1
|
Goodspeed A, Bodlak A, Duffy AB, Nelson-Taylor S, Oike N, Porfilio T, Shirai R, Walker D, Treece A, Black J, Donaldson N, Cost C, Garrington T, Greffe B, Luna-Fineman S, Demedis J, Lake J, Danis E, Verneris M, Adams DL, Hayashi M. Characterization of transcriptional heterogeneity and novel therapeutic targets using single cell RNA-sequencing of primary and circulating Ewing sarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576251. [PMID: 38293103 PMCID: PMC10827204 DOI: 10.1101/2024.01.18.576251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ewing sarcoma is the second most common bone cancer in children, accounting for 2% of pediatric cancer diagnoses. Patients who present with metastatic disease at the time of diagnosis have a dismal prognosis, compared to the >70% 5-year survival of those with localized disease. Here, we utilized single cell RNA-sequencing to characterize the transcriptional landscape of primary Ewing sarcoma tumors and surrounding tumor microenvironment (TME). Copy-number analysis identified subclonal evolution within patients prior to treatment. Primary tumor samples demonstrate a heterogenous transcriptional landscape with several conserved gene expression programs, including those composed of genes related to proliferation and EWS targets. Single cell RNA-sequencing and immunofluorescence of circulating tumor cells at the time of diagnosis identified TSPAN8 as a novel therapeutic target.
Collapse
|
2
|
Shao S, Bu Z, Xiang J, Liu J, Tan R, Sun H, Hu Y, Wang Y. The role of Tetraspanins in digestive system tumor development: update and emerging evidence. Front Cell Dev Biol 2024; 12:1343894. [PMID: 38389703 PMCID: PMC10882080 DOI: 10.3389/fcell.2024.1343894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date. They interact with other membrane proteins or TM4SF members to form a functional platform on the cytoplasmic membrane called Tspan-enriched microdomain and serve multiple functions including cell adhesion, migration, propagation and signal transduction. In this review, we summarize the various roles of Tspans in the progression of digestive system tumors and the underlying molecular mechanisms in recent years. Generally, the expression of CD9, CD151, Tspan1, Tspan5, Tspan8, Tspan12, Tspan15, and Tspan31 are upregulated, facilitating the migration and invasion of digestive system cancer cells. Conversely, Tspan7, CD82, CD63, Tspan7, and Tspan9 are downregulated, suppressing digestive system tumor cell metastasis. Furthermore, the connection between Tspans and the metastasis of malignant bone tumors is reviewed. We also summarize the potential role of Tspans as novel immunotherapy targets and as an approach to overcome drug resistance. Finally, we discuss the potential clinical value and therapeutic targets of Tspans in the treatments of digestive system malignancies and provide some guidance for future research.
Collapse
Affiliation(s)
- Shijie Shao
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Bu
- Department of General Surgery, Xinyi People's Hospital, Xinyi, China
| | - Jinghua Xiang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachen Liu
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rui Tan
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Han Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuanwen Hu
- Department of Gastroenterology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yimin Wang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Yang J, Zhang Z, Lam JSW, Fan H, Fu NY. Molecular Regulation and Oncogenic Functions of TSPAN8. Cells 2024; 13:193. [PMID: 38275818 PMCID: PMC10814125 DOI: 10.3390/cells13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called "tetraspanin-enriched microdomains (TEMs)" or "tetraspanin nanodomains" that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ziyan Zhang
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanne Shi Woon Lam
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
4
|
Hysenaj L, Little S, Kulhanek K, Magnen M, Bahl K, Gbenedio OM, Prinz M, Rodriguez L, Andersen C, Rao AA, Shen A, Lone JC, Lupin-Jimenez LC, Bonser LR, Serwas NK, Mick E, Khalid MM, Taha TY, Kumar R, Li JZ, Ding VW, Matsumoto S, Maishan M, Sreekumar B, Simoneau C, Nazarenko I, Tomlinson MG, Khan K, von Gottberg A, Sigal A, Looney MR, Fragiadakis GK, Jablons DM, Langelier CR, Matthay M, Krummel M, Erle DJ, Combes AJ, Sil A, Ott M, Kratz JR, Roose JP. SARS-CoV-2 infection of airway organoids reveals conserved use of Tetraspanin-8 by Ancestral, Delta, and Omicron variants. Stem Cell Reports 2023; 18:636-653. [PMID: 36827975 PMCID: PMC9948283 DOI: 10.1016/j.stemcr.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.
Collapse
Affiliation(s)
- Lisiena Hysenaj
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Samantha Little
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Kayla Kulhanek
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Melia Magnen
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kriti Bahl
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Oghenekevwe M Gbenedio
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Morgan Prinz
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Lauren Rodriguez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher Andersen
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Arjun Arkal Rao
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan Shen
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Leonard C Lupin-Jimenez
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Luke R Bonser
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nina K Serwas
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eran Mick
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mir M Khalid
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Taha Y Taha
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renuka Kumar
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jack Z Li
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Vivianne W Ding
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shotaro Matsumoto
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mazharul Maishan
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bharath Sreekumar
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Camille Simoneau
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium, Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany
| | - Michael G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Khajida Khan
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Centre for the AIDS Program of Research, Durban, South Africa
| | - Mark R Looney
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA
| | - Gabriela K Fragiadakis
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David M Jablons
- Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael Matthay
- Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew Krummel
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA
| | - Alexis J Combes
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute COVID-19 Research Group, University of California, San Francisco, San Francisco, CA, USA
| | - Johannes R Kratz
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Titu S, Grapa CM, Mocan T, Balacescu O, Irimie A. Tetraspanins: Physiology, Colorectal Cancer Development, and Nanomediated Applications. Cancers (Basel) 2021; 13:cancers13225662. [PMID: 34830819 PMCID: PMC8616055 DOI: 10.3390/cancers13225662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Considering the high incidence of colorectal cancer in adults, as well as the need for identifying novel therapies, we hereby explore the role of tetraspanins in the development of colorectal cancer. We have focused on variate aspects starting from the structure and general physiology and ending with the precise mechanisms involved in the dual reported role of tetraspanins (pro–tumoral and tumor suppressor key player element). Moreover, the present review focuses on the potential of tetraspanins as a target for nanotechnology-mediated therapies, also gathering the limited attempts towards this aim and their reported data. Abstract Tetraspanins are transmembrane proteins expressed in a multitude of cells throughout the organism. They contribute to many processes that surround cell–cell interactions and are associated with the progress of some diseases, including cancer. Their crucial role in cell physiology is often understated. Furthermore, recent studies have shown their great potential in being used as targeting molecules. Data have suggested the potential of tetraspanins as a targeting vector for nanomediated distribution and delivery for colorectal cancer applications. Our aim is to provide a review on the important part that tetraspanins play in the human organism and highlight their potential use for drug delivery systems using nanotechnology.
Collapse
Affiliation(s)
- Stefan Titu
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| | - Cristiana Maria Grapa
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400126 Cluj-Napoca, Romania
| | - Teodora Mocan
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400126 Cluj-Napoca, Romania
- Correspondence:
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Cai S, Deng Y, Peng H, Shen J. Role of Tetraspanins in Hepatocellular Carcinoma. Front Oncol 2021; 11:723341. [PMID: 34540692 PMCID: PMC8446639 DOI: 10.3389/fonc.2021.723341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high prevalence, morbidity, and mortality. Liver cancer is the sixth most common cancer worldwide; and its subtype, HCC, accounts for nearly 80% of cases. HCC progresses rapidly, and to date, there is no efficacious treatment for advanced HCC. Tetraspanins belong to a protein family characterized by four transmembrane domains. Thirty-three known tetraspanins are widely expressed on the surface of most nucleated cells and play important roles in different biological processes. In our review, we summarize the functions of tetraspanins and their underlying mechanism in the life cycle of HCC, from its initiation, progression, and finally to treatment. CD9, TSPAN15, and TSPAN31 can promote HCC cell proliferation or suppress apoptosis. CD63, CD151, and TSPAN8 can also facilitate HCC metastasis, while CD82 serves as a suppressor of metastasis. TSPAN1, TSPAN8, and CD151 act as prognosis indicators and are inversely correlated to the overall survival rate of HCC patients. In addition, we discuss the potential of role of the tetraspanin family proteins as novel therapeutic targets and as an approach to overcome drug resistance, and also provide suggestions for further research.
Collapse
Affiliation(s)
- Sicheng Cai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Li J, Chen X, Zhu L, Lao Z, Zhou T, Zang L, Ge W, Jiang M, Xu J, Cao Y, Du S, Yu Y, Fan G, Wang H. SOX9 is a critical regulator of TSPAN8-mediated metastasis in pancreatic cancer. Oncogene 2021; 40:4884-4893. [PMID: 34163029 PMCID: PMC8321899 DOI: 10.1038/s41388-021-01864-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest cancer mainly owing to its proclivity to early metastasis and the lack of effective targeted therapeutic drugs. Hence, understanding the molecular mechanisms underlying early invasion and metastasis by PDAC is imperative for improving patient outcomes. The present study identified that upregulation of TSPAN8 expression in PDAC facilitates metastasis in vivo and in vitro. We found SOX9 as a key transcriptional regulator of TSPAN8 expression in response to EGF stimulation. SOX9 modulation was sufficient to positively regulate endogenous expression of TSPAN8, with concomitant in vitro phenotypic changes such as loss of cell-matrix adherence and increased invasion. Moreover, increased SOX9 and TSPAN8 levels were shown to correlate in human pancreatic cancer specimens and downregulated in vitro by EGFR tyrosine kinase inhibitors. High expression of SOX9 and TSPAN8 has been associated with tumor stage, poor prognosis and poor patient survival in PDAC. In conclusion, this study highlights the importance of the EGF-SOX9-TSPAN8 signaling cascade in the control of PDAC invasion and implies that TSPAN8 may be a promising novel therapeutic target for the treatment of PDAC.
Collapse
Affiliation(s)
- Junjian Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoliang Chen
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Centers for Disease Control and Prevention, Shenzhen, China
| | - Liqun Zhu
- Department of Oncology, Liyang People's Hospital, Liyang, China
| | - Zhenghong Lao
- Department of Oncology, Deqing People's Hospital, Huzhou, China
| | - Tianhao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Zang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Jiang
- Department of Medical Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital East Campus, Shanghai, China
| | - Jingxuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqian Du
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Yu
- Shanghai Experimental School, Shanghai, China
| | - Guangjian Fan
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Dükel M, Tavsan Z, Kayali HA. Flavonoids regulate cell death-related cellular signaling via ROS in human colon cancer cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Dawson CS, Garcia-Ceron D, Rajapaksha H, Faou P, Bleackley MR, Anderson MA. Protein markers for Candida albicans EVs include claudin-like Sur7 family proteins. J Extracell Vesicles 2020; 9:1750810. [PMID: 32363014 PMCID: PMC7178836 DOI: 10.1080/20013078.2020.1750810] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Fungal extracellular vesicles (EVs) have been implicated in host-pathogen and pathogen-pathogen communication in some fungal diseases. In depth research into fungal EVs has been hindered by the lack of specific protein markers such as those found in mammalian EVs that have enabled sophisticated isolation and analysis techniques. Despite their role in fungal EV biogenesis, ESCRT proteins such as Vps23 (Tsg101) and Bro1 (ALIX) are not present as fungal EV cargo. Furthermore, tetraspanin homologs are yet to be identified in many fungi including the model yeast S. cerevisiae. Objective: We performed de novo identification of EV protein markers for the major human fungal pathogen Candida albicans with adherence to MISEV2018 guidelines. Materials and methods: EVs were isolated by differential ultracentrifugation from DAY286, ATCC90028 and ATCC10231 yeast cells, as well as DAY286 biofilms. Whole cell lysates (WCL) were also obtained from the EV-releasing cells. Label-free quantitative proteomics was performed to determine the set of proteins consistently enriched in EVs compared to WCL. Results: 47 proteins were consistently enriched in C. albicans EVs. We refined these to 22 putative C. albicans EV protein markers including the claudin-like Sur7 family (Pfam: PF06687) proteins Sur7 and Evp1 (orf19.6741). A complementary set of 62 EV depleted proteins was selected as potential negative markers. Conclusions: The marker proteins for C. albicans EVs identified in this study will be useful tools for studies on EV biogenesis and cargo loading in C. albicans and potentially other fungal species and will also assist in elucidating the role of EVs in C. albicans pathogenesis. Many of the proteins identified as putative markers are fungal specific proteins indicating that the pathways of EV biogenesis and cargo loading may be specific to fungi, and that assumptions made based on studies in mammalian cells could be misleading. Abbreviations: A1 - ATCC10231; A9 - ATCC90028; DAY B - DAY286 biofilm; DAY Y - DAY286 yeast; EV - extracellular vesicle; Evp1 - extracellular vesicle protein 1 (orf19.6741); GO - gene ontology; Log2(FC) - log2(fold change); MCC - membrane compartment of Can1; MDS - multidimensional scaling; MISEV - minimal information for studies of EVs; sEVs - small EVs; SP - signal peptide; TEMs - tetraspanin enriched microdomains; TM - transmembrane; VDM - vesicle-depleted medium; WCL - whole cell lysate.
Collapse
Affiliation(s)
- Charlotte S Dawson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science. La Trobe University, Australia
- Department of Biochemistry, Cambridge Centre for Proteomics, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Donovan Garcia-Ceron
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science. La Trobe University, Australia
| | - Harinda Rajapaksha
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science. La Trobe University, Australia
| | - Pierre Faou
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science. La Trobe University, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science. La Trobe University, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science. La Trobe University, Australia
| |
Collapse
|
10
|
TSPAN8 as a Novel Emerging Therapeutic Target in Cancer for Monoclonal Antibody Therapy. Biomolecules 2020; 10:biom10030388. [PMID: 32138170 PMCID: PMC7175299 DOI: 10.3390/biom10030388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tetraspanin 8 (TSPAN8) is a member of the tetraspanin superfamily that forms TSPAN8-mediated protein complexes by interacting with themselves and other various cellular signaling molecules. These protein complexes help build tetraspanin-enriched microdomains (TEMs) that efficiently mediate intracellular signal transduction. In physiological conditions, TSPAN8 plays a vital role in the regulation of biological functions, including leukocyte trafficking, angiogenesis and wound repair. Recently, reports have increasingly shown the functional role and clinical relevance of TSPAN8 overexpression in the progression and metastasis of several cancers. In this review, we will highlight the physiological and pathophysiological roles of TSPAN8 in normal and cancer cells. Additionally, we will cover the current status of monoclonal antibodies specifically targeting TSPAN8 and the importance of TSPAN8 as an emerging therapeutic target in cancers for monoclonal antibody therapy.
Collapse
|
11
|
Zhang HS, Liu HY, Zhou Z, Sun HL, Liu MY. TSPAN8 promotes colorectal cancer cell growth and migration in LSD1-dependent manner. Life Sci 2020; 241:117114. [DOI: 10.1016/j.lfs.2019.117114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
12
|
Jeoung MH, Kim TK, Kim JW, Cho YB, Na HJ, Yoo BC, Shim H, Song DK, Heo K, Lee S. Antibody-Based Targeting of Cell Surface GRP94 Specifically Inhibits Cetuximab-Resistant Colorectal Cancer Growth. Biomolecules 2019; 9:biom9110681. [PMID: 31683810 PMCID: PMC6920916 DOI: 10.3390/biom9110681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Cetuximab, a human/mouse chimeric monoclonal antibody, is effective in a limited number of CRC patients because of cetuximab resistance. This study aimed to identify novel therapeutic targets in cetuximab-resistant CRC in order to improve clinical outcomes. Through phage display technology, we isolated a fully human antibody strongly binding to the cetuximab-resistant HCT116 cell surface and identified the target antigen as glucose-regulated protein 94 (GRP94) using proteomic analysis. Short interfering RNA-mediated GRP94 knockdown showed that GRP94 plays a key role in HCT116 cell growth. In vitro functional studies revealed that the GRP94-blocking antibody we developed strongly inhibits the growth of various cetuximab-resistant CRC cell lines. We also demonstrated that GRP94 immunoglobulin G monotherapy significantly reduces HCT116 cell growth more potently compared to cetuximab, without severe toxicity in vivo. Therefore, cell surface GRP94 might be a potential novel therapeutic target in cetuximab-resistant CRC, and antibody-based targeting of GRP94 might be an effective strategy to suppress GRP94-expressing cetuximab-resistant CRC.
Collapse
Affiliation(s)
- Mee Hyun Jeoung
- Scripps Korea Antibody Institute, Chuncheon, Gangwon 24341, Korea.
| | - Taek-Keun Kim
- Scripps Korea Antibody Institute, Chuncheon, Gangwon 24341, Korea.
| | - Ji Woong Kim
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea.
| | - Yea Bin Cho
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea.
| | - Hee Jun Na
- Scripps Korea Antibody Institute, Chuncheon, Gangwon 24341, Korea.
| | - Byong Chul Yoo
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Korea.
| | - Hyunbo Shim
- Department of Bioinspired Science and Life Science, Ewha Womans University, Seoul 03760, Korea.
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Korea.
| | - Kyun Heo
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea.
| | - Sukmook Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea.
| |
Collapse
|
13
|
Voglstaetter M, Thomsen AR, Nouvel J, Koch A, Jank P, Navarro EG, Gainey-Schleicher T, Khanduri R, Groß A, Rossner F, Blaue C, Franz CM, Veil M, Puetz G, Hippe A, Dindorf J, Kashef J, Thiele W, Homey B, Greco C, Boucheix C, Baur A, Erbes T, Waller CF, Follo M, Hossein G, Sers C, Sleeman J, Nazarenko I. Tspan8 is expressed in breast cancer and regulates E-cadherin/catenin signalling and metastasis accompanied by increased circulating extracellular vesicles. J Pathol 2019; 248:421-437. [PMID: 30982971 PMCID: PMC6771825 DOI: 10.1002/path.5281] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023]
Abstract
Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+ tumours formed multiple liver and spleen metastases, while Tspan8− tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up‐regulation of E‐cadherin and down‐regulation of Twist, p120‐catenin, and β‐catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal–epithelial transition. Furthermore, Tspan8+ cells exhibited enhanced cell–cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several‐fold increase in EV number in cell culture and the circulation of tumour‐bearing animals. We observed increased protein levels of E‐cadherin and p120‐catenin in these EVs; furthermore, Tspan8 and p120‐catenin were co‐immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maren Voglstaetter
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas R Thomsen
- Department of Radiation Oncology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jerome Nouvel
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Arend Koch
- Institute of Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Jank
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elena Grueso Navarro
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Gainey-Schleicher
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Richa Khanduri
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Groß
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Rossner
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carina Blaue
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marina Veil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerhard Puetz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Hippe
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Jochen Dindorf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Translational Research Center, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Jubin Kashef
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Wilko Thiele
- Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Celine Greco
- UMR-S935, Inserm, Université Paris Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker Hospital, Paris, France
| | - Claude Boucheix
- UMR-S935, Inserm, Université Paris Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker Hospital, Paris, France
| | - Andreas Baur
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Translational Research Center, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Thalia Erbes
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius F Waller
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ghamartaj Hossein
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Animal Physiology, Laboratory of Developmental Biology, University of Tehran, Tehran, Iran
| | - Christine Sers
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Sleeman
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Vences-Catalán F, Levy S. Immune Targeting of Tetraspanins Involved in Cell Invasion and Metastasis. Front Immunol 2018; 9:1277. [PMID: 29946318 PMCID: PMC6006414 DOI: 10.3389/fimmu.2018.01277] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Metastasis is the ultimate consequence of cancer progression and the cause of patients’ death across different cancer types. Patients with initial diagnosis of distant disease have a worst 5-year survival compared to patients with localized disease. Therapies that target primary tumors fail to eradicate distant dissemination of cancer. Recently, immunotherapies have improved the survival of patients with metastatic disease, such as melanoma and lung cancer. However, only a fraction of patients responds to immunotherapy modalities that target the host immune system. The need to identify new druggable targets that inhibit or prevent metastasis is, therefore, much needed. Tetraspanins have emerged as key players in regulating cell migration, invasion, and metastasis. By serving as molecular adaptors that cluster adhesion receptors, signaling molecules, and cell surface receptors; tetraspanins are involved in all steps of the metastatic cascade. They regulate cell proliferation, participate in EMT transition, modulate integrin-mediated cell adhesion, and participate in angiogenesis and invasion processes. Tetraspanins have also been shown to modulate metastasis indirectly through exosomes and by regulating cellular interactions in the immune system. Importantly, targeting individual tetraspanin with antibodies has impacted tumor progression. This review will focus on the contribution of tetraspanins to the metastatic process and their potential as therapeutic tumor targets.
Collapse
Affiliation(s)
- Felipe Vences-Catalán
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shoshana Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Kim MR, Jang JH, Park CS, Kim TK, Kim YJ, Chung J, Shim H, Nam IH, Han JM, Lee S. A Human Antibody That Binds to the Sixth Ig-Like Domain of VCAM-1 Blocks Lung Cancer Cell Migration In Vitro. Int J Mol Sci 2017; 18:ijms18030566. [PMID: 28272300 PMCID: PMC5372582 DOI: 10.3390/ijms18030566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) is closely associated with tumor progression and metastasis. However, the relevance and role of VCAM-1 in lung cancer have not been clearly elucidated. In this study, we found that VCAM-1 was highly overexpressed in lung cancer tissue compared with that of normal lung tissue, and high VCAM-1 expression correlated with poor survival in lung cancer patients. VCAM-1 knockdown reduced migration of A549 human lung cancer cells into Matrigel, and competitive blocking experiments targeting the Ig-like domain 6 of VCAM-1 (VCAM-1-D6) demonstrated that the VCAM-1-D6 domain was critical for VCAM-1 mediated A549 cell migration into Matrigel. Next, we developed a human monoclonal antibody specific to human and mouse VCAM-1-D6 (VCAM-1-D6 huMab), which was isolated from a human synthetic antibody library using phage display technology. Finally, we showed that VCAM-1-D6 huMab had a nanomolar affinity for VCAM-1-D6 and that it potently suppressed the migration of A549 and NCI-H1299 lung cancer cell lines into Matrigel. Taken together, these results suggest that VCAM-1-D6 is a key domain for regulating VCAM-1-mediated lung cancer invasion and that our newly developed VCAM-1-D6 huMab will be a useful tool for inhibiting VCAM-1-expressing lung cancer cell invasion.
Collapse
Affiliation(s)
- Mi Ra Kim
- Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Korea.
| | - Ji Hye Jang
- Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Korea.
| | - Chang Sik Park
- Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Korea.
| | - Taek-Keun Kim
- Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Korea.
| | - Youn-Jae Kim
- Specific Organs Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Korea.
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University, Seoul 03087, Korea.
| | - Hyunbo Shim
- Departments of Bioinspired Science and Life Science, Ewha Womans University, Seoul 03760, Korea.
| | - In Hyun Nam
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea.
| | - Jung Min Han
- Department of Integrated OMICS for Biomedical Science, College of Pharmacy, Yonsei University, Incheon 21983, Korea.
| | - Sukmook Lee
- Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Korea.
| |
Collapse
|
16
|
Ig-like domain 6 of VCAM-1 is a potential therapeutic target in TNFα-induced angiogenesis. Exp Mol Med 2017; 49:e294. [PMID: 28209985 PMCID: PMC5336558 DOI: 10.1038/emm.2016.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα)-induced angiogenesis plays important roles in the progression of various diseases, including cancer, wet age-related macular degeneration, and rheumatoid arthritis. However, the relevance and role of vascular cell adhesion molecule-1 (VCAM-1) in angiogenesis have not yet been clearly elucidated. In this study, VCAM-1 knockdown shows VCAM-1 involvement in TNFα-induced angiogenesis. Through competitive blocking experiments with VCAM-1 Ig-like domain 6 (VCAM-1-D6) protein, we identified VCAM-1-D6 as a key domain regulating TNFα-induced vascular tube formation. We demonstrated that a monoclonal antibody specific to VCAM-1-D6 suppressed TNFα-induced endothelial cell migration and tube formation and TNFα-induced vessel sprouting in rat aortas. We also found that the antibody insignificantly affected endothelial cell viability, morphology and activation. Finally, the antibody specifically blocked VCAM-1-mediated cell–cell contacts by directly inhibiting VCAM-1-D6-mediated interaction between VCAM-1 molecules. These findings suggest that VCAM-1-D6 may be a potential novel therapeutic target in TNFα-induced angiogenesis and that antibody-based modulation of VCAM-1-D6 may be an effective strategy to suppress TNFα-induced angiogenesis.
Collapse
|
17
|
Jeoung MH, Kim TK, Shim H, Lee S. Development of a sandwich enzyme-linked immunosorbent assay for the detection of CD44v3 using exon v3- and v6-specific monoclonal antibody pairs. J Immunol Methods 2016; 436:22-8. [DOI: 10.1016/j.jim.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/02/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
18
|
Akiel MA, Santhekadur PK, Mendoza RG, Siddiq A, Fisher PB, Sarkar D. Tetraspanin 8 mediates AEG-1-induced invasion and metastasis in hepatocellular carcinoma cells. FEBS Lett 2016; 590:2700-8. [PMID: 27339400 DOI: 10.1002/1873-3468.12268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/20/2016] [Indexed: 01/05/2023]
Abstract
Astrocyte-elevated gene-1 (AEG-1) positively regulates tumor progression and metastasis. Here, we document that AEG-1 upregulates transcription of the membrane protein tetraspanin 8 (TSPAN8). Knocking down TSPAN8 in AEG-1-overexpressing human hepatocellular carcinoma (HCC) cells markedly inhibited invasion and migration without affecting proliferation. TSPAN8 knockdown profoundly abrogated AEG-1-induced primary tumor and intrahepatic metastasis in an orthopic xenograft model in athymic nude mice. Coculture of TSPAN8 knockdown cells with human umbilical vein endothelial cells (HUVEC) markedly inhibited HUVEC tube formation indicating that inhibition of angiogenesis might cause reduction in primary tumor size. TSPAN8 inhibition might be a potential therapeutic strategy for metastatic HCC.
Collapse
Affiliation(s)
- Maaged A Akiel
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Prasanna K Santhekadur
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel G Mendoza
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Ayesha Siddiq
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul B Fisher
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA, USA
| | - Devanand Sarkar
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|