1
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-like Receptor Response to Human Immunodeficiency Virus Type 1 or Co-Infection with Hepatitis B or C Virus: An Overview. Int J Mol Sci 2023; 24:ijms24119624. [PMID: 37298575 DOI: 10.3390/ijms24119624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that play important roles in the early detection of pathogen-associated molecular patterns and shaping innate and adaptive immune responses, which may influence the consequences of infection. Similarly to other viral infections, human immunodeficiency virus type 1 (HIV-1) also modulates the host TLR response; therefore, a proper understanding of the response induced by human HIV-1 or co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), due to the common mode of transmission of these viruses, is essential for understanding HIV-1 pathogenesis during mono- or co-infection with HBV or HCV, as well as for HIV-1 cure strategies. In this review, we discuss the host TLR response during HIV-1 infection and the innate immune evasion mechanisms adopted by HIV-1 for infection establishment. We also examine changes in the host TLR response during HIV-1 co-infection with HBV or HCV; however, this type of study is extremely scarce. Moreover, we discuss studies investigating TLR agonists as latency-reverting agents and immune stimulators towards new strategies for curing HIV. This understanding will help develop a new strategy for curing HIV-1 mono-infection or co-infection with HBV or HCV.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases. Cell Mol Life Sci 2022; 79:547. [PMID: 36224474 PMCID: PMC9555683 DOI: 10.1007/s00018-022-04582-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
Toll-like receptors (TLRs) comprise a class of highly conserved molecules that recognize pathogen-associated molecular patterns and play a vital role in host defense against multiple viral infectious diseases. Although TLRs are highly expressed on innate immune cells and play indirect roles in regulating antiviral adaptive immune responses, intrinsic expression of TLRs in adaptive immune cells, including T cells and B cells, cannot be ignored. TLRs expressed in CD4 + and CD8 + T cells play roles in enhancing TCR signal-induced T-cell activation, proliferation, function, and survival, serving as costimulatory molecules. Gene knockout of TLR signaling molecules has been shown to diminish antiviral adaptive immune responses and affect viral clearance in multiple viral infectious animal models. These results have highlighted the critical role of TLRs in the long-term immunological control of viral infection. This review summarizes the expression and function of TLR signaling pathways in T and B cells, focusing on the in vitro and vivo mechanisms and effects of intrinsic TLR signaling in regulating T- and B-cell responses during viral infection. The potential clinical use of TLR-based immune regulatory drugs for viral infectious diseases is also explored.
Collapse
|
3
|
Schaunaman N, Dimasuay KG, Cervantes D, Li L, Numata M, Kraft M, Chu HW. Tollip Inhibits IL-33 Release and Inflammation in Influenza A Virus-Infected Mouse Airways. J Innate Immun 2022; 15:67-77. [PMID: 35760043 PMCID: PMC10643888 DOI: 10.1159/000525315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Respiratory influenza A virus (IAV) infection continues to pose significant challenges in healthcare of human diseases including asthma. IAV infection in mice was shown to increase IL-33, a key cytokine in driving airway inflammation in asthma, but how IL-33 is regulated during viral infection remains unclear. We previously found that a genetic mutation in Toll-interacting protein (Tollip) was linked to less airway epithelial Tollip expression, increased neutrophil chemokines, and lower lung function in asthma patients. As Tollip is involved in maintaining mitochondrial function, and mitochondrial stress may contribute to extracellular ATP release and IL-33 secretion, we hypothesized that Tollip downregulates IL-33 secretion via inhibiting ATP release during IAV infection. Wild-type and Tollip knockout (KO) mice were infected with IAV and treated with either an ATP converter apyrase or an IL-33 decoy receptor soluble ST2 (sST2). KO mice significantly lost more body weight and had increased extracellular ATP, IL-33 release, and neutrophilic inflammation. Apyrase treatment reduced extracellular ATP levels, IL-33 release, and neutrophilic inflammation in Tollip KO mice. Excessive lung neutrophilic inflammation in IAV-infected Tollip KO mice was reduced by sST2, which was coupled with less IL-33 release. Our data suggest that Tollip inhibits IAV infection, potentially by inhibiting extracellular ATP release and reducing IL-33 activation and lung inflammation. In addition, sST2 may serve as a potential therapeutic approach to mitigate respiratory viral infection in human subjects with Tollip deficiency.
Collapse
Affiliation(s)
| | | | - Diana Cervantes
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Monica Kraft
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
4
|
Wang MG, Wang J, He JQ. Genetic association of TOLLIP gene polymorphisms and HIV infection: a case-control study. BMC Infect Dis 2021; 21:590. [PMID: 34154540 PMCID: PMC8215734 DOI: 10.1186/s12879-021-06303-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Background Previous studies have indicated that host genetic factors play an essential role in immunity to human immunodeficiency virus (HIV) infection. We aimed to investigate the association between the toll-interacting protein (TOLLIP) and mannose-binding lectin 2 (MBL2) genes and HIV infection susceptibility among Chinese Han patients. Methods This is a case-control study. A total of 435 HIV-infected patients and 1013 seronegative healthy individuals were recruited. DNA was extracted from whole blood. Two SNPs in the MBL2 gene (rs7096206 and rs1800450) and three SNPs in the TOLLIP gene (rs5743899, rs3750920, and rs5743867) were selected and genotyped using a SNPscan Kit (Cat#: G0104, Genesky Biotechnologies Inc., Shanghai, China). Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using unconditional binary logistic regression. Results A significant association between the minor alleles rs5743899 (C allele) and rs5743867 (G allele) in the TOLLIP gene and susceptibility to HIV infection was found in this study after adjusting for age and sex (Pa = 0.011 and < 0.001, respectively). The rs5743867 in the TOLLIP gene was significantly associated with the risk of HIV infection in dominant, recessive, and additive models when adjusted for age and sex (Pa < 0.05). No significant association was found between MBL2 gene polymorphisms and HIV infection. Conclusion Our study found a statistically significant association between the two SNPs (rs5743867 and rs5743899) in the TOLLIP gene and susceptibility to HIV infection in a Chinese Han population. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06303-4.
Collapse
Affiliation(s)
- Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Jing Wang
- Department of Infectious Disease, Neijiang Second People's Hospital, Neijiang, Sichuan Province, People's Republic of China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Li X, Goobie GC, Zhang Y. Toll-interacting protein impacts on inflammation, autophagy, and vacuole trafficking in human disease. J Mol Med (Berl) 2020; 99:21-31. [PMID: 33128579 DOI: 10.1007/s00109-020-01999-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
Toll-interacting protein (TOLLIP) is a ubiquitous intracellular adaptor protein involved in multiple intracellular signaling pathways. It plays a key role in mediating inflammatory intracellular responses, promoting autophagy, and enabling vacuole transport within the cell. TOLLIP is being increasingly recognized for its role in disease pathophysiology through involvement in these three primary pathways. Recent research also indicates that TOLLIP is involved in nuclear-cytoplasmic transfer, although this area requires further exploration. TOLLIP is involved in the pathophysiologic pathways associated with neurodegenerative diseases, pulmonary diseases, cardiovascular disease, inflammatory bowel disease, and malignancy. We postulate that TOLLIP plays an integral role in the disease pathophysiology of other conditions involved in vacuole trafficking and autophagy. We suggest that future research in this field should investigate the role of TOLLIP in the pathogenesis of these multiple conditions. This research has the potential to inform disease mechanisms and identify novel opportunities for therapeutic advances in multiple disease processes.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Gillian C Goobie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Clinician Investigator Program, Department of Medicine, University of British Columbia, BC, V5Z-3X7, Vancouver, Canada
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID-19) diagnosis and treatment using microarray dataset and bioinformatics methods. 3 Biotech 2020; 10:422. [PMID: 33251083 PMCID: PMC7679428 DOI: 10.1007/s13205-020-02406-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
The goal of the present investigation is to identify the differentially expressed genes (DEGs) between SARS-CoV-2 infected and normal control samples to investigate the molecular mechanisms of infection with SARS-CoV-2. The microarray data of the dataset E-MTAB-8871 were retrieved from the ArrayExpress database. Pathway and Gene Ontology (GO) enrichment study, protein–protein interaction (PPI) network, modules, target gene–miRNA regulatory network, and target gene–TF regulatory network have been performed. Subsequently, the key genes were validated using an analysis of the receiver operating characteristic (ROC) curve. In SARS-CoV-2 infection, a total of 324 DEGs (76 up- and 248 down-regulated genes) were identified and enriched in a number of associated SARS-CoV-2 infection pathways and GO terms. Hub and target genes such as TP53, HRAS, MAPK11, RELA, IKZF3, IFNAR2, SKI, TNFRSF13C, JAK1, TRAF6, KLRF2, CD1A were identified from PPI network, target gene–miRNA regulatory network, and target gene–TF regulatory network. Study of the ROC showed that ten genes (CCL5, IFNAR2, JAK2, MX1, STAT1, BID, CD55, CD80, HAL-B, and HLA-DMA) were substantially involved in SARS-CoV-2 patients. The present investigation identified key genes and pathways that deepen our understanding of the molecular mechanisms of SARS-CoV-2 infection, and could be used for SARS-CoV-2 infection as diagnostic and therapeutic biomarkers.
Collapse
|
7
|
Feng J, Lin P, Wang Y, Zhang Z. Molecular characterization, expression patterns, and functional analysis of toll-interacting protein (Tollip) in Japanese eel Anguilla japonica. FISH & SHELLFISH IMMUNOLOGY 2019; 90:52-64. [PMID: 31015066 DOI: 10.1016/j.fsi.2019.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Toll-interacting protein (Tollip) is a key negative regulator of TLR-mediated innate immune responses. The structure and function of Tollip have been well identified in mammals, but the information about Tollip is still limited in teleost fishes. In the present study, the homologue of Tollip was cloned from Japanese eel. It contained an open reading frame encoding a polypeptide of 276 amino acids which shared high identities with other homologues from different species. Multiple alignment of the amino acid sequence showed that the AjTollip protein has the typical conserved domains including an N-terminal Target of Myb1 (Tom1) binding domain (TBD), a central conserved 2 (C2) domain, and a C-terminal coupling of ubiquitin to endoplasmic reticulum degradation (CUE) domain. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed a broad expression for AjTollip in a wide range of tissues, with the highest expression in the liver, a relatively high expression in the spleen, kidney, gills, skin and intestine, and a low expression in the heart and muscle. The AjTollip expressions in the liver and kidney were significantly induced following injection with the bacterial mimic LPS, the viral mimic poly I:C, and Aeromonas hydrophila infection. In vitro, the AjTollip transcripts of Japanese eel liver cells were significantly enhanced by the treatment of LPS, poly I:C, CpG-DNA, and PGN or the stimulation of high concentration of Aeromonas hydrophila (1 × 107 cfu/mL and 1 × 108 cfu/mL). Subcellular localization study showed that AjTollip was mainly distributed in the cytoplasm in a condensed state. When AjTollip was co-transfected with AjMyD88 into HEK293 cells, the luciferase activities of NF-κB were significantly decreased compared with that of AjMyD88 single-transfection groups in natural state or under the stimulation of LPS and poly I:C. These results collectively suggested that AjTollip functions as a negative regulator of MyD88-dependent TLR signaling and plays an important role in fish defense against viral and bacterial infections.
Collapse
Affiliation(s)
- Jianjun Feng
- College of Fisheries, Jimei University, Xiamen, 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China.
| | - Peng Lin
- College of Fisheries, Jimei University, Xiamen, 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, 361021, Fujian Province, China; Engineer Research Center of Eel Modern Industry Technology, Ministry of Education, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|