1
|
Kazan HH, Acınan İS, Kandemir B, Karahan CP, Kayhan G, İşeri ÖD. Copy number variations of stepwise-selected doxorubicin-resistant MCF-7 cell lines. Gene 2025; 937:149139. [PMID: 39638013 DOI: 10.1016/j.gene.2024.149139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Elimination of cytotoxic effect in cells with multidrug resistance (MDR) phenotype is a situation that is gradually acquired over time and develops through multiple pathways resulting in global phenotypic changes of cells. Although molecular background of the resistance phenotype has widely been studied in the gene expression level, segmental and gene copy number variations (CNVs) have limitedly been documented. Thus, in the present study, we aimed to analyze the CNVs using DNA microarray in the sensitive and two doxorubicin-resistant MCF-7 breast cancer cell lines which had different resistance indices. In the present study, we performed conventional karyotyping and array comparative genomic hybridization (aCGH). Then, results of aCGH data were studied with genomic profiling, comparison analysis and ideogram plotting to evaluate genomic profiles, and the loss and gains of heterozygosity profiles. Next, gene lists for each cell line were compared with the 66-breast cancer-related genes and the multidrug resistance-related genes. aCGH analyses showed that CNV profiles and the copy number of specific genes were dramatically different between these three cell lines. Totally, 6212, 6558, and 11,201 genes were found to be altered in MCF-7, MCF-7/400DOX, and MCF-7/1000DOX genomes, respectively. Amongst the MCF-7/1000DOX had the highest number of altered genes, and doxorubicin resistance may cause differential chromosomal changes depending on the resistance status. DNA microarray would be one of the informative methods used in the studies on the cancer drug resistance in addition to transcriptomic and proteomic level high throughput analysis to define molecular mechanisms of the resistance status.
Collapse
Affiliation(s)
- Hasan Huseyin Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - İrem Sinem Acınan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara, Turkey
| | - Başak Kandemir
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara, Turkey; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Ceyhan Pırıl Karahan
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gülsüm Kayhan
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Özlem Darcansoy İşeri
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, Ankara, Turkey.
| |
Collapse
|
2
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Zhao Y, Zhao L, Li M, Meng Z, Wang S, Li J, Li L, Gong L. Long non-coding RNA PVT1 regulates TGF-β and promotes the proliferation, migration and invasion of hypopharyngeal carcinoma FaDu cells. World J Surg Oncol 2024; 22:254. [PMID: 39300515 PMCID: PMC11414033 DOI: 10.1186/s12957-024-03536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Hypopharyngeal carcinoma is one of the malignant tumors of the head and neck with a particularly poor prognosis. Recurrence and metastasis are important reasons for poor prognosis of hypopharyngeal cancer patients, and malignant proliferation, migration, and invasion of tumor cells are important factors for recurrence and metastasis of hypopharyngeal cancer. Therefore, elucidating hypopharyngeal cancer cells' proliferation, migration, and invasion mechanism is essential for improving diagnosis, treatment, and prognosis. Plasmacytoma Variant Translocation 1 (PVT1) is considered a potential diagnostic marker and therapeutic target for tumors. However, it remains unclear whether PVT1 is related to the occurrence and development of hypopharyngeal cancer and its specific mechanism. In this study, the promoting effect of PVT1 on the proliferation, migration, and invasion of hypopharyngeal carcinoma FaDu cells was verified by cell biology experiments and animal studies, and it was found that PVT1 inhibited the expression of TGF-β, suggesting that PVT1 may regulate the occurrence and development of hypopharyngeal carcinoma FaDu cells through TGF-β.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Hypopharyngeal Neoplasms/pathology
- Hypopharyngeal Neoplasms/genetics
- Hypopharyngeal Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Prognosis
- RNA, Long Noncoding/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Female
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Lei Zhao
- Department of Otorhinolaryngology, Heze Municipal Hospital, Heze, Shandong, China
| | - Maocai Li
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China
| | - Zhen Meng
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong, China
| | - Song Wang
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jun Li
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lianqing Li
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China.
| | - Lili Gong
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
4
|
Wang J, Lv ZY, Li P, Zhang Y, Li X, Shen DF. Lnc PVT1 facilitates TGF-β1-induced human cardiac fibroblast activation in vitro and ISO-induced myocardial fibrosis in vivo through regulating MYC. Mol Cell Biochem 2024:10.1007/s11010-024-05060-7. [PMID: 38997507 DOI: 10.1007/s11010-024-05060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Cardiac fibrosis is a commonly seen pathophysiological process in various cardiovascular disorders, such as coronary heart disorder, hypertension, and cardiomyopathy. Cardiac fibroblast trans-differentiation into myofibroblasts (MFs) is a key link in myocardial fibrosis. LncRNA PVT1 participates in fibrotic diseases in multiple organs; however, its role and mechanism in cardiac fibrosis remain largely unknown. Human cardiac fibroblasts (HCFs) were stimulated with TGF-β1 to induce myofibroblast; Immunofluorescent staining, Immunoblotting, and fluorescence in situ hybridization were used to detect the myofibroblasts phenotypes and lnc PVT1 expression. Cell biological phenotypes induced by lnc PVT1 knockdown or overexpression were detected by CCK-8, flow cytometry, and Immunoblotting. A mouse model of myocardial fibrosis was induced using isoproterenol (ISO), and the cardiac functions were examined by echocardiography measurements, cardiac tissues by H&E, and Masson trichrome staining. In this study, TGF-β1 induced HCF transformation into myofibroblasts, as manifested as significantly increased levels of α-SMA, vimentin, collagen I, and collagen III; the expression level of lnc PVT1 expression showed to be significantly increased by TGF-β1 stimulation. The protein levels of TGF-β1, TGFBR1, and TGFBR2 were also decreased by lnc PVT1 knockdown. Under TGF-β1 stimulation, lnc PVT1 knockdown decreased FN1, α-SMA, collagen I, and collagen III protein contents, inhibited HCF cell viability and enhanced cell apoptosis, and inhibited Smad2/3 phosphorylation. Lnc PVT1 positively regulated MYC expression with or without TGF-β1 stimulation; MYC overexpression in TGF-β1-stimulated HCFs significantly attenuated the effects of lnc PVT1 knockdown on HCF proliferation and trans-differentiation to MFs. In the ISO-induced myocardial fibrosis model, lnc PVT1 knockdown partially reduced fibrotic area, improved cardiac functions, and decreased the levels of fibrotic markers. In addition, lnc PVT1 knockdown decreased MYC and CDK4 levels but increased E-cadherin in mice heart tissues. lnc PVT1 is up-regulated in cardiac fibrosis and TGF-β1-stimulated HCFs. Lnc PVT1 knockdown partially ameliorates TGF-β1-induced HCF activation and trans-differentiation into MFs in vitro and ISO-induced myocardial fibrosis in vivo, potentially through interacting with MYC and up-regulating MYC.
Collapse
Affiliation(s)
- Juan Wang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Zhong-Yin Lv
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Peng Li
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Yin Zhang
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Xia Li
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China.
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, 830001, Xinjiang, China.
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
5
|
Shahamiri K, Alghasi A, Saki N, Teimori H, Kaydani GA, sheikhi S. Upregulation of the long noncoding RNA GJA9-MYCBP and PVT1 is a potential diagnostic biomarker for acute lymphoblastic leukemia. Cancer Rep (Hoboken) 2024; 7:e2115. [PMID: 38994720 PMCID: PMC11240143 DOI: 10.1002/cnr2.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common type of blood cancer in children. Aberrant expression of long noncoding RNAs (lncRNAs) may set stages for ALL development. LncRNAs are emerging as a novel diagnostic and prognostic biomarker for ALL. Herein, we aimed to evaluate the expression of lncRNA GJA9-MYCBP and PVT1 in blood samples of ALL and healthy individuals. METHODS As a case-control study, 40 pairs of ALL and healthy individual samples were used. The expression of MYC and each candidate lncRNA was measured using quantitative real-time PCR. Any possible association between the expression of putative noncoding RNAs and clinicopathological characteristics was also evaluated. RESULTS LncRNA GJA9-MYCBP and PVT1 were significantly upregulated in ALL samples compared with healthy ones. Similarly, mRNA levels of MYC were increased in ALL samples than control ones. Receiver operating characteristic curve analysis indicated a satisfactory diagnostic efficacy (p-value <.0001), suggesting that lncRNA GJA9-MYCBP and PVT1 may serve as a diagnostic biomarker for ALL. Linear regression analysis unveiled positive correlations between the expression level of MYC and lncRNA GJA9-MYCBP and PVT1 in ALL patients (p-values <.01). CONCLUSIONS In this study, we provided approval for the clinical diagnostic significance of lncRNA GJA9-MYCBP and PVT1that their upregulations may be a diagnostic biomarker for ALL.
Collapse
Affiliation(s)
- Kamal Shahamiri
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Arash Alghasi
- Thalassemia & Hemoglobinopathy Research center, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research center, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Gholam Abbas Kaydani
- Department of Laboratory Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Setare sheikhi
- Department of Hematology and Blood Transfusion, School of Allied Medical SciencesTehran University of Medical scienceTehranIran
| |
Collapse
|
6
|
Alshahrani MY, Saleh RO, Hjazi A, Bansal P, Kaur H, Deorari M, Altalbawy FMA, Kareem AH, Hamzah HF, Mohammed BA. Molecular Mechanisms of Tumorgenesis and Metastasis of Long Non-coding RNA (lncRNA) NEAT1 in Human Solid Tumors; An Update. Cell Biochem Biophys 2024; 82:593-607. [PMID: 38750383 DOI: 10.1007/s12013-024-01287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 08/25/2024]
Abstract
The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes' expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Department of Pathological Analysis, College of Applied Science, University of Fallujah, Al-Maarif University College, Al-Anbar, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | | | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
7
|
Koduru P, Chen W, Fuda F, Kaur G, Awan F, John S, Garcia R, Gagan J. RNASeq Analysis for Accurate Identification of Fusion Partners in Tumor Specific Translocations Detected by Standard FISH Probes in Hematologic Malignancies. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241230262. [PMID: 38371338 PMCID: PMC10874141 DOI: 10.1177/2632010x241230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Background Fluorescence labeled DNA probes and in situ hybridization methods had shorter turn round time for results revolutionized their clinical application. Signals obtained from these probes are highly specific, yet they can produce fusion signals not necessarily representing fusion of actual genes due to other genes included in the probe design. In this study we evaluated discordance between cytogenetic, FISH and RNAseq results in 3 different patients with hematologic malignancies and illustrated the need to perform next generation sequencing (NGS) or RNASeq to accurately interpret FISH results. Methods Bone marrow or peripheral blood karyotypes and FISH were performed to detect recurring translocations associated with hematologic malignancies in clinical samples routinely referred to our clinical cytogenetics laboratory. When required, NGS was performed on DNA and RNA libraries to detect somatic alterations and gene fusions in some of these specimens. Discordance in results between these methods is further evaluated. Results For a patient with plasma cell leukemia standard FGFR3 / IGH dual fusion FISH assay detected fusion that was interpreted as FGFR3-positive leukemia, whereas NGS/RNASeq detected NSD2::IGH. For a pediatric acute lymphoblastic leukemia patient, a genetic diagnosis of PDGFRB-positive ALL was rendered because the PDGFRB break-apart probe detected clonal rearrangement, whereas NGS detected MEF2D::CSF1R. A MYC-positive B-prolymphocytic leukemia was rendered for another patient with a cytogenetically identified t(8;14) and MYC::IGH by FISH, whereas NGS detected a novel PVT1::RCOR1 not previously reported. Conclusions These are 3 cases in a series of several other concordant results, nevertheless, elucidate limitations when interpreting FISH results in clinical applications, particularly when other genes are included in probe design. In addition, when the observed FISH signals are atypical, this study illustrates the necessity to perform complementary laboratory assays, such as NGS and/or RNASeq, to accurately identify fusion genes in tumorigenic translocations.
Collapse
Affiliation(s)
- Prasad Koduru
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weina Chen
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Franklin Fuda
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gurbakhash Kaur
- Internal Medicine (Division of Oncology), UT Southwestern Medical Center, Dallas, TX, USA
| | - Farrukh Awan
- Internal Medicine (Division of Oncology), UT Southwestern Medical Center, Dallas, TX, USA
| | - Samuel John
- Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rolando Garcia
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Gagan
- Departments of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Wang XK, Zhang XD, Luo K, Yu L, Huang S, Liu ZY, Li RF. Comprehensive analysis of candidate signatures of long non-coding RNA LINC01116 and related protein-coding genes in patients with hepatocellular carcinoma. BMC Gastroenterol 2023; 23:216. [PMID: 37340445 DOI: 10.1186/s12876-023-02827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a long-term malignancy that causes high morbidities and mortalities worldwide. Notably, long non-coding RNAs (LncRNAs) have been identified as candidate targets for malignancy treatments. METHODS LncRNA LINC01116 and its Pearson-correlated genes (PCGs) were identified and analyzed in HCC patients. The diagnostic and prognostic value of the lncRNA was evaluated using data from The Cancer Genome Atlas (TCGA). Further, we explored the target drugs of LINC01116 for clinical application. Relationships between immune infiltration and PCGs, methylation and PCGs were explored. The diagnostic potentials were then validated by Oncomine cohorts. RESULTS LINC01116 and the PCG OLFML2B are differentially and highly expressed in tumor tissues (both P ≤ 0.050). We found that LINC01116, TMSB15A, PLAU, OLFML2B, and MRC2 have diagnostic potentials (all AUC ≥ 0.700, all P ≤ 0.050) while LINC01116 and TMSB15A have prognostic significance (both adjusted P ≤ 0.050). LINC01116 was enriched in the vascular endothelial growth factor (VEGF) receptor signaling pathway, mesenchyme morphogenesis, etc. After that, candidate target drugs with potential clinical significance were identified: Thiamine, Cromolyn, Rilmenidine, Chlorhexidine, Sulindac_sulfone, Chloropyrazine, and Meprylcaine. Analysis of immune infiltration revealed that MRC2, OLFML2B, PLAU, and TMSB15A are negatively associated with the purity but positively associated with the specific cell types (all P < 0.050). Analysis of promoter methylation demonstrated that MRC2, OLFML2B, and PLAU have differential and high methylation levels in primary tumors (all P < 0.050). Validation results of the differential expressions and diagnostic potential of OLFML2B (Oncomine) were consistent with those obtained in the TCGA cohort (P < 0.050, AUC > 0.700). CONCLUSIONS Differentially expressed LINC01116 could be a candidate diagnostic and an independent prognostic signature in HCC. Besides, its target drugs may work for HCC therapy via the VEGF receptor signaling pathway. Differentially expressed OLFML2B could be a diagnostic signature involved in HCC via immune infiltrates.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Long Yu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
9
|
Parathyroid Carcinoma: Update on Pathogenesis and Therapy. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Parathyroid carcinoma (PC) is a very rare endocrine cancer with aggressive behavior, a high metastatic potential, and a poor prognosis. Surgical resection of affected gland(s) and other involved structures is the elective therapy. Pre-operative and intra-operative differential diagnosis with benign parathyroid adenoma remains a challenge. The lack of a clear pre-operative diagnosis does not allow one, in many cases, to choose the correct surgical approach to malignant PC, increasing persistence, the recurrence rate, and the risk of metastases. An initial wrong diagnosis of parathyroid adenoma, with a minimally invasive parathyroidectomy, is associated with over 50% occurrence of metastases after surgery. Genetic testing could help in identifying patients at risk of congenital PC (i.e., CDC73 gene) and in driving the choice of neck surgery extension. Targeted effective treatments, other than surgery, for advanced and metastatic PC are needed. The pathogenesis of malignant parathyroid carcinogenesis is still largely unknown. In the last few years, advanced molecular techniques allowed researchers to identify various genetic abnormalities and epigenetic features characterizing PC, which could be crucial for selecting molecular targets and developing novel targeted therapeutic agents. We reviewed current findings in PC genetics, epigenetics, and proteomics and state-of-the-art therapies.
Collapse
|
10
|
Murdocca M, Spitalieri P, D'Apice MR, Novelli G, Sangiuolo F. From cue to meaning: The involvement of POLD1 gene in DNA replication, repair and aging. Mech Ageing Dev 2023; 211:111790. [PMID: 36764464 DOI: 10.1016/j.mad.2023.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Aging is an extremely complex biological process. Aging, cancer and inflammation represent a trinity, object of many interesting researches. The accumulation of DNA damage and its consequences progressively interfere with cellular function and increase susceptibility to developing aging condition. DNA Polymerase delta (Pol δ), encoded by POLD1 gene (MIM#174761) on 19q13.3, is well implicated in many steps of the replication program and repair. Thanks to its exonuclease and polymerase activities, the enzyme is involved in the regulation of the cell cycle, DNA synthesis, and DNA damage repair processes. Damaging variants within the exonuclease domain predispose to cancers, while those occurring in the polymerase active site cause the autosomal dominant Progeroid Syndrome called MDPL, Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy Since DNA damage represents the main cause of ageing and age-related pathologies, an overview of critical Pol δ activities will allow to better understand the associations between DNA damage and nearly every aspect of the ageing process, helping the researchers to counteract all the ageing-pathologies at the same time.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; University of Nevada, Department of Pharmacology, Reno, USA; Neuromed Institute, IRCCS, Pozzilli, IS, Italy.
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
11
|
Sun C, Ye Y, Tan Z, Liu Y, Li Y, Hu W, Liang K, Egranov SD, Huang LA, Zhang Z, Zhang Y, Yao J, Nguyen TK, Zhao Z, Wu A, Marks JR, Caudle AS, Sahin AA, Gao J, Gammon ST, Piwnica-Worms D, Hu J, Chiao PJ, Yu D, Hung MC, Curran MA, Calin GA, Ying H, Han L, Lin C, Yang L. Tumor-associated nonmyelinating Schwann cell-expressed PVT1 promotes pancreatic cancer kynurenine pathway and tumor immune exclusion. SCIENCE ADVANCES 2023; 9:eadd6995. [PMID: 36724291 PMCID: PMC9891701 DOI: 10.1126/sciadv.add6995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2023] [Indexed: 05/16/2023]
Abstract
One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was triggered by the tumor cell-produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase-mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.
Collapse
Affiliation(s)
- Chengcao Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa Angela Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina K. Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey R. Marks
- Division of Surgical Science, Department of Surgery, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Abigail S. Caudle
- Department of Breast Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A. Sahin
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Michael A. Curran
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Qin J, Ke B, Liu T, Kong C, Li A, Fu H, Jin C. Aberrantly expressed long noncoding RNAs as potential prognostic biomarkers in newly diagnosed multiple myeloma: A systemic review and meta-analysis. Cancer Med 2023; 12:2199-2218. [PMID: 36057947 PMCID: PMC9939128 DOI: 10.1002/cam4.5135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/17/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Numerous studies have manifested long noncoding RNAs (lncRNAs) as biomarkers to determine the prognosis of multiple myeloma (MM) patients. Nevertheless, the prognostic role of lncRNAs in MM is still ambiguous. Herein, we performed a meta-analysis to evaluate the predictive value of aberrantly expressed lncRNAs in MM. METHODS A systemic literature search was performed in PubMed, EMBASE, Cochrane, and Web of Science databases until October 9, 2021, and the protocol was registered in the PROSPERO database (CRD42021284364). Our study extracted the hazard ratios (HRs) and 95% confidence intervals (CIs) of overall survival (OS), progression-free survival (PFS), or event-free survival (EFS). Begg's and Egger's tests were employed to correct publication bias. RESULT Twenty-six individual studies containing 3501 MM patients were enrolled in this study. The results showed that aberrant expression of lncRNAs was associated with poor OS and PFS of MM patients. The pooled HRs for univariate OS and PFS were 1.48 (95% CI = 1.17-1.88, p < 0.001) and 1.30 (95% CI = 1.18-1.43, p < 0.001), respectively, whereas the pooled HRs for multivariate OS and PFS were 1.50 (95% CI = 1.16-1.95, p < 0.001) and 1.59 (95% CI = 1.22-2.07, p < 0.001), respectively. Subgroup analysis suggested that MALAT1, TCF7, NEAT1, and PVT1 upregulation were associated with poor OS (p < 0.05), PVT1, and TCF7 upregulation were implicated with worse PFS (p < 0.05), while only TCF7 overexpression was correlated with reduced EFS (p < 0.05). Moreover, the contour-enhanced funnel plot demonstrated the reliability of our current conclusion, which was not affected by publication bias. CONCLUSION Aberrantly expressed particular lncRNAs are critical prognostic indicators in long-term survival as well as promising biomarkers in progression-free status. However, different cutoff values and dissimilar methods to assess lncRNA expression among studies may lead to heterogeneity.
Collapse
Affiliation(s)
- Jiading Qin
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Bo Ke
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySoochowJiangsu215006China
| | - Tingting Liu
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Chunfang Kong
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Anna Li
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Huan Fu
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Chenghao Jin
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySoochowJiangsu215006China
| |
Collapse
|
13
|
Li S, Zeng M, Yang L, Tan J, Yang J, Guan H, Kuang M, Li J. Lnc-SELPLG-2:1 enhanced osteosarcoma oncogenesis via hsa-miR-10a-5p and the BTRC cascade. BMC Cancer 2022; 22:1044. [PMID: 36199080 PMCID: PMC9533553 DOI: 10.1186/s12885-022-10040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the potential role of Long Non-coding RNAs (lncRNAs) in the progression of osteosarcoma. METHODS The candidate lncRNAs were screened with RNA-seq and confirmed with quantitative real-time PCR. Using MTS, transwell assay, and flow cytometric analysis, the effects of overexpressed lnc-SELPLG-2:1 on cell functions were determined. Immunohistochemical staining, fluorescence in situ hybridization, and luciferase reporter assay were used to evaluate the potential mechanism of lnc-SELPLG-2:1 in vivo and in vitro using a tumor model. Moreover, the effects of overexpression of hsa-miR-10a-5p on the functions of SaOS2 cells were determined using functional cell analysis. A response test was used to confirm the mechanism by which lnc-SELPLG-2:1 sponge hsa-miR-10a-5p promotes the expression of BTRC to regulate osteosarcoma. RESULTS Lnc-SELPLG-2:1 was highly expressed in osteosarcoma compared to normal cells and bone and marrow samples. Inhibition of lnc-SELPLG-2:1 accelerated cell apoptosis and suppressed cell proliferation, migration, and invasion, whereas lnc-SELPLG-2:1 overexpression had the opposite effect. Moreover, inhibiting lnc-SELPLG-2:1 in an in vivo model decreased tumor size and suppressed the expression of cell migration-related proteins. The prediction, dual luciferase assay, and response test results indicated that hsa-miR-10-5p and BTRC were involved in the lnc-SELPLG-2:1 cascade. Unlike lnc-SELPLG-2:1, hsa-hsa-miR-10a-5p had opposite expression and function. Competitive binding of lnc-SELPLG-2:1 to hsa-hsa-miR-10a-5p prevented BTRC from miRNA-mediated degradation, thereby activating the expression of VIM, MMP9, and MMP2, promoting osteosarcoma cell proliferation, migration, and invasion, and inhibiting apoptosis. CONCLUSION Lnc-SELPLG-2:1 is an oncogenesis activator in osteosarcoma, and its functions are performed via hsa-miR-10a-5p /BTRC cascade.
Collapse
Affiliation(s)
- Shiyuan Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China.
| | - Ming Zeng
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Lin Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Jianshao Tan
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Jianqi Yang
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Hongye Guan
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Manyuan Kuang
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| | - Jiaying Li
- Department of Spinal Surgery, the First People's Hospital of Foshan, North Lingnan Avenue 81, Foshan, 528000, Guangdong, China
| |
Collapse
|
14
|
Wang Y, Zhang C, Wang Y, Liu X, Zhang Z. Enhancer RNA (eRNA) in Human Diseases. Int J Mol Sci 2022; 23:11582. [PMID: 36232885 PMCID: PMC9569849 DOI: 10.3390/ijms231911582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Enhancer RNAs (eRNAs), a class of non-coding RNAs (ncRNAs) transcribed from enhancer regions, serve as a type of critical regulatory element in gene expression. There is increasing evidence demonstrating that the aberrant expression of eRNAs can be broadly detected in various human diseases. Some studies also revealed the potential clinical utility of eRNAs in these diseases. In this review, we summarized the recent studies regarding the pathological mechanisms of eRNAs as well as their potential utility across human diseases, including cancers, neurodegenerative disorders, cardiovascular diseases and metabolic diseases. It could help us to understand how eRNAs are engaged in the processes of diseases and to obtain better insight of eRNAs in diagnosis, prognosis or therapy. The studies we reviewed here indicate the enormous therapeutic potency of eRNAs across human diseases.
Collapse
Affiliation(s)
- Yunzhe Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenyang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxiang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Eckberg K, Weisser I, Buttram D, Somia N, Igarashi P, Aboudehen KS. Small hairpin inhibitory RNA delivery in the metanephric organ culture identifies long noncoding RNA Pvt1 as a modulator of cyst growth. Am J Physiol Renal Physiol 2022; 323:F335-F348. [PMID: 35862648 PMCID: PMC9423782 DOI: 10.1152/ajprenal.00016.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder characterized by the formation of kidney cysts that originate from the epithelial tubules of the nephron and primarily results from mutations in polycystin-1 (PKD1) and polycystin-2 (PKD2). The metanephric organ culture (MOC) is an ex vivo system in which explanted embryonic kidneys undergo tubular differentiation and kidney development. MOC has been previously used to study polycystic kidney disease as treatment with 8-bromo-cAMP induces the formation of kidney cysts. However, the inefficiency of manipulating gene expression in MOC has limited its utility for identifying genes and pathways that are involved in cystogenesis. Here, we used a lentivirus and three serotypes of self-complementary adeno-associated viral (scAAV) plasmids that express green fluorescent protein and found that scAAV serotype D/J transduces the epithelial compartment of MOC at an efficiency of 68%. We used scAAV/DJ to deliver shRNA to knockdown Pvt1, a long noncoding RNA, which was upregulated in kidneys from Pkd1 and Pkd2 mutant mice and humans with ADPKD. shRNA delivery by scAAV/DJ downregulated expression of Pvt1 by 45% and reduced the cyst index by 53% in wild-type MOCs and 32% in Pkd1-null MOCs. Knockdown of Pvt1 decreased the level of c-MYC protein by 60% without affecting Myc mRNA, indicating that Pvt1 regulation of c-MYC was posttranscriptional. These results identify Pvt1 as a long noncoding RNA that modulates cyst progression in MOC.NEW & NOTEWORTHY This study identified scAAV/DJ as effective in transducing epithelial cells of the metanephric organ culture (MOC). We used scAAV/DJ shRNA to knockdown Pvt1 in cystic MOCs derived from Pkd1-null embryos. Downregulation of Pvt1 reduced cyst growth and decreased levels of c-MYC protein. These data suggest that suppression of Pvt1 activity in autosomal dominant polycystic kidney disease might reduce cyst growth.
Collapse
Affiliation(s)
- Kara Eckberg
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ivan Weisser
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Buttram
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nikunj Somia
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karam S Aboudehen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
16
|
Xue X, Chen Y. Circular RNA (circ)_0129047 upregulates bone morphogenetic protein receptor type 2 expression to inhibit lung adenocarcinoma progression by sponging microRNA (miR)-1206. Bioengineered 2022; 13:12067-12087. [PMID: 35570745 PMCID: PMC9275972 DOI: 10.1080/21655979.2022.2070580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) play significant roles in the tumorigenesis and progression of various cancers, including lung adenocarcinoma (LAC). However, their underlying biological functions in LAC remain unclear. Here, we investigated the tumor suppressor role of the newly identified circRNA, circ_0129047, in LAC tumorigenesis and progression. The expression levels of circ_0129047, microRNA (miR)-1206, and bone morphogenetic protein receptor type 2 (BMPR2) mRNA in LAC cells and tissues were monitored using reverse transcription-quantitative polymerase chain reaction. Dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were used to confirm the targeting relationships among circ_0129047, miR-1206, and BMPR2 mRNA. Functional experiments for A549 and PC9 cells were performed using cell counting kit-8, bromodeoxyuridine enzyme-linked immunosorbent, caspase-3 activity, cell adhesion, wound healing, and transwell assays. Circ_0129047 expression levels were reduced in LAC cells and tissues. Mechanistically, we discovered that circ_0129047 could sponge miR-1206, and miR-1206 could directly target BMPR2. In addition, circ_0129047 or BMPR2 knockdown facilitated the viability, proliferation, adhesion, migration, and invasion, while inhibiting the apoptosis of LAC cells. Furthermore, the inhibitory effects of circ_0129047 or BMPR2 overexpression on the malignant phenotype of LAC cells could be reversed by the overexpression of miR-1206. In conclusion, circ _0129047 was found to play a tumor suppressive role in LAC progression; it upregulated BMPR2 expression to inhibit LAC progression by sponging miR-1206. Abbreviations: non-small cell lung cancer (NSCLC); small cell lung cancer (SCLC); lung adenocarcinoma (LAC); Circular RNA (circRNA); MicroRNA (miRNA); bone morphogenetic protein (BMP); squamous cell lung cancer (SCC); RNA immunoprecipitation (RIP)
Collapse
Affiliation(s)
- Xinxin Xue
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yajun Chen
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Mohsenikia M, Khalighfard S, Alizadeh AM, Khori V, Ghandian Zanjan M, Zare M, Omranipour R, Patrad E, Razavi H, Malekshahi ZV, Bagheri-Hosseinabadi Z. An innovative systematic approach introduced the involved lncRNA-miR-mRNA network in cell cycle and proliferation after conventional treatments in breast cancer patients. Cell Cycle 2022; 21:1753-1774. [PMID: 35470783 PMCID: PMC9302505 DOI: 10.1080/15384101.2022.2070104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The present study aimed to explore the involved lncRNA-miRNA-mRNA network in the cell cycle and proliferation after conventional treatments in Luminal A breast cancer patients. METHODS The candidate miRNAs (miRs), lncRNAs, and mRNAs were first taken from the Gene Expression Omnibus and TCGA databases. The lncRNA-miR-mRNA network was then constructed using the high-throughput sequencing data. The expression levels of selected targets were measured in the breast cancer and healthy samples by the Real-Time PCR technique and compared with the clinical outcomes by the Kaplan-Meier method. RESULTS Our analysis revealed a group of differentially expressed 3 lncRNAs, 9 miRs, and 14 mRNAs in breast cancer patients. A significant expression decrease of the selected tumor suppressor lncRNAs, miRs, and genes and a substantial expression increase of the selected onco-lncRNAs, oncomiRs, and oncogenes were obtained in the patients compared to the healthy group. The plasma levels of the lncRNAs, miRs, and mRNAs were more significant after the operation, chemotherapy, and radiotherapy than the pre-treatment. The Kaplan-Meier analysis indicated that the patients with a high expression of miR-21, miR-20b, IGF1R, and E2F2 and a low expression of miR-125a, PDCD4, and PTEN had exhibited a shorter overall survival rate. CONCLUSION Our results suggested that the underlying mechanisms of the lncRNA, miRs, and mRNAs and relevant signaling pathways may be considered predictive and therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Maryam Mohsenikia
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Solmaz Khalighfard
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maziar Ghandian Zanjan
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammadreza Zare
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ramesh Omranipour
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengamesadat Razavi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
18
|
Yao N, Peng S, Wu H, Liu W, Cai D, Huang D. Long noncoding RNA PVT1 promotes chondrocyte extracellular matrix degradation by acting as a sponge for miR-140 in IL-1β-stimulated chondrocytes. J Orthop Surg Res 2022; 17:218. [PMID: 35399100 PMCID: PMC8996637 DOI: 10.1186/s13018-022-03114-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoarthritis (OA) is a common degenerative joint disease, and chondrocyte extracellular matrix (ECM) degradation is one vital pathological feature of OA. Long noncoding RNA (lncRNA), a new kind of gene regulator, plays an important role in pathogenesis of many diseases like OA. Recent studies have confirmed that lncRNA plasmacytoma variant translocation 1 (PVT1) expression was upregulated in OA patients; however, its effect on ECM degradation remained unknown.
Methods
Cartilage tissue samples were obtained from 6 OA patients admitted in Guangdong Second Traditional Chinese Medicine Hospital. Chondrocytes were isolated and cultured from the collected cartilage tissue. Plasmid construction, RNA interference, cell transfection, fluorescence in situ hybridization (FISH), and pull-down assay were carried out during the research.
Results
In this study, PVT1 expression was significantly increased in chondrocytes stimulated by interleukin-1β (IL-1β). In addition, inhibition of PVT1 significantly downregulated the increased expressions of ADAM metallopeptidase with thrombospondin type 1 motif-5 (ADAMTS-5) and matrix metalloproteinase-13 (MMP-13) induced by IL-1β. Further investigation revealed that PVT1 was an endogenous sponge RNA, which directly bound to miR-140 and inhibited miR-140 expression.
Conclusion
To sum up, this study showed that PVT1 promoted expressions of ADAMTS-5 and MMP-13 as a competing endogenous RNA (ceRNA) of miR-140 in OA, which eventually led to aggravation of ECM degradation, thus providing a new and promising strategy for the treatment of OA.
Collapse
|
19
|
Role and Mechanism of lncRNA-pvt1 in the Pathogenesis of Acute Lymphoblastic Leukemia in Children. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8955322. [PMID: 35281949 PMCID: PMC8916858 DOI: 10.1155/2022/8955322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 12/05/2022]
Abstract
Objective To investigate the role and mechanism of lncRNA-pvt1 in the pathogenesis of childhood acute lymphoblastic leukemia (ALL). Methods The expression of lncRNA-pvt1 in bone marrow tissues of ALL patients after initial diagnosis and complete remission was detected by RT-PCR to explore its possible involvement in the pathogenesis of ALL. The proliferation and apoptosis of Jurkat cells transfected with lncRNA-pvt1 were observed by MTT and flow cytometry. Results lncRNA-pvt1 expression was upregulated in bone marrow of ALL patients. Knockdown of lncRNA-pvt1 inhibited Jurkat cell proliferation and increased its apoptosis rate. Conclusion Silencing lncRNA-pvt1 expression can inhibit the development of ALL.
Collapse
|
20
|
Fujii Y, Amatya VJ, Kushitani K, Suzuki R, Kai Y, Kambara T, Takeshima Y. Downregulation of lncRNA PVT1 inhibits proliferation and migration of mesothelioma cells by targeting FOXM1. Oncol Rep 2021; 47:27. [PMID: 34859258 PMCID: PMC8674703 DOI: 10.3892/or.2021.8238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022] Open
Abstract
Malignant mesothelioma is a highly aggressive tumor, and an effective strategy for its treatment is not yet available. Long non-coding RNAs (lncRNAs) have been reported to be associated with various biological processes, including the regulation of gene expression of cancer-related pathways. Among various lncRNAs, plasmacytoma variant translocation 1 (PVT1) acts as a tumor promoter in several human cancers, but its mechanism of action has not yet been elucidated. Increased PVT1 expression was identified in ACC-MESO-1, ACC-MESO-4, CRL-5915, and CRL-5946 mesothelioma cell lines. PVT1 expression was investigated in mesothelioma cell lines by reverse transcription-quantitative polymerase chain reaction and its functional analysis by cell proliferation, cell cycle, cell migration, and cell invasion assays, as well as western blot analysis of downstream target genes. Knockdown of PVT1 expression in these cell lines by small interfering RNA transfection resulted in decreased cell proliferation and migration and increased the proportion of cells in the G2/M phase. The results of reverse transcription-quantitative polymerase chain reaction analysis revealed that PVT1 knockdown in mesothelioma cell lines caused the downregulation of Forkhead box M1 (FOXM1) expression, while the results of western blot analysis revealed that this knockdown reduced FOXM1 expression at the protein level. In addition, combined knockdown of PVT1 and FOXM1 decreased the proliferation of mesothelioma cell lines. In conclusion, PVT1 and FOXM1 were involved in the proliferation of cancer cells. Therefore, PVT1-FOXM1 pathways may be considered as candidate targets for the treatment of malignant mesothelioma.
Collapse
Affiliation(s)
- Yutaro Fujii
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Kei Kushitani
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Rui Suzuki
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yuichiro Kai
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Takahiro Kambara
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| |
Collapse
|
21
|
Identification and Functional Analysis of lncRNAs Responsive to Hypoxia in Eospalax fontanierii. Curr Issues Mol Biol 2021; 43:1889-1905. [PMID: 34889903 PMCID: PMC8929107 DOI: 10.3390/cimb43030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Subterranean rodents could maintain their normal activities in hypoxic environments underground. Eospalax fontanierii, as one kind of subterranean rodent found in China can survive very low oxygen concentration in labs. It has been demonstrated that long non-coding RNAs (lncRNAs) have important roles in gene expression regulations at different levels and some lncRNAs were found as hypoxia-regulated lncRNAs in cancers. We predicted thousands of lncRNAs in the liver and heart tissues by analyzing RNA-Seq data in Eospalax fontanierii. Those lncRNAs often have shorter lengths, lower expression levels, and lower GC contents than mRNAs. Majors of lncRNAs have expression peaks in hypoxia conditions. We found 1128 DE-lncRNAs (differential expressed lncRNAs) responding to hypoxia. To search the miRNA regulation network for lncRNAs, we predicted 471 and 92 DE-lncRNAs acting as potential miRNA target and target mimics, respectively. We also predicted the functions of DE-lncRNAs based on the co-expression networks of lncRNA-mRNA. The DE-lncRNAs participated in the functions of biological regulation, signaling, development, oxoacid metabolic process, lipid metabolic/biosynthetic process, and catalytic activity. As the first study of lncRNAs in Eospalax fontanierii, our results show that lncRNAs are popular in transcriptome widely and can participate in multiple biological processes in hypoxia responses.
Collapse
|
22
|
Winkler L, Dimitrova N. A mechanistic view of long noncoding RNAs in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1699. [PMID: 34668345 PMCID: PMC9016092 DOI: 10.1002/wrna.1699] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important modulators of a wide range of biological processes in normal and disease states. In particular, lncRNAs have garnered significant interest as novel players in the molecular pathology of cancer, spurring efforts to define the functions, and elucidate the mechanisms through which cancer‐associated lncRNAs operate. In this review, we discuss the prevalent mechanisms employed by lncRNAs, with a critical assessment of the methodologies used to determine each molecular function. We survey the abilities of cancer‐associated lncRNAs to enact diverse trans functions throughout the nucleus and in the cytoplasm and examine the local roles of cis‐acting lncRNAs in modulating the expression of neighboring genes. In linking lncRNA functions and mechanisms to their roles in cancer biology, we contend that a detailed molecular understanding of lncRNA functionality is key to elucidating their contributions to tumorigenesis and to unlocking their therapeutic potential. This article is categorized under:Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Lauren Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Bahreini F, Jabbari P, Gossing W, Aziziyan F, Frohme M, Rezaei N. The role of noncoding RNAs in pituitary adenoma. Epigenomics 2021; 13:1421-1437. [PMID: 34558980 DOI: 10.2217/epi-2021-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pituitary adenomas (PAs) are common cranial tumors that affect the quality of life in patients. Early detection of PA is beneficial for avoiding clinical complications of this disease and increasing the quality of life. Noncoding RNAs, including long noncoding RNA, miRNA and circRNA, regulate protein expression, mostly by inhibiting the translation process. Studies have shown that dysregulation of noncoding RNAs is associated with PA. Hence understanding the expression pattern of noncoding RNAs can be considered a promising method for developing biomarkers. This article reviews data on the expression pattern of dysregulated noncoding RNAs involved in PA. Possible molecular mechanisms by which the dysregulated noncoding RNA could possibly induce PA are also described.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Parnian Jabbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Genetics, Genomics & Bioinformatics, University of California, Riverside, CA, USA
| | - Wilhelm Gossing
- Division Molecular Biotechnology & Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marcus Frohme
- Division Molecular Biotechnology & Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer. Biomedicines 2021; 9:biomedicines9080921. [PMID: 34440124 PMCID: PMC8389562 DOI: 10.3390/biomedicines9080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.
Collapse
|
25
|
Zhu Y, Wu F, Gui W, Zhang N, Matro E, Zhu L, Eserberg DT, Lin X. A positive feedback regulatory loop involving the lncRNA PVT1 and HIF-1α in pancreatic cancer. J Mol Cell Biol 2021; 13:676-689. [PMID: 34245303 PMCID: PMC8648389 DOI: 10.1093/jmcb/mjab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Extreme hypoxia is among the most prominent pathogenic features of pancreatic cancer (PC). Both the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) and hypoxic inducible factor-1α (HIF-1α) are highly expressed in PC patients and play a crucial role in disease progression. Reciprocal regulation involving PVT1 and HIF-1α in PC, however, is poorly understood. Here, we report that PVT1 binds to the HIF-1α promoter and activates its transcription. In addition, we found that PVT1 could bind to HIF-1α and increases HIF-1α post-translationally. Our findings suggest that the PVT1‒HIF-1α positive feedback loop is a potential therapeutic target in the treatment of PC.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Wu
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Gui
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Erik Matro
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Linghua Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Xihua Lin
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Yu D, Yang X, Zhu Y, Xu F, Zhang H, Qiu Z. Knockdown of plasmacytoma variant translocation 1 (PVT1) inhibits high glucose-induced proliferation and renal fibrosis in HRMCs by regulating miR-23b-3p/early growth response factor 1 (EGR1). Endocr J 2021; 68:519-529. [PMID: 33408314 DOI: 10.1507/endocrj.ej20-0642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play critical role in the development of diabetic nephropathy (DN). However, the effects and mechanism of plasmacytoma variant translocation 1 (PVT1) remain poorly understood. The expression of PVT1, miR-23b-3p, early growth response factor 1 (EGR1), Fibronectin (FN), Collagen IV (Col IV), alpha smooth muscle actin (α-SMA), E-cadherin, and vimentin, transforming growth factor (TGF)-β1 was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed by Cell Counting-8 (CCK-8) assay. Western blot assay was conducted to measure the protein levels of FN, Col IV, E-cadherin, α-SMA, vimentin, TGF-β1, and EGR1. The interaction between miR-23b-3p and PVT1 or EGR1 was predicted by starBase or TargetScan and confirmed by the dual luciferase reporter assay. The oxidative stress factors were analyzed by corresponding kits. We found that the expression of PVT1 and EGR1 was increased and miR-23b-3p was decreased in serum samples of DN patients and HG-induced HRMCs. Knockdown of PVT1 significantly inhibited HG-induced proliferation, extracellular matrix (ECM) accumulation, epithelial-mesenchymal transition (EMT), and oxidative stress in HRMCs, while these effects were abated by inhibiting miR-23b-3p. In addition, EGR1 was confirmed as downstream target of miR-23b-3p and miR-23b-3p could specially bind to PVT1. Besides, downregulation of PVT1 inhibited the progression of DN partially via upregulating miR-23b-3p and downregulating EGR1. In conclusion, our results suggested that PVT1 knockdown suppressed DN progression though functioning as ceRNA of miR-23b-3p to regulate EGR1 expression in vitro, providing potential value for the treatment of DN.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Endocrinology, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Xiaohong Yang
- Department of Nursing, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Yong Zhu
- Department of Endocrinology, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Fenyan Xu
- Department of Endocrinology, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Hong Zhang
- Department of Endocrinology, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| | - Zhiqiang Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First People's Hospital of Lanzhou New District, Lanzhou, Gansu, China
| |
Collapse
|
27
|
Qi H, Liu Y, Wang N, Xiao C. Lentinan Attenuated the PM2.5 Exposure-Induced Inflammatory Response, Epithelial-Mesenchymal Transition and Migration by Inhibiting the PVT1/miR-199a-5p/caveolin1 Pathway in Lung Cancer. DNA Cell Biol 2021; 40:683-693. [PMID: 33902331 DOI: 10.1089/dna.2020.6338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PM2.5 plays an important role in the physiological and pathological progression of lung cancer. Lentinan exerts antitumor activity in many kinds of human cancers. Plasmacytoma variant translocation 1 (PVT1) exerts antitumor activity in many kinds of human cancers. However, the role and underlying molecular mechanism of PVT1 in the role of lentinan in PM2.5-exposed lung cancer are still largely unknown. Our study confirmed that PM2.5 exposure induced the production of inflammatory factors, epithelial-mesenchymal transition (EMT) and migration of lung cancer cells. Lentinan exerted antitumor effects by inhibiting the production of inflammatory factors, EMT, and migration of lung cancer cells. Lentinan suppressed PM2.5 exposure-induced cellular progression by inhibiting the PM2.5 exposure-induced elevation of PVT1 expression. PVT1 absorbed miR-199a, and miR-199a inhibited caveolin1 expression and thus formed the PVT1/miR-199a/caveolin1 signaling pathway in lung cancer cells. Our study revealed that silencing of the PVT1/miR-199a/caveolin1 signaling pathway affected the role of lentinan in PM2.5-exposed lung cancer cells. Thus, this study first investigated the role of lentinan in PM2.5-exposed lung cancer cells and further displayed the underlying molecular mechanism, providing a potential treatment for PM2.5-exposed lung cancer.
Collapse
Affiliation(s)
- He Qi
- Liaoning University of Traditional Chinese Medicine, Graduate School, Shenyang, People's Republic of China.,Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, People's Republic of China
| | - Ying Liu
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, People's Republic of China
| | - Nan Wang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, People's Republic of China
| | - Chunling Xiao
- Liaoning University of Traditional Chinese Medicine, Graduate School, Shenyang, People's Republic of China.,Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, People's Republic of China
| |
Collapse
|
28
|
Cheng T, Huang S. Roles of Non-Coding RNAs in Cervical Cancer Metastasis. Front Oncol 2021; 11:646192. [PMID: 33777808 PMCID: PMC7990873 DOI: 10.3389/fonc.2021.646192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Metastasis remains to be a huge challenge in cancer therapy. The mechanism underlying cervical cancer metastasis is not well understood and needs to be elucidated. Recent studies have highlighted the diverse roles of non-coding RNAs in cancer progression and metastasis. Increasing numbers of miRNAs, lncRNAs and circRNAs are found to be dysregulated in cervical cancer, associated with metastasis. They have been shown to regulate metastasis through regulating metastasis-related genes, epithelial-mesenchymal transition, signaling pathways and interactions with tumor microenvironment. Moreover, miRNAs can interact with lncRNAs and circRNAs respectively during this complex process. Herein, we review literatures up to date involving non-coding RNAs in cervical cancer metastasis, mainly focus on the underlying mechanisms and highlight the interaction network between miRNAs and lncRNAs, as well as circRNAs. Finally, we discuss the therapeutic prospects.
Collapse
Affiliation(s)
- Tanchun Cheng
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, China
| | - Shouguo Huang
- Department of Obstetrics and Gynecology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, China
| |
Collapse
|
29
|
Gao X, Sui H, Zhao S, Gao X, Su Y, Qu P. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment. Front Immunol 2021; 11:585214. [PMID: 33613512 PMCID: PMC7889583 DOI: 10.3389/fimmu.2020.585214] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that accumulate in tumor-bearing hosts to reduce T cells activity and promote tumor immune escape in the tumor microenvironment (TME). The immune system in the TME can be stimulated to elicit an anti-tumor immune response through immunotherapy. The main theory of immunotherapy resides on the plasticity of the immune system and its capacity to be re-educated into a potent anti-tumor response. Thus, MDSCs within the TME became one of the major targets to improve the efficacy of tumor immunotherapy, and therapeutic strategies for tumor MDSCs were developed in the last few years. In the article, we analyzed the function of tumor MDSCs and the regulatory mechanisms of agents targeting MDSCs in tumor immunotherapy, and reviewed their therapeutic effects in MDSCs within the TME. Those data focused on discussing how to promote the differentiation and maturation of MDSCs, reduce the accumulation and expansion of MDSCs, and inhibit the function, migration and recruitment of MDSCs, further preventing the growth, invasion and metastasis of tumor. Those investigations may provide new directions for cancer therapy.
Collapse
Affiliation(s)
- Xidan Gao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shang Zhao
- Department of Pathophysiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xingmei Gao
- Department of Neurology, People's Hospital of Binzhou, Binzhou, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
30
|
Taniue K, Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021; 22:E632. [PMID: 33435206 PMCID: PMC7826647 DOI: 10.3390/ijms22020632] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, research on cancer biology has focused on the involvement of protein-coding genes in cancer development. Long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential, are an important class of RNA molecules that are involved in a variety of biological functions. Although the functions of a majority of lncRNAs have yet to be clarified, some lncRNAs have been shown to be associated with human diseases such as cancer. LncRNAs have been shown to contribute to many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein and RNA. Here we describe the literature regarding the biogenesis and features of lncRNAs. We also present an overview of the current knowledge regarding the roles of lncRNAs in cancer from the view of various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. Furthermore, we discuss the methodologies used to identify the function of lncRNAs in cancer development and tumorigenesis. Better understanding of the molecular mechanisms involving lncRNA functions in cancer is critical for the development of diagnostic and therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology-Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
31
|
Lin QY, Qi QL, Hou S, Chen Z, Zhang L, Zhao HG, Lin CH. LncRNA PVT1 Acts as a Tumor Promoter in Thyroid Cancer and Promotes Tumor Progression by Mediating miR-423-5p-PAK3. Cancer Manag Res 2021; 12:13403-13413. [PMID: 33408513 PMCID: PMC7779291 DOI: 10.2147/cmar.s283443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/05/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction Thyroid cancer (TC) is an endocrine tumor whose risk of onset has been rising, so the deep understanding of its molecular mechanism helps formulate new treatment strategies. Methods This paper was aimed at exploring the regulatory mechanism of long non-coding RNA (LncRNA) plasmacytoma variant translocation 1 (PVT1) in TC. The expression of PVT1, miR-423-5p and p21-activated kinase 3 (PAK3) in TC tissues and cell lines was detected by real-time PCR. PAK3 levels were detected by Western blot. Regulatory relationships between target genes and the proliferation, invasion and apoptosis of cells and genes were analyzed. Results PVT1 and PAK3 upregulated while miR-423-5p downregulated in the tissues and cell lines. PVT1 downregulation inhibited TC cells from malignantly proliferating and invading, and promoted their apoptosis. PVT1 specifically regulated miR-423-5p, and its overexpression could weaken the anti-tumor effect of this miR on TC cells. In addition, miR-423-5p directly targeted PAK3, and knocking down its expression could weaken the inhibitory effect of PAK3 downregulation on TC progression. Besides, PVT1 acted as a competitive endogenous RNA to sponge this miR and thus regulate PAK3 expression. Discussion In conclusion, PVT1 can mediate the molecular mechanism of the miR-423-5p-PAK3 axis regulatory network on regulating TC, so it is a new direction of treating the disease.
Collapse
Affiliation(s)
- Qiu-Yu Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| | - Qian-Le Qi
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| | - Sen Hou
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| | - Zhen Chen
- Chengdu Xinke Pharmaceutical Co., LTD, Chengdu City 610000, Sichuan Province, People's Republic of China
| | - Laney Zhang
- Biological Sciences at Cornell University (2022), Ithaca, NY, USA
| | - Hong-Guang Zhao
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| | - Cheng-He Lin
- Nuclear Medicine Department, The First Hospital of Jilin University, Changchun City 130000, Jilin Province, People's Republic of China
| |
Collapse
|
32
|
Zhang H, Niu Q, Liang K, Li X, Jiang J, Bian C. Effect of LncPVT1/miR-20a-5p on Lipid Metabolism and Insulin Resistance in NAFLD. Diabetes Metab Syndr Obes 2021; 14:4599-4608. [PMID: 34848984 PMCID: PMC8627263 DOI: 10.2147/dmso.s338097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is closely related to lipid metabolism and insulin resistance. The current research mainly attempted to verify the clinical value of LncRNA plasmacytoma variant translocation 1 (PVT1), and whether microRNA regulates lipid metabolism and insulin resistance to participate in NAFLD. PATIENTS AND METHODS 81 patients with NAFLD and 78 healthy individuals were enrolled in this study. In addition, C57BL/6 mice were fed a high-fat diet to establish NAFLD model in vivo. Serum PVT1 and miR-20a-5p expression in NAFLD patients and mice were assessed by RT-qPCR. ROC curves determine the diagnostic value of PVT1 and miR-20a-5p. NAFLD mice were subjected to IPGTT to detect changes in insulin sensitivity, and the common indicators of lipid metabolism and insulin resistance were also evaluated. Dual-luciferase reporter assay verified the regulation mechanism of PVT1 and miR-20a-5p. RESULTS PVT1 was upregulated in NAFLD patients and mice, while miR-20a-5p was decreased. Their expression trends were similar in patients with HOMA-IR ≥2.5. What's more, miR-20a-5p, FBG, ALT, and HOMA-IR were independently correlated with PVT1. And PVT1 and miR-20a-5p show high clinical diagnostic value. Bodyweight, insulin sensitivity, lipid metabolism inductors were increased in NAFLD mice, but these increases were attenuated by PVT1 elimination. Finally, miR-20a-5p might function as the possible miRNA target of PVT1 via the binding sites at 3'-UTR and negatively regulated by it. CONCLUSION PVT1 and miR-20a-5p are potential clinical biomarkers of NAFLD, and PVT1 promotes the occurrence of NAFLD by regulating insulin sensitivity and lipid metabolism, which may be achieved by targeting miR-20a-5p.
Collapse
Affiliation(s)
- Han Zhang
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Qinghui Niu
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
- Correspondence: Qinghui Niu Department of Liver Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, People’s Republic of ChinaTel +86-0532-82915998 Email
| | - Kun Liang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Xuesen Li
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Jing Jiang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Cheng Bian
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
33
|
Abstract
Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
Collapse
|
34
|
Abstract
Liver cancer is a global problem and hepatocellular carcinoma (HCC) accounts for about 85% of this cancer. In the USA, etiologies and risk factors for HCC include chronic hepatitis C virus (HCV) infection, diabetes, non-alcoholic steatohepatitis (NASH), obesity, excessive alcohol drinking, exposure to tobacco smoke, and genetic factors. Chronic HCV infection appears to be associated with about 30% of HCC. Chronic HCV infection induces multistep changes in liver, involving metabolic disorders, steatosis, cirrhosis and HCC. Liver carcinogenesis requires initiation of neoplastic clones, and progression to clinically diagnose malignancy. Tumor progression associates with profound exhaustion of tumor-antigen-specific CD8+T cells, and accumulation of PD-1hi CD8+T cells and Tregs. In this chapter, we provide a brief description of HCV and environmental/genetic factors, immune regulation, and highlight mechanisms of HCV associated HCC. We also underscore HCV treatment and recent paradigm of HCC progression, highlighted the current treatment and potential future therapeutic opportunities.
Collapse
|
35
|
Aprile M, Katopodi V, Leucci E, Costa V. LncRNAs in Cancer: From garbage to Junk. Cancers (Basel) 2020; 12:E3220. [PMID: 33142861 PMCID: PMC7692075 DOI: 10.3390/cancers12113220] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing-based transcriptomics has significantly redefined the concept of genome complexity, leading to the identification of thousands of lncRNA genes identification of thousands of lncRNA genes whose products possess transcriptional and/or post-transcriptional regulatory functions that help to shape cell functionality and fate. Indeed, it is well-established now that lncRNAs play a key role in the regulation of gene expression through epigenetic and posttranscriptional mechanims. The rapid increase of studies reporting lncRNAs alteration in cancers has also highlighted their relevance for tumorigenesis. Herein we describe the most prominent examples of well-established lncRNAs having oncogenic and/or tumor suppressive activity. We also discuss how technical advances have provided new therapeutic strategies based on their targeting, and also report the challenges towards their use in the clinical settings.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| |
Collapse
|
36
|
Meng Y, Qiu S, Sun L, Zuo J. Knockdown of exosome‑mediated lnc‑PVT1 alleviates lipopolysaccharide‑induced osteoarthritis progression by mediating the HMGB1/TLR4/NF‑κB pathway via miR‑93‑5p. Mol Med Rep 2020; 22:5313-5325. [PMID: 33174011 PMCID: PMC7646997 DOI: 10.3892/mmr.2020.11594] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis is a chronic degenerative joint disease. Long non‑coding RNA plasmacytoma variant translocation 1 (PVT1) is involved in the progression of osteoarthritis and exosomes serve a central role in intercellular communication. However, whether PVT1 can be mediated by exosomes in osteoarthritis has not been reported. Whole blood was drawn from osteoarthritis patients and healthy volunteers. Lipopolysaccharide (LPS) was used to stimulate human normal chondrocytes (C28/I2) to construct a cell damage model in vitro. Protein levels were examined via western blot analysis. eThe expression of PVT1, microRNA (miR)‑93‑5p and high mobility groupprotein B1 (HMGB1) was evaluated through reverse transcription‑quantitative PCR. Cell viability and apoptosis were determined through CCK‑8 or flow cytometric assay. Inflammatory cytokines were measured via ELISA. The relationship between PVT1 or HMGB1 and miR‑93‑5p was confirmed by dual‑luciferase reporter assay. PVT1, HMGB1 and exosomal PVT1 were upregulated while miR‑93‑5p was downregulated in osteoarthritis patient serum and LPS‑induced C28/I2 cells. Exosomes from osteoarthritis patient serum and LPS‑treated C28/I2 cells increased PVT1 expression in C28/I2 cells. PVT1 depletion reversed the decrease of viability and the increase of apoptosis, inflammation responses and collagen degradation of C28/I2 cells induced by LPS. PVT1 regulated HMGB1 expression via sponging miR‑93‑5p. miR‑93‑5p inhibition abolished PVT1 silencing‑mediated viability, apoptosis, inflammation responses and collagen degradation of LPS‑stimulated C28/I2 cells. HMGB1 increase overturned miR‑93‑5p upregulation‑mediated viability, apoptosis, inflammation responses and collagen degradation of LPS‑stimulated C28/I2 cells. Furthermore, PVT1 modulated the Toll‑like receptor 4/NF‑κB pathway through an miR‑93‑5p/HMGB1 axis. In summary, exosome‑mediated PVT1 regulated LPS‑induced osteoarthritis progression by modulating the HMGB1/TLR4/NF‑κB pathway via miR‑93‑5p, providing a new route for possible osteoarthritis treatment.
Collapse
Affiliation(s)
- Yong Meng
- Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Siqiang Qiu
- Department of Spine Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Long Sun
- Department of Orthopedics, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Jinliang Zuo
- Department of Spine Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
37
|
Arman K, Möröy T. Crosstalk Between MYC and lncRNAs in Hematological Malignancies. Front Oncol 2020; 10:579940. [PMID: 33134177 PMCID: PMC7579998 DOI: 10.3389/fonc.2020.579940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome project revealed the existence of many thousands of long non-coding RNAs (lncRNAs). These transcripts that are over 200 nucleotides long were soon recognized for their importance in regulating gene expression. However, their poor conservation among species and their still controversial annotation has limited their study to some extent. Moreover, a generally lower expression of lncRNAs as compared to protein coding genes and their enigmatic biochemical mechanisms have impeded progress in the understanding of their biological roles. It is, however, known that lncRNAs engage in various kinds of interactions and can form complexes with other RNAs, with genomic DNA or proteins rendering their functional regulatory network quite complex. It has emerged from recent studies that lncRNAs exert important roles in gene expression that affect many cellular processes underlying development, cellular differentiation, but also the pathogenesis of blood cancers like leukemia and lymphoma. A number of lncRNAs have been found to be regulated by several well-known transcription factors including Myelocytomatosis viral oncogene homolog (MYC). The c-MYC gene is known to be one of the most frequently deregulated oncogenes and a driver for many human cancers. The c-MYC gene is very frequently activated by chromosomal translocations in hematopoietic cancers most prominently in B- or T-cell lymphoma or leukemia and much is already known about its role as a DNA binding transcriptional regulator. Although the understanding of MYC's regulatory role controlling lncRNA expression and how MYC itself is controlled by lncRNA in blood cancers is still at the beginning, an intriguing picture emerges indicating that c-MYC may execute part of its oncogenic function through lncRNAs. Several studies have identified lncRNAs regulating c-MYC expression and c-MYC regulated lncRNAs in different blood cancers and have unveiled new mechanisms how these RNA molecules act. In this review, we give an overview of lncRNAs that have been recognized as critical in the context of activated c-MYC in leukemia and lymphoma, describe their mechanism of action and their effect on transcriptional reprogramming in cancer cells. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new cancer therapies.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
38
|
El-Khazragy N, Mohammed HF, Yassin M, Elghoneimy KK, Bayoumy W, Hewety A, El Magdoub HM, Elayat W, Zaki W, Safwat G, Mosa M, Zedan K, Salem S, Bannunah AM, Mansy A. Tissue-based long non-coding RNAs "PVT1, TUG1 and MEG3" signature predicts Cisplatin resistance in ovarian Cancer. Genomics 2020; 112:4640-4646. [PMID: 32781203 DOI: 10.1016/j.ygeno.2020.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The current study aimed to investigate the potentiality of three lncRNAs "Plasmacytoma variant translocation 1(lnc-PVT1), Taurine upregulated gene type 1(lnc-TUG1) and Maternally expressed gene 3 (lnc-MEG-3)", to predict Cisplatin resistance in ovarian cancer (OC), in addition, to access their prognostic significance. METHODS The expression level of lncRNAs were measured in 100 formalin-fixed paraffin-embedded tissue (FFET) samples of OC patients who were treated by Cisplatin-based chemotherapy using qPCR. RESULTS The results showed that lnc_PVT1 was significantly upregulated by 2.3 folds in Cisplatin resistant tissues, while, lnc-TUG1 and lnc-MEG3 were downregulated by 1.2 and 3 folds, respectively. In addition, the three lncRNAs exhibited high sensitivity and specificity in predicting chemo-resistance and they were negatively associated with OS and progression-free survival (p < 0.001). CONCLUSION The lnc-PVT1, lnc-TUG1, and lnc-MEG3 transcriptome signatures could be used for predicting resistance to Cisplatin in OC patients.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Clinical Pathology/Hematology & Biomedical Research Departments, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Biomedical Research Department, Global Research Labs, Cairo, Egypt.
| | - Hayam Fathy Mohammed
- Department of Obstetrics and Gynecology Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Yassin
- Department Clinical Oncology, Faculty of Medicine, Ain shams University, Cairo, Egypt
| | - K K Elghoneimy
- Department Clinical Oncology, Faculty of Medicine, Ain shams University, Cairo, Egypt
| | - Walid Bayoumy
- Department Clinical Oncology, Faculty of Medicine, Ain shams University, Cairo, Egypt
| | - Amr Hewety
- Department Clinical Oncology, Faculty of Medicine, Ain shams University, Cairo, Egypt
| | - Hekmat M El Magdoub
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Wael Elayat
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walid Zaki
- Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Mai Mosa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Khouloud Zedan
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Salema Salem
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Azzah M Bannunah
- Common First year Deanship, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Azza Mansy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Egypt
| |
Collapse
|
39
|
Ji D, Zheng W, Huang P, Yao Y, Zhong X, Kang P, Wang Z, Shi G, Xu Y, Cui Y. Huaier Restrains Cholangiocarcinoma Progression in vitro and in vivo Through Modulating lncRNA TP73-AS1 and Inducing Oxidative Stress. Onco Targets Ther 2020; 13:7819-7837. [PMID: 32848417 PMCID: PMC7425108 DOI: 10.2147/ott.s257738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Huaier, the fruiting body of Trametes robiniophila Murr, is a kind of traditional Chinese medicine. Recently, many studies have confirmed that Huaier has antitumor effects on various malignancies. Moreover, studies have demonstrated that long noncoding RNAs play an important regulatory role in the occurrence and progression of malignancies. Our present study was to explore whether Huaier has a potential antitumor effect in cholangiocarcinoma and reveal the relationship between lncRNAs and Huaier-induced tumor inhibition. Methods Microarray assay was performed to identify the candidate lncRNAs regulated by Huaier. Quantitative real-time PCR was applied to assess the effect of Huaier on TP73-AS1 expression. The effect of Huaier on the cell viability, proliferation, migration and invasion was evaluated by CCK-8, colony formation, wound healing and Transwell assays, respectively. The ratio of cell apoptosis was determined using AO/EB, Hoechst 33342 and flow cytometry. The effect of Huaier on oxidative stress was revealed using DCFH-DA, mito-SOX, JC-1 probes and Western blotting. In addition, the effect of Huaier on tumor growth and metastasis was explored using subcutaneous tumor model and lung metastatic tumor model in nude mice. Results In vitro, Huaier inhibited the proliferation, migration and invasion of cholangiocarcinoma cells by down-regulating TP73-AS1 and induced apoptosis through mitochondrial apoptotic pathway. In vivo, Huaier suppressed the growth and metastasis of cholangiocarcinoma by modulating the expression of proliferation and EMT-associated proteins. Conclusion Huaier could inhibit cell proliferation, invasion and metastasis by modulating the expression of TP73-AS1, meanwhile promote apoptosis of CCA cells through disturbing mitochondrial function, inducing oxidative stress and activating caspases in vitro. In addition, Huaier could suppress tumor growth and metastasis by regulating the expression of proliferation and EMT-related proteins. In the meantime, Huaier prolonged the survival of nude mice in lung metastatic model with acceptable drug safety.
Collapse
Affiliation(s)
- Daolin Ji
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, People's Republic of China
| | - Wangyang Zheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, People's Republic of China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, People's Republic of China
| | - Yue Yao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Guojing Shi
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, People's Republic of China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
40
|
Panou V, Røe OD. Inherited Genetic Mutations and Polymorphisms in Malignant Mesothelioma: A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124327. [PMID: 32560575 PMCID: PMC7352726 DOI: 10.3390/ijms21124327] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma (MM) is mainly caused by air-born asbestos but genetic susceptibility is also suspected to be a risk factor. Recent studies suggest an increasing number of candidate genes that may predispose to MM besides the well-characterized BRCA1-associated protein-1 gene. The aim of this review is to summarize the most important studies on germline mutations for MM. A total of 860 publications were retrieved from Scopus, PubMed and Web of Science, of which 81 met the inclusion criteria and were consider for this review. More than 50% of the genes that are reported to predispose to MM are involved in DNA repair mechanisms, and the majority of them have a role in the homologous recombination pathway. Genetic alterations in tumor suppressor genes involved in chromatin, transcription and hypoxia regulation have also been described. Furthermore, we identified several single nucleotide polymorphisms (SNPs) that may promote MM tumorigenesis as a result of an asbestos-gene interaction, including SNPs in DNA repair, carcinogen detoxification and other genes previously associated with other malignancies. The identification of inherited mutations for MM and an understanding of the underlying pathways may allow early detection and prevention of malignancies in high-risk individuals and pave the way for targeted therapies.
Collapse
Affiliation(s)
- Vasiliki Panou
- Department of Respiratory Medicine, Odense University Hospital, 5000 Odense, Denmark
- Department of Respiratory Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
- Clinical Institute, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Correspondence:
| | - Oluf Dimitri Røe
- Clinical Institute, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
41
|
Sun C, Wang P, Dong W, Liu H, Sun J, Zhao L. LncRNA PVT1 promotes exosome secretion through YKT6, RAB7, and VAMP3 in pancreatic cancer. Aging (Albany NY) 2020; 12:10427-10440. [PMID: 32499447 PMCID: PMC7346024 DOI: 10.18632/aging.103268] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Cancer cells secrete excessive numbers of exosomes that play essential roles in tumorigenesis. Long non-coding RNAs (lncRNAs) are essential non-coding RNAs for cancer progression. However, the role of lncRNA plasmacytoma variant translocation 1 (PVT1) in exosome secretion of PC remains to be comprehensively investigated. Thus, nanoparticle tracking analysis and transmission electron microscopy were performed to determine exosome secretion. Confocal microscopy, western blots, real-time PCR, immunofluorescence, pull-down and RNA immunoprecipitation assays, and rescue experiments were applied to investigate the mechanism underlying the role of PVT1 in exosome secretion. The results showed that PVT1 was upregulated in PC cells, along with increased levels of YKT6 v-SNARE homolog (YKT6), ras-related protein Rab-7 (RAB7), and vesicle-associated membrane protein 3 (VAMP3). Also, PVT1 promoted the transportation of multivesicular bodies (MVBs) towards the plasma membrane. In addition, PVT1 promoted the docking of MVBs by altering RAB7 expression and localization. Moreover, PVT1 promoted the fusion of MVBs with the plasma membrane through regulating YKT6 and VAMP3 colocalization and the palmitoylation of YKT6. Taken together, the results suggest that PVT1 promoted exosome secretion of PC cells and thus, can expand the understanding of PVT1 in tumor biology.
Collapse
Affiliation(s)
- Chengming Sun
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Peng Wang
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Wei Dong
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Haishi Liu
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Jianmin Sun
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Liang Zhao
- Department of Hepatopancreatobiliary Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| |
Collapse
|
42
|
Evolution and structure of clinically relevant gene fusions in multiple myeloma. Nat Commun 2020; 11:2666. [PMID: 32471990 PMCID: PMC7260243 DOI: 10.1038/s41467-020-16434-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma is a plasma cell blood cancer with frequent chromosomal translocations leading to gene fusions. To determine the clinical relevance of fusion events, we detect gene fusions from a cohort of 742 patients from the Multiple Myeloma Research Foundation CoMMpass Study. Patients with multiple clinic visits enable us to track tumor and fusion evolution, and cases with matching peripheral blood and bone marrow samples allow us to evaluate the concordance of fusion calls in patients with high tumor burden. We examine the joint upregulation of WHSC1 and FGFR3 in samples with t(4;14)-related fusions, and we illustrate a method for detecting fusions from single cell RNA-seq. We report fusions at MYC and a neighboring gene, PVT1, which are related to MYC translocations and associated with divergent progression-free survival patterns. Finally, we find that 4% of patients may be eligible for targeted fusion therapies, including three with an NTRK1 fusion. Multiple myeloma is characterised by frequent gene fusions. Here, the authors use data from the Multiple Myeloma Research Foundation CoMMpass Study to further investigate fusion genes in this disease and their clinical relevance.
Collapse
|
43
|
Reduce proliferation of human bone marrow cells from acute myeloblastic leukemia with minimally differentiation by blocking lncRNA PVT1. Clin Transl Oncol 2020; 22:2103-2110. [PMID: 32406010 DOI: 10.1007/s12094-020-02360-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Acute myeloblastic leukemia with minimally differentiation (AML-M0) is a subtype of acute leukemia with poor prognosis. The recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in different cellular processes, such as cell cycle control and proliferation. Plasmacytoma variant translocation 1 (PVT1) is one of those lncRNAs that is significantly upregulated in AML. LncRNAs could be downregulated or blocked by locked nucleic acids (LNA) which are oligonucleotide strands. METHODS In this study, lncRNA PVT1 was blocked by antisense LNA GapmeRs in human bone marrow cancerous blast cells. Cells were transfected with PVT1 antisense LNA GapmeRs at 24, 48, and 72 h post-transfection. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was accomplished to evaluate the PVT1 and c-Myc expression. Cell viability was evaluated by MTT assay, and apoptosis and necrosis were assessed by Annexin V/propidium iodide staining assay. RESULTS The results of this study indicated that the downregulation of PVT1 in blast cells could induce apoptosis, and necrosis and reduce cell viability. The expression of c-Myc was downregulated by blockage of PVT1 and it shows that the expression of these two genes are correlated. CONCLUSION The findings declare that inhibition of PVT1 could be a new target in the treatment of AML-M0 and help to approach more to treatments with fewer side effects.
Collapse
|
44
|
Han J, Shen X. Long noncoding RNAs in osteosarcoma via various signaling pathways. J Clin Lab Anal 2020; 34:e23317. [PMID: 32249459 PMCID: PMC7307344 DOI: 10.1002/jcla.23317] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is one of the most commonly seen bone malignancies with high incidence rate in both children and adults. Although the regulatory network of osteosarcoma has been greatly concerned for years, the mechanisms regarding its oncogenesis and development are still not clear. Recent discoveries have revealed that long noncoding RNAs (lncRNAs) play a crucial role in the development, progression, and invasion of osteosarcoma. Deregulated expression of lncRNAs has been found to participate in the regulation of various signaling transduction pathways in osteosarcoma. This review summarized roles of lncRNAs in the pathogenesis, development, and potential therapeutic of osteosarcoma via different signaling pathways. For examples, MALAT1, CCAT2, FER1L4, LOXL1‐AS1, OIP5‐AS1, PVT1, DBH‐AS1, and AWPPH regulate PI3K/Akt signaling; AWPPH and BE503655 regulate Wnt/β‐catenin signaling; NKILA and XIST regulate NF‐κB signaling; MEG3 and SNHG12 regulate Notch signaling; FOXD2‐AS1 and LINK‐A regulate HIF‐1α signaling; GClnc1 and HOTAIR regulate P53 signaling; ZFAS1, H19, and MALAT1 regulate MAPK, Hedgehog and Rac1/JNK signaling, respectively.
Collapse
Affiliation(s)
| | - Xiaohan Shen
- Ningbo Diagnostic Pathology Center (Shanghai Cancer Center Ningbo Pathology Center), Ningbo, China.,Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
45
|
Kim S. A miRNA- and mRNA-seq-Based Feature Selection Approach for Kidney Cancer Biomakers. Cancer Inform 2020; 19:1176935120908301. [PMID: 32165847 PMCID: PMC7050029 DOI: 10.1177/1176935120908301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 11/15/2022] Open
Abstract
Microarray data sets have been used for predicting cancer biomarkers. Yet, replication of the prediction has not been fully satisfied. Recently, new data sets called deep sequencing data sets have been generated, with an advantage of less noise in computational analysis. In this study, we analyzed the kidney miRNA and mRNA sequence data sets for predicting cancer markers using 5 different statistical feature selection methods. In the results, we obtained 3 mRNA- and 27 miRNA-based cancer biomarkers to compare with the normal samples. In addition, we clustered the kidney cancer subtypes using a nonnegative matrix factorization method and obtained significant results of survival analysis from the 2 separate groups including miRNA-342 and its target eukaryotic translation initiation factor 5A (EIF5A).
Collapse
Affiliation(s)
- Shinuk Kim
- Department of Civil Engineering, Sangmyung University, Cheonan, Republic of Korea
| |
Collapse
|
46
|
Anauate AC, Leal MF, Calcagno DQ, Gigek CO, Karia BTR, Wisnieski F, dos Santos LC, Chen ES, Burbano RR, Smith MAC. The Complex Network between MYC Oncogene and microRNAs in Gastric Cancer: An Overview. Int J Mol Sci 2020; 21:ijms21051782. [PMID: 32150871 PMCID: PMC7084225 DOI: 10.3390/ijms21051782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development. However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic, not only as biomarkers, but also as molecules for development of promising therapies.
Collapse
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Bruno Takao Real Karia
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Leonardo Caires dos Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém PA 66075-110, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém PA 66063-240, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
47
|
Abbastabar M, Sarfi M, Golestani A, Karimi A, Pourmand G, Khalili E. Tumor-derived urinary exosomal long non-coding RNAs as diagnostic biomarkers for bladder cancer. EXCLI JOURNAL 2020; 19:301-310. [PMID: 32231490 PMCID: PMC7104196 DOI: 10.17179/excli2019-1683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
Bladder cancer (BC) is the sixth most common malignancy in men and 17th in women. Exosomal long non-coding RNAs (lncRNAs) have been defined as a novel biomarker for BC. The aim of this study is to evaluate the clinical significance of urine exosomal PVT-1, ANRIL and PCAT-1 as a biomarker in BC patients with tumors classified as T1 or T2. Exosomes were isolated from urine of BC patients and healthy donors, then characterized according to their shape, size, and exosome markers by Electron Microscopy, Dynamic light scattering, and Western blotting. Exosomal lncRNAs extraction was done to determine the expression levels of PVT-1, ANRIL and PCAT-1 by qRT-PCR. ANRIL and PCAT-1 expression was significantly higher in BC patients compared to normal subjects. To evaluate the performance of the identified lncRNAs for BC detection, we performed ROC curves analysis. The diagnostic accuracy of ANRIL and PCAT-1, measured by AUC, was 0.7229 (sensitivity = 46.67 % and specificity = 87.5 %) and 0.7292 (sensitivity = 43.33 % and specificity = 87.5 %). Transcript levels of lncRNAs in urinary exosomes are potential diagnostic biomarkers in bladder cancer.
Collapse
Affiliation(s)
- Maryam Abbastabar
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karimi
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Pourmand
- Department of Urology, School of Medicine, Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Khalili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Yang LG, Cao MZ, Zhang J, Li XY, Sun QL. LncRNA XIST modulates HIF-1A/AXL signaling pathway by inhibiting miR-93-5p in colorectal cancer. Mol Genet Genomic Med 2020; 8:e1112. [PMID: 32061057 PMCID: PMC7196477 DOI: 10.1002/mgg3.1112] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Background Long noncoding RNA (LncRNA) XIST is one of the genes that exists in different types of cancers. Earlier researches showed that XIST can advance the progression of colorectal cancer. Nevertheless, the potential molecular mechanism of XIST in combination with miR‐93‐5p has not been explored in colorectal cancer. Methods We performed qRT‐PCR to explore the level of XIST. And a serious experiments in vitro and in vivo were performed to explore the function of XIST. The relationship between XIST/HIF‐1A and miR‐93‐5p was confirmed by RIP and dual‐luciferase assays. Results In the present research, our team demonstrated the upregulation of XIST expression, which was related to tumor progression, and the downregulation of miR‐93‐5p in cells and tissues of colorectal cancer. XIST is the competitive endogenous RNA of miR‐93‐5p to promote HIF‐1A, and then the upregulated AXL level facilitates the EMT process, migration, and proliferation of colorectal cancer. At last, we proved that XIST enhanced the in vivo and in vitro activities of colorectal cancer by regulating AXL signaling. Conclusion In summary, the above results indicate that XIST promotes colorectal cancer tumorigenesis by regulating miR‐93‐5p/HIF‐1A/AXL signaling pathway, which will supply a novel perspective to diagnose and treat colorectal cancer disease.
Collapse
Affiliation(s)
- Li-Guang Yang
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| | - Ming-Zheng Cao
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| | - Jie Zhang
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| | - Xiao-Yan Li
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| | - Qin-Li Sun
- Department of Gastrointestinal Surgery, Linyi Central Hospital, Linyi, China
| |
Collapse
|
49
|
Martínez-Barriocanal Á, Arango D, Dopeso H. PVT1 Long Non-coding RNA in Gastrointestinal Cancer. Front Oncol 2020; 10:38. [PMID: 32083000 PMCID: PMC7005105 DOI: 10.3389/fonc.2020.00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Whole genome and transcriptome sequencing technologies have led to the identification of many long non-coding RNAs (lncRNAs) and stimulated the research of their role in health and disease. LncRNAs participate in the regulation of critical signaling pathways including cell growth, motility, apoptosis, and differentiation; and their expression has been found dysregulated in human tumors. Thus, lncRNAs have emerged as new players in the initiation, maintenance and progression of tumorigenesis. PVT1 (plasmacytoma variant translocation 1) lncRNA is located on chromosomal 8q24.21, a large locus frequently amplified in human cancers and predictive of increased cancer risk in genome-wide association studies (GWAS). Combined, colorectal and gastric adenocarcinomas are the most frequent tumor malignancies and also the leading cause of cancer-related deaths worldwide. PVT1 expression is elevated in gastrointestinal tumors and correlates with poor patient prognosis. In this review, we discuss the mechanisms of action underlying PVT1 oncogenic role in colorectal and gastric cancer such as MYC upregulation, miRNA production, competitive endogenous RNA (ceRNA) function, protein stabilization, and epigenetic regulation. We also illustrate the potential role of PVT1 as prognostic biomarker and its relationship with resistance to current chemotherapeutic treatments.
Collapse
Affiliation(s)
- Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis. Mol Cell 2020; 77:761-774.e8. [PMID: 31973890 DOI: 10.1016/j.molcel.2019.12.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/20/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
The tumor suppressor p53 transcriptionally activates target genes to suppress cellular proliferation during stress. p53 has also been implicated in the repression of the proto-oncogene Myc, but the mechanism has remained unclear. Here, we identify Pvt1b, a p53-dependent isoform of the long noncoding RNA (lncRNA) Pvt1, expressed 50 kb downstream of Myc, which becomes induced by DNA damage or oncogenic signaling and accumulates near its site of transcription. We show that production of the Pvt1b RNA is necessary and sufficient to suppress Myc transcription in cis without altering the chromatin organization of the locus. Inhibition of Pvt1b increases Myc levels and transcriptional activity and promotes cellular proliferation. Furthermore, Pvt1b loss accelerates tumor growth, but not tumor progression, in an autochthonous mouse model of lung cancer. These findings demonstrate that Pvt1b acts at the intersection of the p53 and Myc transcriptional networks to reinforce the anti-proliferative activities of p53.
Collapse
|