked by inserting key words like aromatherapy, complementary, adjuvant therapy etc. to collect the relevant material in context of article. Also, the chemical components of essential oil were classified based on the presence of functional groups, which are further explored for their cytotoxic potential. RESULTS The result depicted the anti-cancer potential of chemical constituents of essential oil against different types of cancer. Moreover, the essential oils show promising anti-inflammatory, anti-microbial, anti-oxidant and anti-mutagenic potential in several studies, which collectively can form the basis for initiation of its anti-cancer utility. CONCLUSION Aromatherapy can serve as adjuvant economic therapy in cancer after the standardization of protocol.
Collapse
Affiliation(s)
- Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Faridabad, Haryana, . India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, . India
| | | | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, . South Korea
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| |
Collapse
|
36
|
Di Martile M, Garzoli S, Ragno R, Del Bufalo D. Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers (Basel) 2020; 12:cancers12092650. [PMID: 32948083 PMCID: PMC7565555 DOI: 10.3390/cancers12092650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In the last years, targeted therapy and immunotherapy modified the landscape for metastatic melanoma treatment. These therapeutic approaches led to an impressive improvement in patients overall survival. Unfortunately, the emergence of drug resistance and side effects occurring during therapy strongly limit the long-term efficacy of such treatments. Several preclinical studies demonstrate the efficacy of essential oils as antitumoral agents, and clinical trials support their use to reduce side effects emerging during therapy. In this review we have summarized studies describing the molecular mechanism through which essential oils induce in vitro and in vivo cell death in melanoma models. We also pointed to clinical trials investigating the use of essential oils in reducing the side effects experienced by cancer patients or those undergoing anticancer therapy. From this review emerged that further studies are necessary to validate the effectiveness of essential oils for the management of melanoma. Abstract The last two decades have seen the development of effective therapies, which have saved the lives of a large number of melanoma patients. However, therapeutic options are still limited for patients without BRAF mutations or in relapse from current treatments, and severe side effects often occur during therapy. Thus, additional insights to improve treatment efficacy with the aim to decrease the likelihood of chemoresistance, as well as reducing side effects of current therapies, are required. Natural products offer great opportunities for the discovery of antineoplastic drugs, and still represent a useful source of novel molecules. Among them, essential oils, representing the volatile fraction of aromatic plants, are always being actively investigated by several research groups and show promising biological activities for their use as complementary or alternative medicine for several diseases, including cancer. In this review, we focused on studies reporting the mechanism through which essential oils exert antitumor action in preclinical wild type or mutant BRAF melanoma models. We also discussed the latest use of essential oils in improving cancer patients’ quality of life. As evidenced by the many studies listed in this review, through their effect on apoptosis and tumor progression-associated properties, essential oils can therefore be considered as potential natural pharmaceutical resources for cancer management.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
| | - Rino Ragno
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| |
Collapse
|
37
|
Antonelli M, Donelli D, Barbieri G, Valussi M, Maggini V, Firenzuoli F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186506. [PMID: 32906736 PMCID: PMC7559006 DOI: 10.3390/ijerph17186506] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
The aim of this research work is to analyze the chemistry and diversity of forest VOCs (volatile organic compounds) and to outline their evidence-based effects on health. This research work was designed as a narrative overview of the scientific literature. Inhaling forest VOCs like limonene and pinene can result in useful antioxidant and anti-inflammatory effects on the airways, and the pharmacological activity of some terpenes absorbed through inhalation may be also beneficial to promote brain functions by decreasing mental fatigue, inducing relaxation, and improving cognitive performance and mood. The tree composition can markedly influence the concentration of specific VOCs in the forest air, which also exhibits cyclic diurnal variations. Moreover, beneficial psychological and physiological effects of visiting a forest cannot be solely attributed to VOC inhalation but are due to a global and integrated stimulation of the five senses, induced by all specific characteristics of the natural environment, with the visual component probably playing a fundamental role in the overall effect. Globally, these findings can have useful implications for individual wellbeing, public health, and landscape design. Further clinical and environmental studies are advised, since the majority of the existing evidence is derived from laboratory findings.
Collapse
Affiliation(s)
- Michele Antonelli
- Terme di Monticelli, 43022 Monticelli Terme PR, Italy
- Institute of Public Health, University of Parma, 43125 Parma PR, Italy
- Correspondence:
| | - Davide Donelli
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
- AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia RE, Italy
| | - Grazia Barbieri
- Binini Partners S.r.l. Engineering and Architecture, 42121 Reggio Emilia RE, Italy;
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), Norwich NR3 1HG, UK;
| | - Valentina Maggini
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
| | - Fabio Firenzuoli
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
| |
Collapse
|
38
|
Beeby E, Magalhães M, Poças J, Collins T, Lemos MFL, Barros L, Ferreira ICFR, Cabral C, Pires IM. Secondary metabolites (essential oils) from sand-dune plants induce cytotoxic effects in cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112803. [PMID: 32251759 DOI: 10.1016/j.jep.2020.112803] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Despite advances in modern therapeutic strategies, cancer remains the second leading cause of death worldwide. Therefore, there is a constant need to develop more efficient anticancer targeting strategies. The anticancer therapeutic proprieties of medicinal plants and their bioactive compounds have been reported for several years, making natural extracts and/or compounds derived from these a promising source of novel anticancer agents. Sand dune plants are subjected to severe environmental stresses, leading to the development of adaptations, including the production of secondary metabolites with a wide range of bioactivities, such as: anti-inflammatory, analgesic, antiseptic, hypoglycaemic, hypotensive, antinociceptive, antioxidant and anticancer. AIM OF THE STUDY The anticancer potential of sand dune plants remains under-investigated, so this research describes the characterisation of the composition of bioactive EOs from sand-dune plants of Peniche (Portugal), and assessment of their activity in vitro and potential mechanism of action. MATERIALS AND METHODS EOs were extracted from six sand-dune species of plants from Peniche sand dunes: Crithmum maritimum L., Seseli tortuosum L., Artemisia campestris subsp. maritima (DC.) Arcang., Juniperus phoenicea var. turbinata (Guss.) Parl., Otanthus maritimus (L.) Hoffmanns. & Link, and Eryngium maritimum L.. EOs composition was fully characterised chemically using Gas Chromatography-Mass Spectrometry (GC-MS). The assessment of anticancer activity and mechanism of action was performed in vitro using breast and colorectal cancer 2D and 3D spheroid cell line models, through cell proliferation assay, western blotting analysis, and cell cycle analysis. RESULTS EOs from the majority of the species tested (S. tortuosum, A. campestris subsp. maritima, O. maritimus, and E. maritimum) were mainly composed by hydrocarbon compounds (sequisterpenes and monoterpenes), showing antiproliferative activity in both 2D and 3D models. EO extracted from S. tortuosum and O. maritimus were identified as having the lowest IC50 values for both cell lines when compared with the other species tested. Furthermore, this antiproliferative activity was associated with increased p21 expression and induction of apoptosis. CONCLUSIONS The present study suggests that EOs extracted from S. tortuosum and O. maritimus present promising cytotoxic properties. Further evaluation of the extracts and their key components as potential anticancer agents should therefore be explored.
Collapse
Affiliation(s)
- Ellie Beeby
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, HU6 7RX, UK
| | - Mariana Magalhães
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Juliana Poças
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, HU6 7RX, UK; MARE - Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, ESTM, 2520-630 Peniche, Portugal
| | - Thomas Collins
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, HU6 7RX, UK
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, ESTM, 2520-630 Peniche, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Célia Cabral
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Isabel M Pires
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, HU6 7RX, UK.
| |
Collapse
|
39
|
Chamazulene-Rich Artemisia arborescens Essential Oils Affect the Cell Growth of Human Melanoma Cells. PLANTS 2020; 9:plants9081000. [PMID: 32781664 PMCID: PMC7464588 DOI: 10.3390/plants9081000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Artemisia arborescens is an aromatic shrub whose essential oils are considered a potential source of molecules with industrial and pharmaceutical interest. The chemical profile of A. arborescens essential oils (EOs) was shown to be quite variable and various chemotypes have been identified. In this study, we compared the EOs composition of A. arborescens leaves and flowers collected from four different locations in Sicily. The EOs were assayed for their antiproliferative activity against A375 human malignant melanoma cells, also testing cell viability and cell membrane integrity. The evaluation of DNA fragmentation and caspase-3 activity assay was employed for the detection of apoptosis. The expression of Bcl-2, Bax, cleaved caspase-9, PTEN (Phosphatase and tensin homolog), Hsp70 (Heat Shock Protein 70 kilodaltons) and SOD (superoxide dismutase) proteins was evaluated by Western blot analysis. The levels of ROS and GSH were also analyzed. Results show that EOs presented significant differences in their composition, yield, and cytotoxic activity depending on the collection site. The chamazulene/camphor-rich EOs from plants collected in Acqua Calda (Lipari) resulted particularly active on melanoma cancer cells (IC50 values of 6.7 and 4.5 µg/mL), being able to trigger apoptotic death probably interfering with endogenous defense mechanisms. These oils may be considered as a natural resource of chamazulene, containing this compound up to 63%.
Collapse
|
40
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
41
|
Jugreet BS, Suroowan S, Rengasamy RK, Mahomoodally MF. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Sugier P, Jakubowicz-Gil J, Sugier D, Kowalski R, Gawlik-Dziki U, Kołodziej B, Dziki D. Chemical Characteristics and Anticancer Activity of Essential Oil from Arnica Montana L. Rhizomes and Roots. Molecules 2020; 25:molecules25061284. [PMID: 32178275 PMCID: PMC7143959 DOI: 10.3390/molecules25061284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Arnica montana L. is a medicinal plant with diverse biological activities commonly used in pharmacy and cosmetics. The attributes of A. montana are mainly related to the concentration and chemical composition of essential oils (EOs). Therefore, the objective of this study was to characterize the chemical composition of EOs derived from A. montana rhizomes and roots taking into account the age of the plants and to investigate the effect of the analyzed EOs on induction of apoptosis, necrosis, and autophagy in human glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cell lines. Rhizomes and roots of mountain arnica were harvested at the end of the third and fourth vegetation periods. The chemical composition of essential oils was determined with the GC–MS technique. Among the 37 components of the essential oil of A. montana, 2,5-dimethoxy-p-cymene (46.47%–60.31%), 2,6-diisopropylanisole (14.48%–23.10%), thymol methyl ether (5.31%–17.79%), p-methoxyheptanophenone (5.07%–9.65%), and α-isocomene (0.68%–2.87%), were detected in the rhizomes and roots of the three-year-old plants and in the rhizomes and roots of the four-year-old plants. The plant part (rhizome, root) and plant age can be determinants of the essential oil composition and, consequently, their biological activity. The induction of apoptosis (but not autophagy nor necrosis) at a level of 28.5%–32.3% is a promising result, for which 2,5-dimethoxy-p-cymene, 2,6-diisopropylanisole, thymol methyl ether, and p-methoxyheptanophenone are probably mainly responsible. The present study is the first report on the anticancer activities of essential oils from A. montana rhizomes and roots.
Collapse
Affiliation(s)
- Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (D.S.); (B.K.)
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
- Correspondence:
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (D.S.); (B.K.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences, Głęboka 31, 20-612 Lublin, Poland;
| |
Collapse
|
43
|
Natural Products Targeting ER Stress, and the Functional Link to Mitochondria. Int J Mol Sci 2020; 21:ijms21061905. [PMID: 32168739 PMCID: PMC7139827 DOI: 10.3390/ijms21061905] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle essential for intracellular homeostasis maintenance, controlling synthesis, the folding of secreted and membrane-bound proteins, and transport of Ca2+. During cellular stress, ER dysfunction leads to the activation of unfolded protein response (UPR) due to accumulated misfolded proteins in the ER. This condition is referred as ER stress. Mitochondria and ER form a site of close contact (the mitochondria-associated membrane, MAM) which is a major platform exerting important physiological roles in the regulation of intracellular Ca2+ homeostasis, lipid metabolism, mitochondrial fission, autophagosome formation, and apoptosis progression. Natural products have been receiving increasing attention for their ability to interfere with ER stress. Research works have focused on the capacity of these bioactive compounds to induce apoptosis by activating ER stress through the ER stress-mediated mitochondrial apoptotic pathway. In this review we discuss the role of natural products in the signaling communication between ER and mitochondria, focusing on the effects induced by ER stress including Ca2+ permeability transition and UPR signaling (protein kinase R-like ER kinase/mitofusin 2).
Collapse
|
44
|
Essential Oils of Lemongrass ( Cymbopogon citratus Stapf) Induces Apoptosis and Cell Cycle Arrest in A549 Lung Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5924856. [PMID: 32420353 PMCID: PMC7201560 DOI: 10.1155/2020/5924856] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023]
Abstract
Essential oils were extracted from the culm and leaf of Cymbopogon citratus collected from different regions of Vietnam and analyzed using GC/MS. The results showed that citral is the major component accounting for 61.20%–76.46% of the essential oils. The citral content was higher in the essential oil obtained from the leaf than in that from the culm of lemongrass in all regions. In particular, camphene, valerianol, and epi-α-muurolol can be used to differentiate essential oils originating from leaves versus culms. The cytotoxic effects of the essential oils on various lung cancer cell lines were evaluated in the present study. All essential oils exhibited cytotoxicity in the tested cells. The Ha Loc leaf essential oil (HLL) exhibited the most potent effects on A549 and H1975 cells, with IC50 values of 1.73 ± 0.37 and 4.01 ± 0.30 μg/mL, respectively. The Hy Cuong leaf essential oil (HCL) showed the strongest effect on H1299 cells, with an IC50 value of 2.45 ± 0.21 μg/mL. The Kim Duc culm (KDC) essential oil exerted the strongest cytotoxic effects against H1650 cells, with an IC50 value of 4.86 ± 0.29 μg/mL. The HLL induced apoptosis and cycle arrest in A549 cells according to flow cytometric analysis and fluorescent nuclear staining assays. The western blot analysis indicated that HLL induced the apoptotic effect by altering the regulating proteins of the apoptosis process such as caspase-3, Bcl-2, and Bax. The data strongly suggested that the intrinsic pathway may play an important role in the apoptotic effects of HLL.
Collapse
|
45
|
Quality assessment and differentiation of Aucklandiae Radix and Vladimiriae Radix based on GC-MS fingerprint and chemometrics analysis: basis for clinical application. Anal Bioanal Chem 2020; 412:1535-1549. [DOI: 10.1007/s00216-019-02380-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
|
46
|
Schoina V, Terpou A, Papadaki A, Bosnea L, Kopsahelis N, Kanellaki M. Enhanced Aromatic Profile and Functionality of Cheese Whey Beverages by Incorporation of Probiotic Cells Immobilized on Pistacia terebinthus Resin. Foods 2019; 9:E13. [PMID: 31877900 PMCID: PMC7022775 DOI: 10.3390/foods9010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
: In the present study, cheese whey was utilized for the development of a novel functional beverage, using Lactobacillus casei ATCC 393 probiotic cells immobilized on Pistacia terebinthus resin (pissa Paphos). Evaluation of shelf life of the produced beverages showed that spoilage microorganisms were not observed in beverages containing P. terebinthus resin. Terpenes' rich content might have contributed to the antimicrobial activity of the produced beverages; however, no significant effect on the viability of the immobilized probiotic cells was obtained. Whey beverages containing the immobilized biocatalyst retained a high viability (>1 × 106 CFU/g) of probiotic cells during a storage period of 30 days at 4 °C. The superiority of whey beverages containing the immobilized biocatalyst was also highlighted by GC-MS analysis, while the enhanced aromatic profile, which was mostly attributed to the higher concentration of terpenes, was also detected during the sensory evaluation performed. Conclusively, this study indicated the high commercialization potential of these novel functional whey beverages, within the frame of a sustainable dairy waste valorization approach. To the best of our knowledge, this is the first food-oriented approach within the guidelines of the circular economy reported in the literature, using the autochthonous Pistacia terebinthus resin for the production of functional whey beverages.
Collapse
Affiliation(s)
- Vasiliki Schoina
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece; (V.S.); (M.K.)
| | - Antonia Terpou
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece; (V.S.); (M.K.)
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, 28100 Kefalonia, Greece; (A.P.); (N.K.)
| | - Loulouda Bosnea
- Hellenic Agricultural Organization DEMETER, Dairy Research Institute, 45221 Ioannina, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Kefalonia, Greece; (A.P.); (N.K.)
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece; (V.S.); (M.K.)
| |
Collapse
|
47
|
Sugier D, Sugier P, Jakubowicz-Gil J, Winiarczyk K, Kowalski R. Essential Oil from Arnica Montana L. Achenes: Chemical Characteristics and Anticancer Activity. Molecules 2019; 24:molecules24224158. [PMID: 31744121 PMCID: PMC6891426 DOI: 10.3390/molecules24224158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
Mountain arnica Arnica montana L. is a source of several metabolite classes with diverse biological activities. The chemical composition of essential oil and its major volatile components in arnica may vary depending on the geographical region, environmental factors, and plant organ. The objective of this study was to characterize the chemical composition of essential oil derived from A. montana achenes and to investigate its effect on induction of apoptosis and autophagy in human anaplastic astrocytoma MOGGCCM and glioblastoma multiforme T98G cell lines. The chemical composition of essential oil extracted from the achenes was examined with the use of Gas Chromatography–Mass Spectrometry GC-MS. Only 16 components of the essential oil obtained from the achenes of 3-year-old plants and 18 components in the essential oil obtained from the achenes of 4-year-old plants constituted ca. 94.14% and 96.38% of the total EO content, respectively. The main components in the EO from the arnica achenes were 2,5-dimethoxy-p-cymene (39.54 and 44.65%), cumene (13.24 and 10.71%), thymol methyl ether (8.66 and 8.63%), 2,6-diisopropylanisole (8.55 and 8.41%), decanal (7.31 and 6.28%), and 1,2,2,3-tetramethylcyclopent-3-enol (4.33 and 2.94%) in the 3- and 4-year-old plants, respectively. The essential oils were found to exert an anticancer effect by induction of cell death in anaplastic astrocytoma and glioblastoma multiforme cells. The induction of apoptosis at a level of 25.7–32.7% facilitates the use of this secondary metabolite in further studies focused on the development of glioma therapy in the future. Probably, this component plays a key role in the anticancer activity against the MOGGCCM and T98G cell lines. The present study is the first report on the composition and anticancer activities of essential oil from A. montana achenes, and further studies are required to explore its potential for future medicinal purposes.
Collapse
Affiliation(s)
- Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
- Correspondence: ; Tel.: +48-81-537-59-46
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Krystyna Winiarczyk
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| |
Collapse
|
48
|
Trabelsi N, Nalbone L, Marotta SM, Taamali A, Abaza L, Giarratana F. Effectiveness of five flavored Tunisian olive oils on Anisakis larvae type 1: application of cinnamon and rosemary oil in industrial anchovy marinating process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4808-4815. [PMID: 30977130 DOI: 10.1002/jsfa.9736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/02/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Anisakidosis is caused by the ingestion of raw or undercooked fish or cephalopods containing viable Anisakis larvae. Several natural extracts, oils, essential oils, and their compounds have been tested against Anisakis. In this study the effectiveness of Tunisian olive oil with different spices or plants (cardamom, cinnamon, ginger, laurel, and rosemary) was tested against Anisakis larvae type 1. RESULTS For the in vitro test, larvae were submerged separately in the oils mentioned above and observed to check viability. Cinnamon oil was the most effective against parasites with lethal time (LT) scores being LT50 = 1.5 days and LT100 = 3 days, followed by rosemary. Laurel, cardamom, and ginger oils were less effective. For the ex vivo experiment, cinnamon, and rosemary oils were tested in anchovy fillets, previously artificially parasitized. Cinnamon was the most effective against parasites (dead after 4 days) as compared to rosemary (7 days). CONCLUSION The use of cinnamon and rosemary-flavored olive oil in the industrial marinating process can be considered as an efficient alternative to the freezing process required by European Regulation EC No 853/2004 to devitalize Anisakis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Najla Trabelsi
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
| | - Luca Nalbone
- Department of Veterinary Science, University of Messina, Messina, Italy
| | | | - Amani Taamali
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
- Department of Chemistry, College of Sciences, University of Hafr Al-Batin, Kingdom of Saudi Arabia
| | - Leila Abaza
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
| | | |
Collapse
|
49
|
Abstract
Abstract
Terpenes or terpenoids are extracted or steam distilled for the recovery of the essential oils of specific fragrant plants. These steam distillates are used to create fine perfumes, to refine the flavor and the aroma of food and drinks, and to produce medicines from plants (phytopharmaca). In recent years, consumers have developed an increasing interest in natural products, as most of these terpenoids have been identified as high value chemicals in food, cosmetic, pharmaceutical, biotechnology, and industrial crops. Extensive chemical techniques and biological tests have led to the identification, biological characterization, and extraction of major components that are of wide interest, especially to the cosmetic and industrial recovery of selective terpenes. The current status of the knowledge of their general structure, functions, and bioactive properties and the methods for their separation are covered in this review.
Collapse
Affiliation(s)
- Ghada Ben Salha
- Chemical and Environmental Engineering Department , University of the Basque Country , Plaza Europa, 1 , 20018 Donostia-San Sebastián , Spain
- Laboratory Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies , 2070 Marsa , Tunisia
- Faculty of Sciences of Tunisia , University of Tunisia El Manar, Farhat Hached University , Campus PB 94 – Rommana 1068 , Tunis , Tunisia
| | - Manef Abderrabba
- Laboratory Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies , 2070 Marsa , Tunisia
| | - Jalel Labidi
- Chemical and Environmental Engineering Department , University of the Basque Country , Plaza Europa, 1 , 20018 Donostia-San Sebastián , Spain
| |
Collapse
|
50
|
Influence of the Titanium Content in the Ti-MCM-41 Catalyst on the Course of the α-Pinene Isomerization Process. Catalysts 2019. [DOI: 10.3390/catal9050396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Titanium-containing mesoporous silica catalysts with different Ti contents were prepared by the sol–gel method, whereby the molar ratios of silicon to titanium in the crystallization gel amounted to, respectively, 40:1, 30:1, 20:1 and 10:1. The produced Ti-MCM-41 materials were characterized by the following instrumental methods: XRD, UV-Vis, FT-IR, SEM, and XRF. Textural parameters were also determined for these materials by means of the N2 adsorption/desorption method. The activities of these catalysts were investigated in the α-pinene isomerization process. The most active catalyst was found to be the material with the molar ratio of Si:Ti equal to 10:1, which contained 12.09 wt% Ti. This catalyst was used in the extended studies on the α-pinene isomerization process, and the most favorable conditions for this reaction were found to be temperature of 160 °C, reaction time of 7 h, with the catalyst composition of 7.5 wt% relative to α-pinene. These studies showed that the most active catalyst, at the best reaction conditions, allowed for the attainment of 100% conversion of α-pinene over a period of 7 h. After this time the selectivities (in mol%) of the main products were as follows: camphene (35.45) and limonene (21.32). Moreover, other products with lower selectivities were formed: γ-terpinene (4.38), α-terpinene (8.12), terpinolene (11.16), p-cymene (6.61), and α-phellandrene (1.58).
Collapse
|