1
|
Nishihara K, van Niekerk J, Innes D, He Z, Cánovas A, Guan LL, Steele M. Transcriptome profiling revealed that key rumen epithelium functions change in relation to short-chain fatty acids and rumen epithelium-attached microbiota during the weaning transition. Genomics 2023; 115:110664. [PMID: 37286013 DOI: 10.1016/j.ygeno.2023.110664] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
This study aims to characterize the functional changes of the rumen epithelium associated with ruminal short-chain fatty acid (SCFA) concentration and epithelium-attached microbes during the weaning transition in dairy calves. Ruminal SCFA concentrations were determined, and transcriptome and microbiota profiling in biopsied rumen papillae were obtained from Holstein calves before and after weaning using RNA- and amplicon sequencing. Metabolic pathway analysis showed that pathways related to SCFA metabolism and cell apoptosis were up- and down-regulated postweaning, respectively. Functional analysis showed that genes related to SCFA absorption, metabolism, and protective roles against oxidative stress were positively correlated with ruminal SCFA concentrations. The relative abundance of epithelium-attached Rikenellaceae RC9 gut group and Campylobacter was positively correlated with genes involved in SCFA absorption and metabolism, suggesting that these microbes can cooperatively affect host functions. Future research should examine the contribution of attenuated apoptosis on rumen epithelial functional shifts during the weaning transition.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Jolet van Niekerk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - David Innes
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada.
| |
Collapse
|
2
|
Zhang J, Bai J, Gong C, Wang J, Cheng Y, Zhao J, Xiong H. Serine-associated one-carbon metabolic reprogramming: a new anti-cancer therapeutic strategy. Front Oncol 2023; 13:1184626. [PMID: 37664062 PMCID: PMC10471886 DOI: 10.3389/fonc.2023.1184626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Tumour metabolism is a major focus of cancer research, and metabolic reprogramming is an important feature of malignant tumours. Serine is an important non-essential amino acid, which is a main resource of one-carbon units in tumours. Cancer cells proliferate more than normal cells and require more serine for proliferation. The cancer-related genes that are involved in serine metabolism also show changes corresponding to metabolic alterations. Here, we reviewed the serine-associated one-carbon metabolism and its potential as a target for anti-tumour therapeutic strategies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Chen J, Ye C, Yang Z, Zhang C, Li P, Xu B, Wu A, Zhang X, Xue X. Erchen decoction to reduce oxidative stress in dyslipidemia phlegm-dampness retention syndrome mice: In vivo mechanism revealed by metabolomics (liquid chromatography-mass spectrometry). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154808. [PMID: 37087794 DOI: 10.1016/j.phymed.2023.154808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE Erchen decoction, a traditional Chinese medicine formula, can reduce the level of oxidative stress for the treatment of dyslipidemia phlegm-dampness retention syndrome (DPDRS); however, studies have not elucidated the mechanism underlying its metabolic action. Here, liquid chromatography-mass spectrometry (LC-MS)-based metabolomic techniques were utilized to characterize the in vivo effects of Erchen decoction in achieving reduction of oxidative stress levels and understand the potential metabolic mechanisms of action. METHODS We constructed a DPDRS animal model using a multifactorial composite modeling approach, and Erchen decoction was administered by gavage. We employed LC-MS-based metabolomic techniques in combination with serum-associated factors, gene transcription, methylation detection, and hematoxylin and eosin staining. RESULTS In this study, the constructed animal model of DPDRS had satisfactory quality. Erchen decoction treatment reduced the levels of low-density lipoprotein cholesterol, t total cholesterol and riglyceride; it improved the endothelial structure, increased levels of serum β-nicotinamide adenine dinucleotide phosphate and glutathione concentrations, increased aortic phosphoserine aminotransferase and phosphoserine phosphatase gene expression levels, and decreased aortic phosphoglycerate dehydrogenase methylation level. A total of 64 differential metabolites were obtained using LC-MS assay, and 34 differential metabolic pathways were obtained after enrichment. CONCLUSIONS Erchen decoction treatment of DPDRS mice reversed lipid indexes, improved vascular endothelial structure, increased serum and aortic anti-oxidative stress factor concentration and expression levels, and decreased methylation levels, thereby reducing oxidative stress and protecting vascular endothelium. Tricarboxylic acid cycle and metabolic pathways of serum glutamine, serine, tryptophan, pyrimidine, and pyruvate were the most relevant metabolic pathways involved in reducing oxidative stress levels by Erchen decoction during DPDRS treatment; especially, mitochondrial redox homeostasis maintenance in endothelial cells may be crucial. In this work, the therapeutic potential of Erchen decoction for reducing the oxidative stress level in DPDRS was demonstrated; however, its in-depth mechanism is worth further exploration.
Collapse
Affiliation(s)
- Jing Chen
- Preventive Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese edicine, Beijing 100700, China
| | - Zheng Yang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese edicine, Beijing 100700, China
| | - Bing Xu
- Traditional Chinese Medicine Department, Tibetology Research Center of Beijing Tibetan Medicine Hospital, Beijing 100029, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaodong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaolin Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
4
|
Zhou X, Tian C, Cao Y, Zhao M, Wang K. The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet 2023; 13:1084609. [PMID: 36699468 PMCID: PMC9868472 DOI: 10.3389/fgene.2022.1084609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic reprogramming is an important hallmark of malignant tumors. Serine is a non-essential amino acid involved in cell proliferation. Serine metabolism, especially the de novo serine synthesis pathway, forms a metabolic network with glycolysis, folate cycle, and one-carbon metabolism, which is essential for rapidly proliferating cells. Owing to the rapid development in metabolomics, abnormal serine metabolism may serve as a biomarker for the early diagnosis and pathological typing of tumors. Targeting serine metabolism also plays an essential role in precision and personalized cancer therapy. This article is a systematic review of de novo serine biosynthesis and the link between serine and folate metabolism in tumorigenesis, particularly in lung cancer. In addition, we discuss the potential of serine metabolism to improve tumor treatment.
Collapse
|
5
|
Huang MY, Liu XY, Shao Q, Zhang X, Miao L, Wu XY, Xu YX, Wang F, Wang HY, Zeng L, Deng L. Phosphoserine phosphatase as a prognostic biomarker in patients with gastric cancer and its potential association with immune cells. BMC Gastroenterol 2022; 22:1. [PMID: 34979926 PMCID: PMC8722028 DOI: 10.1186/s12876-021-02073-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Background Because of dismal prognosis in gastric cancer, identifying relevant prognostic factors is necessary. Phosphoserine phosphatase (PSPH) exhibits different expression patterns in many cancers and has been reported to affect the prognosis of patients with cancer. In this study, we examined the prognostic role of metabolic gene PSPH in gastric cancer based on the TCGA dataset and our hospital–based cohort cases. Methods We collected and analysed RNA-seq data of Pan-cancer and gastric cancer in the TCGA dataset and PSPH expression data obtained from immunohistochemical analysis of 243 patients with gastric cancer from Sun Yat-sen University cancer center. Further, Kaplan–Meier survival analysis and Cox analysis were used to assess the effect of PSPH on prognosis. The ESTIMATE and Cibersort algorithms were used to elucidate the relationship between PSPH and the abundance of immune cells using the TCGA dataset. Results We observed that PSPH expression displayed considerably high in gastric cancer and it was significantly associated with inferior prognosis (P = 0.043). Surprisingly, there was a significant relationship between lower immune scores and high expression of PSPH (P < 0.05). Furthermore, patients with a low amount of immune cells exhibited poor prognosis (P = 0.046). The expression of PSPH significantly increased in activated memory CD4 T cells, resting NK cells and M0 macrophages (P = 0.037, < 0.001, and 0.005, respectively). Conclusions This study highlighted that PSPH influences the prognosis of patients with gastric cancer, and this is associated with the infiltration of tumour immune cells, indicating that PSPH may be a new immune-related target for treating gastric cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-02073-0.
Collapse
Affiliation(s)
- Ma-Yan Huang
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xiao-Yun Liu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Qiong Shao
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xu Zhang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Xiao-Yan Wu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yu-Xia Xu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, People's Republic of China.,Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, People's Republic of China.
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Dongfeng East Road 651, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Miao YD, Mu LJ, Mi DH. Metabolism-associated genes in occurrence and development of gastrointestinal cancer: Latest progress and future prospect. World J Gastrointest Oncol 2021; 13:758-771. [PMID: 34457185 PMCID: PMC8371517 DOI: 10.4251/wjgo.v13.i8.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/27/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the most prevalent cancers in the world. The occurrence and progression of GI cancer involve multiple events. Metabolic reprogramming is one of the hallmarks of cancer and is intricately related to tumorigenesis. Many metabolic genes are involved in the occurrence and development of GI cancer. Research approaches combining tumor genomics and metabolomics are more likely to provide deeper insights into this field. In this paper, we review the roles of metabolism-associated genes, especially those involved in the regulation pathways, in the occurrence and progression of GI cancer. We provide the latest progress and future prospect into the different molecular mechanisms of metabolism-associated genes involved in the occurrence and development of GI cancer.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lin-Jie Mu
- The First Affiliated Hospital, Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Deng-Hai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Dean’s Office, Gansu Academy of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
7
|
Sah N, Kuehu DL, Khadka VS, Deng Y, Jha R, Wasti S, Mishra B. RNA sequencing-based analysis of the magnum tissues revealed the novel genes and biological pathways involved in the egg-white formation in the laying hen. BMC Genomics 2021; 22:318. [PMID: 33932994 PMCID: PMC8088581 DOI: 10.1186/s12864-021-07634-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Background The mechanism of egg formation in the oviduct of laying hens is tightly controlled; each segment of the oviduct contributes a unique component of the egg. Several genes/proteins are involved in the synthesis of a completely healthy egg. This implies a time- and tissue-specific expression of genes and proteins in the different oviductal segments. We used hens at different physiological stages and time points to understand the transcriptional regulation of egg-white (albumen) synthesis and secretion onto the eggs in the magnum of laying hens. This study used Next-Generation Sequencing and quantitative real-time PCR (qPCR) to detect the novel genes and the cognate biological pathways that regulate the major events during the albumen formation. Results Magnum tissues collected from laying (n = 5 each at 3 h post-ovulation, p.o. and 15–20 h p.o.), non-laying (n = 4), and molting (n = 5) hens were used for differential gene expression analyses. A total of 540 genes (152 upregulated and 388 down-regulated) were differentially expressed at 3 h p.o. in the magnum of laying hens. Kyoto Encyclopedia of Genes and Genomes pathways analysis of the 152 upregulated genes revealed that glycine, serine, and threonine metabolism was the most-enriched biological pathway. Furthermore, the top two most enriched keywords for the upregulated genes were amino-acid biosynthesis and proteases. Nine candidate genes associated with albumen formation were validated with qPCR to have differential expression in laying, non-laying, and molting hens. Proteases such as TMPRSS9, CAPN2, MMP1, and MMP9 (protein maturation, ECM degradation, and angiogenesis); enzymes such as PSPH, PHGDH, and PSAT1 (amino-acid biosynthesis); RLN3, ACE, and REN (albumen synthesis, secretion and egg transport); and AVD, AvBD11, and GPX3 (antimicrobial and antioxidants) were recognized as essential molecules linked to albumen deposition in the magnum. Conclusions This study revealed some novel genes that participate in the signaling pathways for egg-white synthesis and secretion along with some well-known functional genes. These findings help to understand the mechanisms involved in albumen biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07634-x.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, HI, 96822, Honolulu, USA
| | - Donna Lee Kuehu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Vedbar Singh Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, HI, 96822, Honolulu, USA
| | - Sanjeev Wasti
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, HI, 96822, Honolulu, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, HI, 96822, Honolulu, USA.
| |
Collapse
|
8
|
Murtas G, Marcone GL, Sacchi S, Pollegioni L. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol Life Sci 2020; 77:5131-5148. [PMID: 32594192 PMCID: PMC11105101 DOI: 10.1007/s00018-020-03574-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.
Collapse
Affiliation(s)
- Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
9
|
Zhang J, Wang E, Zhang L, Zhou B. PSPH induces cell autophagy and promotes cell proliferation and invasion in the hepatocellular carcinoma cell line Huh7 via the AMPK/mTOR/ULK1 signaling pathway. Cell Biol Int 2020; 45:305-319. [PMID: 33079432 DOI: 10.1002/cbin.11489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
Phosphoserine phosphatase (PSPH), a key enzyme of the l-serine synthesis pathway, has been involved in cancer progression and survival. However, limited evidence revealed the PSPH influence on hepatocellular carcinoma (HCC). Herein, we observed that PSPH expression was upregulated in both HCC tissues and cell lines, which was determined by western blotting. TCGA database showed that the PSPH protein levels were significantly upregulated and affected patient survival rates in HCC. Then gain- and loss-of-function manipulations were performed by transfection with a pcDNA-PSPH expression vector or a specific short interfering RNA against PSPH in Huh7 cells. Huh7 cell proliferation, stemness, invasion, and apoptosis were assessed by using CCK-8 test, colony formation assay, Transwell assay, and Flow cytometry analysis, respectively, and levels of autophagy-related proteins were detected by using western blotting. The results showed that PSPH could induce Huh7 cell autophagy, promote cell proliferation and invasion, and inhibit apoptosis. The knockdown of PSPH could inhibit Huh7 cell proliferation, invasion, and autophagy. Furthermore, PSPH activated Liver kinase B1 (LKB1) and TGF beta-activated kinase 1 (TAK1), affected the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mTOR/ULK1 signaling pathway, but could not activate calcium/calmodulin-dependent protein kinase kinase (CaMKK) in Huh7 cells. Inhibition of either LKB1, TAK1, or AMPK could eliminate the effect of PSPH overexpression on Huh7 cell behaviors. However, inhibition of CaMKK could not influence the effect of PSPH overexpression on Huh7 cell behaviors. In conclusion, PSPH could induce autophagy, promote proliferation and invasion, and inhibit apoptosis in HCC cells via the AMPK/mTOR/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Jianli Zhang
- The Second General Surgery Department, Xi'an Central Hospital, Xi'an, China
| | - Erhao Wang
- Department of Medicine, Institute for DNA and its Products, Xi'an, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bo Zhou
- Digestive System Department, The Second Affiliand Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Leherte L, Haufroid M, Mirgaux M, Wouters J. Investigation of bound and unbound phosphoserine phosphatase conformations through elastic network models and molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:3958-3974. [PMID: 32448044 DOI: 10.1080/07391102.2020.1772883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The human phosphoserine phosphatase (hPSP) catalyses the last step in the biosynthesis of L-serine. It involves conformational changes of the enzyme lid once the substrate, phosphoserine (PSer), is bound in the active site. Here, Elastic Network Model (ENM) is applied to the crystal structure of hPSP to probe the transition between open and closed conformations of hPSP. Molecular Dynamics (MD) simulations are carried out on several PSer-hPSP systems to characterise the intermolecular interactions and their effect on the dynamics of the enzyme lid. Systems involving either Ca++ or Mg++ are considered. The first ENM normal mode shows that an open-closed transition can be explained from a simple description of the enzyme in terms of harmonic potentials. Principal Component Analyses applied to the MD trajectories also highlight a trend for a closing/opening motion. Different PSer orientations inside the enzyme cavity are identified, i.e. either the carboxylate, the phosphate group of PSer, or both, are oriented towards the cation. The interaction patterns are analysed in terms of hydrogen bonds, electrostatics, and bond critical points of the electron density distributions. The latter approach yields a global description of the bonding intermolecular interactions. The PSer orientation determines the content of the cation coordination shell and the mobility of the substrate, while Lys158 and Thr182, involved in the reaction mechanism, are always in interaction with the substrate. Closed enzyme conformations involve Met52-Gln204, Arg49-Glu29, and Arg50-Glu29 interactions. Met52, as well as Arg49 and Arg50, also stabilize PSer inside the cavity. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laurence Leherte
- Laboratoire de Chimie Biologique Structurale, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur Research Institute for LIfe Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Marie Haufroid
- Laboratoire de Chimie Biologique Structurale, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur Research Institute for LIfe Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Manon Mirgaux
- Laboratoire de Chimie Biologique Structurale, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur Research Institute for LIfe Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Johan Wouters
- Laboratoire de Chimie Biologique Structurale, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur Research Institute for LIfe Sciences (NARILIS), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| |
Collapse
|
11
|
Huang SP, Chan YC, Huang SY, Lin YF. Overexpression of PSAT1 Gene is a Favorable Prognostic Marker in Lower-Grade Gliomas and Predicts a Favorable Outcome in Patients with IDH1 Mutations and Chromosome 1p19q Codeletion. Cancers (Basel) 2019; 12:cancers12010013. [PMID: 31861486 PMCID: PMC7016949 DOI: 10.3390/cancers12010013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Patients with lower-grade gliomas (LGGs) have highly diverse clinical outcomes. Although histological features and molecular markers have been used to predict prognosis, the identification of new biomarkers for the accurate prediction of patient outcomes is still needed. The serine synthesis pathway (SSP) is important in cancer metabolism. There are three key regulators, including phosphoglycerate dehydrogenase (PHGDH), phosphoserine phosphatase (PSPH), and phosphoserine aminotransferase 1 (PSAT1), in SSP. However, their clinical importance in LGGs is still unknown. In this study, we used the bioinformatics tool in the Gene Expression Profiling Interactive Analysis (GEPIA) website to examine the prognostic significance of PHGDH, PSPH, and PSAT1 genes in LGGs. PSAT1 gene expression was then identified as a potential biomarker candidate for LGGs. Datasets from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) were further used to explore the prognostic role of PSAT1 gene. Our results demonstrated that PSAT1 overexpression is a favorable prognostic marker of LGGs and significantly correlated with patient age ≤40, and a lower WHO histological grade, as well as mutations in IDH1, TP53 and ATRX, but not with chromosome 1p19q codeletions. More importantly, LGG patients with isocitrate dehydrogenase 1 (IDH1) mutations, chromosome 1p19q codeletions, and PSAT1 overexpression may have the best overall survival (five-year survival rate: 100%). Finally, we observed a coordinated biological reaction between IDH1 mutations and PSAT1 overexpression, and suggested overexpression of PSAT1 might enhance the function of mutant IDH1 to promote a favorable outcome in LGG patients. In conclusion, our study confirmed the importance of identifying the overexpression of PSAT1 as a favorable prognostic marker of LGGs, which may compensate for the limitation of IDH1 mutations and chromosome 1p19q codeletion in the prognostication of LGGs.
Collapse
Affiliation(s)
- Shang-Pen Huang
- Department of Neurology, Po-Jen General Hospital, Taipei 105, Taiwan;
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Law, School of Law, Ming Chuan University, Taipei 111, Taiwan
| | - Yung-Chieh Chan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Shang-Yu Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3106); Fax: +886-2-2739-0500
| |
Collapse
|
12
|
Haufroid M, Mirgaux M, Leherte L, Wouters J. Crystal structures and snapshots along the reaction pathway of human phosphoserine phosphatase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:592-604. [DOI: 10.1107/s2059798319006867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/13/2019] [Indexed: 11/10/2022]
Abstract
The equilibrium between phosphorylation and dephosphorylation is one of the most important processes that takes place in living cells. Human phosphoserine phosphatase (hPSP) is a key enzyme in the production of serine by the dephosphorylation of phospho-L-serine. It is directly involved in the biosynthesis of other important metabolites such as glycine and D-serine (a neuromodulator). hPSP is involved in the survival mechanism of cancer cells and has recently been found to be an essential biomarker. Here, three new high-resolution crystal structures of hPSP (1.5–2.0 Å) in complexes with phosphoserine and with serine, which are the substrate and the product of the reaction, respectively, and in complex with a noncleavable substrate analogue (homocysteic acid) are presented. New types of interactions take place between the enzyme and its ligands. Moreover, the loop involved in the open/closed state of the enzyme is fully refined in a totally unfolded conformation. This loop is further studied through molecular-dynamics simulations. Finally, all of these analyses allow a more complete reaction mechanism for this enzyme to be proposed which is consistent with previous publications on the subject.
Collapse
|
13
|
Sato K, Masuda T, Hu Q, Tobo T, Gillaspie S, Niida A, Thornton M, Kuroda Y, Eguchi H, Nakagawa T, Asano K, Mimori K. Novel oncogene 5MP1 reprograms c-Myc translation initiation to drive malignant phenotypes in colorectal cancer. EBioMedicine 2019; 44:387-402. [PMID: 31175057 PMCID: PMC6606960 DOI: 10.1016/j.ebiom.2019.05.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Translational reprogramming through controlled initiation from non-AUG start codons is considered a crucial driving force in tumorigenesis and tumor progression. However, its clinical impact and underlying mechanism are not fully understood. METHODS Using a bioinformatics approach, we identified translation initiation regulator 5MP1/BZW2 on chromosome 7p as a potential oncogenic driver gene in colorectal cancer (CRC), and explored the biological effect of 5MP1 in CRC in vitro or in vivo. Pathway analysis was performed to identify the downstream target of 5MP1, which was verified with transcriptomic and biochemical analyses. Finally, we assessed the clinical significance of 5MP1 expression in CRC patients. FINDINGS 5MP1 was ubiquitously amplified and overexpressed in CRC. 5MP1 promoted tumor growth and induced cell cycle progression of CRC. c-Myc was identified as its potential downstream effector. c-Myc has two in-frame start codons, AUG and CUG (non-AUG) located upstream of the AUG. 5MP1 expression increased the AUG-initiated c-Myc isoform relative to the CUG-initiated isoform. The AUG-initiated c-Myc isoform displayed higher protein stability and a stronger transactivation activity for oncogenic pathways than the CUG-initiated isoform, accounting for 5MP1-driven cell cycle progression and tumor growth. Clinically, high 5MP1 expression predicts poor survival of CRC patients. INTERPRETATION 5MP1 is a novel oncogene that reprograms c-Myc translation in CRC. 5MP1 could be a potential therapeutic target to overcome therapeutic resistance conferred by tumor heterogeneity of CRC. FUND: Japan Society for the Promotion of Science; Priority Issue on Post-K computer; National Institutes of Health; National Science Foundation; KSU Johnson Cancer Center.
Collapse
Affiliation(s)
- Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan; Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka 860-8556, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine and Pathology, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Sarah Gillaspie
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Atsushi Niida
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mackenzie Thornton
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yousuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka 860-8556, Japan
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan.
| |
Collapse
|
14
|
Liao L, Ge M, Zhan Q, Huang R, Ji X, Liang X, Zhou X. PSPH Mediates the Metastasis and Proliferation of Non-small Cell Lung Cancer through MAPK Signaling Pathways. Int J Biol Sci 2019; 15:183-194. [PMID: 30662358 PMCID: PMC6329917 DOI: 10.7150/ijbs.29203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 01/11/2023] Open
Abstract
Growing evidence indicates that phosphoserine phosphatase (PSPH) is up-regulated and correlates with prognosis in multiple types of cancer. However, little is known about the roles of PSPH in NSCLC. Thus, the aim of the present study was to demonstrate the expression of PSPH in human NSCLC and reveal its biological functions and the underlying mechanisms. qRT-PCR, western blot and immunohistochemistry were used to assess the expression of NSCLC patient specimens and NSCLC cell lines. The functions of PSPH in migration and invasion were determined using trans-well and wound-healing assays. Cell proliferation capacity was performed by cell counting kit-8 (CCK-8), colony formation assays and cell cycle analysis. We demonstrated that PSPH was overexpressed in NSCLC specimens compared with the adjacent non-tumorous specimens, and high expression of PSPH was associated with clinical stage, metastasis and gender in NSCLC. Decreased expression of PSPH inhibited NSCLC cells migration, invasion and proliferation. Most importantly, further experiments demonstrated that PSPH might regulate NSCLC progress through MAPK signaling pathways. Lastly, immunohistochemistry (IHC) revealed that the PSPH expression level was positively correlated with the clinical stage in NSCLC patients. These results suggest that PSPH may act as a putative oncogene and a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Li Liao
- Department of Oncology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Mengxi Ge
- Department of Oncology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Qiong Zhan
- Department of Oncology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Ruofan Huang
- Department of Oncology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Xiaoyu Ji
- Department of Oncology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Xiaohua Liang
- Department of Oncology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital Fudan University, Shanghai 200040, China
| |
Collapse
|