1
|
Hu YJ, Zhang X, Lv HM, Liu Y, Li SZ. Protein O-GlcNAcylation: The sweet hub in liver metabolic flexibility from a (patho)physiological perspective. Liver Int 2024; 44:293-315. [PMID: 38110988 DOI: 10.1111/liv.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
O-GlcNAcylation is a dynamic, reversible and atypical O-glycosylation that regulates various cellular physiological processes via conformation, stabilisation, localisation, chaperone interaction or activity of target proteins. The O-GlcNAcylation cycle is precisely controlled by collaboration between O-GlcNAc transferase and O-GlcNAcase. Uridine-diphosphate-N-acetylglucosamine, the sole donor of O-GlcNAcylation produced by the hexosamine biosynthesis pathway, is controlled by the input of glucose, glutamine, acetyl coenzyme A and uridine triphosphate, making it a sensor of the fluctuation of molecules, making O-GlcNAcylation a pivotal nutrient sensor for the metabolism of carbohydrates, amino acids, lipids and nucleotides. O-GlcNAcylation, particularly prevalent in liver, is the core hub for controlling systemic glucose homeostasis due to its nutritional sensitivity and precise spatiotemporal regulation of insulin signal transduction. The pathology of various liver diseases has highlighted hepatic metabolic disorder and dysfunction, and abnormal O-GlcNAcylation also plays a specific pathological role in these processes. Therefore, this review describes the unique features of O-GlcNAcylation and its dynamic homeostasis maintenance. Additionally, it explains the underlying nutritional sensitivity of O-GlcNAcylation and discusses its mechanism of spatiotemporal modulation of insulin signal transduction and liver metabolic homeostasis during the fasting and feeding cycle. This review emphasises the pathophysiological implications of O-GlcNAcylation in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis and hepatic fibrosis, and focuses on the adverse effects of hyper O-GlcNAcylation on liver cancer progression and metabolic reprogramming.
Collapse
Affiliation(s)
- Ya-Jie Hu
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xu Zhang
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Ming Lv
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Liu
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- Key Laboratory of Bovine Disease Control in Northeast China of Ministry of Agriculture and Rural affairs of the People's Republic of China, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
The UDPase ENTPD5 regulates ER stress-associated renal injury by mediating protein N-glycosylation. Cell Death Dis 2023; 14:166. [PMID: 36849424 PMCID: PMC9971188 DOI: 10.1038/s41419-023-05685-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Impaired protein N-glycosylation leads to the endoplasmic reticulum (ER) stress, which triggers adaptive survival or maladaptive apoptosis in renal tubules in diabetic kidney disease (DKD). Therapeutic strategies targeting ER stress are promising for the treatment of DKD. Here, we report a previously unappreciated role played by ENTPD5 in alleviating renal injury by mediating ER stress. We found that ENTPD5 was highly expressed in normal renal tubules; however, ENTPD5 was dynamically expressed in the kidney and closely related to pathological DKD progression in both human patients and mouse models. Overexpression of ENTPD5 relieved ER stress in renal tubular cells, leading to compensatory cell proliferation that resulted in hypertrophy, while ENTPD5 knockdown aggravated ER stress to induce cell apoptosis, leading to renal tubular atrophy and interstitial fibrosis. Mechanistically, ENTPD5-regulated N-glycosylation of proteins in the ER to promote cell proliferation in the early stage of DKD, and continuous hyperglycemia activated the hexosamine biosynthesis pathway (HBP) to increase the level of UDP-GlcNAc, which driving a feedback mechanism that inhibited transcription factor SP1 activity to downregulate ENTPD5 expression in the late stage of DKD. This study was the first to demonstrate that ENTPD5 regulated renal tubule cell numbers through adaptive proliferation or apoptosis in the kidney by modulating the protein N-glycosylation rate in the ER, suggesting that ENTPD5 drives cell fate in response to metabolic stress and is a potential therapeutic target for renal diseases.
Collapse
|
3
|
Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022; 12:888. [PMID: 36295790 PMCID: PMC9610910 DOI: 10.3390/metabo12100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 09/07/2024] Open
Abstract
O-GlcNAcylation is an atypical, dynamic and reversible O-glycosylation that is critical and abundant in metazoan. O-GlcNAcylation coordinates and receives various signaling inputs such as nutrients and stresses, thus spatiotemporally regulating the activity, stability, localization and interaction of target proteins to participate in cellular physiological functions. Our review discusses in depth the involvement of O-GlcNAcylation in the precise regulation of skeletal muscle metabolism, such as glucose homeostasis, insulin sensitivity, tricarboxylic acid cycle and mitochondrial biogenesis. The complex interaction and precise modulation of O-GlcNAcylation in these nutritional pathways of skeletal muscle also provide emerging mechanical information on how nutrients affect health, exercise and disease. Meanwhile, we explored the potential role of O-GlcNAcylation in skeletal muscle pathology and focused on its benefits in maintaining proteostasis under atrophy. In general, these understandings of O-GlcNAcylation are conducive to providing new insights into skeletal muscle (patho) physiology.
Collapse
Affiliation(s)
| | | | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
4
|
Liu Y, Hu YJ, Fan WX, Quan X, Xu B, Li SZ. O-GlcNAcylation: The Underestimated Emerging Regulators of Skeletal Muscle Physiology. Cells 2022; 11:1789. [PMID: 35681484 PMCID: PMC9180116 DOI: 10.3390/cells11111789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the "optimal zone", and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
Collapse
Affiliation(s)
| | | | | | | | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| |
Collapse
|
5
|
Yu Q, Liu W, Chen Z, Zhang M. Specificity Protein 1: A Protein With a Two-Sided Role in Ischemic Stroke. Front Cell Neurosci 2022; 15:757670. [PMID: 34970121 PMCID: PMC8712767 DOI: 10.3389/fncel.2021.757670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. However, there is a lack of effective medications to speed up the recovery process. Ischemic stroke, as the result of cerebral infarction or cerebral artery narrowing, is accompanied by hemiplegia or impaired consciousness. There are many transcription factors involved in the development of this condition, whose alterations can influence or signal the prognostic outcomes of ischemic stroke. Among them, the augmented expression of specificity protein 1 (SP1) can participate in the progression of the disease by binding DNA to regulate the transcriptions of many genes. Different studies have provided different answers as to whether SP1 plays a positive or a negative role in ischemic stroke. On the one hand, SP1 can play a cytoprotective role as both an antioxidant and anti-apoptotic agent for neurons and glial cells. On the other hand, it can also damage neuronal cells by promoting inflammation and exacerbating brain edema. In this review, we highlight the roles of SP1 in ischemic stroke and shed light on the underlying mechanism.
Collapse
Affiliation(s)
- Qinyang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wangyang Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Triptolide impairs glycolysis by suppressing GATA4/Sp1/PFKP signaling axis in mouse Sertoli cells. Toxicol Appl Pharmacol 2021; 425:115606. [PMID: 34087332 DOI: 10.1016/j.taap.2021.115606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/23/2022]
Abstract
Triptolide (TP), a primary bioactive ingredient isolated from the traditional Chinese herbal medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted great interest for its therapeutic biological activities in inflammation and autoimmune disease. However, its clinical use is limited by severe testicular toxicity, and the underlying mechanism has not been elucidated. Our preliminary evidence demonstrated that TP disrupted glucose metabolism and caused testicular toxicity. During spermatogenesis, Sertoli cells (SCs) provide lactate as an energy source to germ cells by glycolysis. The transcription factors GATA-binding protein 4 (GATA4) and specificity protein 1 (Sp1) can regulate glycolysis. Based on this evidence, we speculate that TP causes abnormal glycolysis in SCs by influencing the expression of the transcription factors GATA4 and Sp1. The mechanism of TP-induced testicular toxicity was investigated in vitro and in vivo. The data indicated that TP decreased glucose consumption, lactate production, and the mRNA levels of glycolysis-related transporters and enzymes. TP also downregulated the protein expression of the transcription factors GATA4 and Sp1, as well as the glycolytic enzyme phosphofructokinase platelet (PFKP). Phosphorylated GATA4 and nuclear GATA4 protein levels were reduced in a dose- and time-dependent manner after TP incubation. Similar effects were observed in shGata4-treated TM4 cells and BALB/c mice administered 0.4 mg/kg TP for 28 days, and glycolysis was also inhibited. Gata4 knockdown downregulated Sp1 and PFKP expression. Furthermore, the Sp1 inhibitor plicamycin inhibited PFKP protein levels in TM4 cells. In conclusion, TP inhibited GATA4-mediated glycolysis by suppressing Sp1-dependent PFKP expression in SCs and caused testicular toxicity.
Collapse
|
7
|
Zhang C, Xie F, Li L, Zhang C, Zhang Y, Ying W, Liu L, Yan X, Yin F, Zhang L. Hepatocyte nuclear factor 1 alpha (HNF1A) regulates transcription of
O
‐GlcNAc transferase in a negative feedback mechanism. FEBS Lett 2019; 593:1050-1060. [PMID: 30953348 DOI: 10.1002/1873-3468.13381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Chuanhui Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China
| | - Fei Xie
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China
| | - Cheng Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China
| | - Yong Zhang
- State Key Laboratory of Proteomics Beijing Proteome Research Center Beijing Institute of Radiation Medicine China
- Key Lab of Transplant Engineering and Immunology MOH West China‐Washington Mitochondria and Metabolism Research Center West China Hospital Sichuan University Chengdu China
| | - Wantao Ying
- State Key Laboratory of Proteomics Beijing Proteome Research Center Beijing Institute of Radiation Medicine China
| | - Li Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China
| | - Xuli Yan
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China
| | - Futao Yin
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China
| |
Collapse
|
8
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
9
|
Carvalho-Cruz P, Alisson-Silva F, Todeschini AR, Dias WB. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev Dyn 2017; 247:481-491. [PMID: 28722313 DOI: 10.1002/dvdy.24553] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental program reactivated by tumor cells that leads to the switch from epithelial to mesenchymal phenotype. During EMT, cells are transcriptionally regulated to decrease E-cadherin expression while expressing mesenchymal markers such as vimentin, fibronectin, and N-cadherin. Growing body of evidences suggest that cells engaged in EMT undergo a metabolic reprograming process, redirecting glucose flux toward hexosamine biosynthesis pathway (HBP), which fuels aberrant glycosylation patterns that are extensively observed in cancer cells. HBP depends on nutrient availability to produce its end product UDP-GlcNAc, and for this reason is considered a metabolic sensor pathway. UDP-GlcNAc is the substrate used for the synthesis of major types of glycosylation, including O-GlcNAc and cell surface glycans. In general, the rate limiting enzyme of HBP, GFAT, is overexpressed in many cancer types that present EMT features as well as aberrant glycosylation. Moreover, altered levels of O-GlcNAcylation can modulate cell morphology and favor EMT. In this review, we summarize some of the current knowledge that correlates glucose metabolism, aberrant glycosylation and hyper O-GlcNAcylation supported by HBP that leads to EMT activation. Developmental Dynamics 247:481-491, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patricia Carvalho-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Alisson-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
O -GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 up-regulation in endothelial cells. Biochem Biophys Res Commun 2017; 484:79-84. [DOI: 10.1016/j.bbrc.2017.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/14/2017] [Indexed: 01/18/2023]
|
11
|
Mailleux F, Gélinas R, Beauloye C, Horman S, Bertrand L. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim Biophys Acta Mol Basis Dis 2016; 1862:2232-2243. [PMID: 27544701 DOI: 10.1016/j.bbadis.2016.08.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/11/2022]
Abstract
O-linked attachment of the monosaccharide β-N-acetyl-glucosamine (O-GlcNAcylation) is a post-translational modification occurring on serine and threonine residues, which is evolving as an important mechanism for the regulation of various cellular processes. The present review will, first, provide a general background on the molecular regulation of protein O-GlcNAcylation and will summarize the role of this post-translational modification in various acute cardiac pathologies including ischemia-reperfusion. Then, we will focus on research studies examining protein O-GlcNAcylation in the context of cardiac hypertrophy. A particular emphasis will be laid on the convergent but also divergent actions of O-GlcNAcylation according to the type of hypertrophy investigated, including physiological, pressure overload-induced and diabetes-linked cardiac hypertrophy. In an attempt to distinguish whether O-GlcNAcylation is detrimental or beneficial, this review will present the different O-GlcNAcylated targets involved in hypertrophy development. We will finally argue on potential interest to target O-GlcNAc processes to treat cardiac hypertrophy. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Florence Mailleux
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Roselle Gélinas
- Montreal Heart Institute, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium; Cliniques Universitaires Saint-Luc, Division of Cardiology, Brussels, Belgium
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.
| |
Collapse
|