1
|
Vazakidou P, Bouftas N, Heinzelmann M, Johansson HKL, Svingen T, Leonards PEG, van Duursen MBM. Minor changes to circulating steroid hormones in female rats after perinatal exposure to diethylstilbestrol or ketoconazole. Reprod Toxicol 2024; 130:108726. [PMID: 39326550 DOI: 10.1016/j.reprotox.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Current chemical test strategies lack sensitive markers for detecting female reproductive toxicity caused by endocrine disrupting chemicals (EDCs). In search of a potentially sensitive readout, the steroidogenic disrupting effects of the well-known EDCs ketoconazole (KTZ) and diethylstilbestrol (DES) were investigated in vitro and on circulating steroid hormones in perinatally exposed female Sprague-Dawley rats. Twenty-one steroid hormones were analysed using LC-MS/MS in plasma from female rat offspring at postnatal day (PD) 6, 14, 22, 42 and 90. Most circulating steroid hormone levels increased with age except for estrone (E1), estradiol (E2) and backdoor pathway androsterone (ANDROST), which decreased after PD 22. Perinatal exposure to DES did not affect circulating steroid hormone levels at any dose or age compared to controls. KTZ exposure resulted in dose-dependent increase of corticosterone (CORTICO) at PD 6 and PD 14, with statistical significance only at PD 14. In the in vitro gold standard H295R steroidogenesis assay, twenty-one steroid hormones were measured instead of only T and E2. DES had subtle effects on steroidogenesis, whereas KTZ decreased most steroid hormones, but increased CORTICO, progesterone (P4), estriol (E3) initially (around 0.1-1 µM) before decreasing. Our data suggests that circulating steroidomic profiling may not be a sensitive readout for EDC-induced female reproductive toxicity. Further studies are needed to associate H295R assay steroidomic profiles with in vivo profiles, especially in target tissues such as adrenals or gonads. Expanding the H295R steroidogenic assay to include a comprehensive steroidomic profile may enhance its regulatory applicability.
Collapse
Affiliation(s)
- Paraskevi Vazakidou
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Nora Bouftas
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Manuel Heinzelmann
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Hanna K L Johansson
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Pim E G Leonards
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands
| | - Majorie B M van Duursen
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
2
|
Kuzminac IZ, Nikolić AR, Savić MP, Ajduković JJ. Abiraterone and Galeterone, Powerful Tools Against Prostate Cancer: Present and Perspective. Pharmaceutics 2024; 16:1401. [PMID: 39598525 PMCID: PMC11597628 DOI: 10.3390/pharmaceutics16111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the high prostate cancer incidence worldwide, the development of different methods of treatment continues to be a hot research topic. Since its first clinical application at the beginning of the 2010s, abiraterone in the form of prodrug abiraterone acetate continues to be the most used hormone derivative in the treatment of castration-resistant prostate cancer. This is the reason behind the publication of many scientific results regarding its synthesis, biological activity, metabolism, novel designed steroid derivatives based on its structure, etc. A similar steroid compound with a heterocycle in the C17 position, called galeterone, also designed to treat prostate cancer, continues to be in clinical studies, which provides further proof of the importance of these steroid derivatives. Besides prostate cancer treatment, abiraterone showed indications for possible clinical application in the treatment of breast, ovarian, lung, kidney, salivary gland, and adrenocortical cancer, congenital adrenal hyperplasia, Cushing's syndrome, and COVID-19, while galeterone is investigated for its use against prostate, pancreatic, and breast cancer. Herein, we report a review comprising methods of synthesis, possible clinical applications, and mechanisms of action, as well as structures and bioactivities of derivatives of these two important steroids.
Collapse
Affiliation(s)
| | | | - Marina P. Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.Z.K.); (A.R.N.); (J.J.A.)
| | | |
Collapse
|
3
|
Tateishi Y, Webb SN, Li B, Liu L, Lindsey Rose K, Leser M, Patel P, Guengerich FP. Proteomics, modeling, and fluorescence assays delineate cytochrome b 5 residues involved in binding and stimulation of cytochrome P450 17A1 17,20-lyase. J Biol Chem 2024; 300:105688. [PMID: 38280431 PMCID: PMC10878793 DOI: 10.1016/j.jbc.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024] Open
Abstract
Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in the fluorescence attenuation. A structural model of b5 with P450 17A1 was predicted using AlphaFold-Multimer algorithms/Rosetta docking, based upon the individual structures, which predicted several new contacts not previously reported, that is, interactions of b5 Glu-48:17A1 Arg-347, b5 Glu-49:17A1 Arg-449, b5 Asp-65:17A1 Arg-126, b5 Asp-65:17A1 Arg-125, and b5 Glu-61:17A1 Lys-91. Fluorescence polarization assays with two modified b5 variants yielded Kd values (for b5-P450 17A1) of 120 to 380 nM, the best estimate of binding affinity. We conclude that both monomeric and dimeric b5 can bind to P450 17A1 and stimulate activity. Results with the mutants indicate that several Lys residues in b5 are sensitive to the interaction with P450 17A1, including Lys-88 and Lys-91.
Collapse
Affiliation(s)
- Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stephany N Webb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lu Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Micheal Leser
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Purvi Patel
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
4
|
Sharma K, Lanzilotto A, Yakubu J, Therkelsen S, Vöegel CD, Du Toit T, Jørgensen FS, Pandey AV. Effect of Essential Oil Components on the Activity of Steroidogenic Cytochrome P450. Biomolecules 2024; 14:203. [PMID: 38397440 PMCID: PMC10887332 DOI: 10.3390/biom14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) may impact the development of prostate cancer (PCa) by altering the steroid metabolism. Although their exact mechanism of action in controlling tumor growth is not known, EDCs may inhibit steroidogenic enzymes such as CYP17A1 or CYP19A1 which are involved in the production of androgens or estrogens. High levels of circulating androgens are linked to PCa in men and Polycystic Ovary Syndrome (PCOS) in women. Essential oils or their metabolites, like lavender oil and tea tree oil, have been reported to act as potential EDCs and contribute towards sex steroid imbalance in cases of prepubertal gynecomastia in boys and premature thelarche in girls due to the exposure to lavender-based fragrances. We screened a range of EO components to determine their effects on CYP17A1 and CYP19A1. Computational docking was performed to predict the binding of essential oils with CYP17A1 and CYP19A1. Functional assays were performed using the radiolabeled substrates or Liquid Chromatography-High-Resolution Mass Spectrometry and cell viability assays were carried out in LNCaP cells. Many of the tested compounds bind close to the active site of CYP17A1, and (+)-Cedrol had the best binding with CYP17A1 and CYP19A1. Eucalyptol, Dihydro-β-Ionone, and (-)-α-pinene showed 20% to 40% inhibition of dehydroepiandrosterone production; and some compounds also effected CYP19A1. Extensive use of these essential oils in various beauty and hygiene products is common, but only limited knowledge about their potential detrimental side effects exists. Our results suggest that prolonged exposure to some of these essential oils may result in steroid imbalances. On the other hand, due to their effect on lowering androgen output and ability to bind at the active site of steroidogenic cytochrome P450s, these compounds may provide design ideas for novel compounds against hyperandrogenic disorders such as PCa and PCOS.
Collapse
Affiliation(s)
- Katyayani Sharma
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Angelo Lanzilotto
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
| | - Jibira Yakubu
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Søren Therkelsen
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Clarissa Daniela Vöegel
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Department of Nephrology and Hypertension, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Therina Du Toit
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
- Department of Nephrology and Hypertension, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | | | - Amit V. Pandey
- Division of Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children’s Hospital, Inselspital, University of Bern, 3010 Bern, Switzerland; (K.S.); (A.L.); (J.Y.); (S.T.); (T.D.T.)
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland;
| |
Collapse
|
5
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Design and Synthesis of New Agents for Prostate Cancer Treatment Inspired by Steroidal CYP17 A1 Inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202203393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Wróbel TM, Rogova O, Sharma K, Rojas Velazquez MN, Pandey AV, Jørgensen FS, Arendrup FS, Andersen KL, Björkling F. Synthesis and Structure–Activity Relationships of Novel Non-Steroidal CYP17A1 Inhibitors as Potential Prostate Cancer Agents. Biomolecules 2022; 12:biom12020165. [PMID: 35204665 PMCID: PMC8961587 DOI: 10.3390/biom12020165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Twenty new compounds, targeting CYP17A1, were synthesized, based on our previous work on a benzimidazole scaffold, and their biological activity evaluated. Inhibition of CYP17A1 is an important modality in the treatment of prostate cancer, which remains the most abundant cancer type in men. The biological assessment included CYP17A1 hydroxylase and lyase inhibition, CYP3A4 and P450 oxidoreductase (POR) inhibition, as well as antiproliferative activity in PC3 prostate cancer cells. The most potent compounds were selected for further analyses including in silico modeling. This combined effort resulted in a compound (comp 2, IC50 1.2 µM, in CYP17A1) with a potency comparable to abiraterone and selectivity towards the other targets tested. In addition, the data provided an understanding of the structure–activity relationship of this novel non-steroidal compound class.
Collapse
Affiliation(s)
- Tomasz M. Wróbel
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (F.S.J.); (F.B.)
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Correspondence: ; Tel.: +48-814487273
| | - Oksana Rogova
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (F.S.J.); (F.B.)
| | - Katyayani Sharma
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (K.S.); (M.N.R.V.); (A.V.P.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Maria Natalia Rojas Velazquez
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (K.S.); (M.N.R.V.); (A.V.P.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V. Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (K.S.); (M.N.R.V.); (A.V.P.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (F.S.J.); (F.B.)
| | - Frederic S. Arendrup
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (F.S.A.); (K.L.A.)
| | - Kasper L. Andersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (F.S.A.); (K.L.A.)
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (F.S.J.); (F.B.)
| |
Collapse
|
9
|
Khan II, Karshieva SS, Sokolova DV, Spirina TS, Zolottsev VA, Latysheva AS, Anisimova NY, Komarova MV, Yakunina MN, Nitetskaya TA, Misharin AY, Pokrovsky VS. Antiproliferative, proapoptotic, and tumor-suppressing effects of the novel anticancer agent alsevirone in prostate cancer cells and xenografts. Arch Pharm (Weinheim) 2021; 355:e2100316. [PMID: 34668210 DOI: 10.1002/ardp.202100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022]
Abstract
The aim of this study was to explore the mechanisms of action of alsevirone in prostate cancer (PC) in vitro and in vivo: CYP17A1 inhibition, cytotoxic, apoptotic, and antitumor effects in comparison with abiraterone. The CYP17A1-inhibitory activity was investigated in rat testicular microsomes using high-performance liquid chromatography. Testosterone levels were evaluated using enzyme-linked immunoassay. IC50 values were calculated for PC3, DU-145, LNCaP, and 22Rv1 cells using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test. The antitumor effect in vivo was studied in DU-145 and 22Rv1 subcutaneous xenografts in Balb/c nude mice. Alsevirone reduced the CYP17A1-inhibitory activity by 98% ± 0.2%. A statistically significant reduction in the testosterone concentration in murine blood was recorded after the 7th administration of 300 mg/kg alsevirone at 0.31 ± 0.03 ng/ml (p < .001) versus 0.98 ± 0.22 ng/ml (p = .392) after abiraterone administration and 1.52 ± 0.49 ng/ml in control animals. Alsevirone was more cytotoxic than abiraterone in DU-145, LNCaP, and 22Rv1 cells, with IC50 values of 23.80 ± 1.18 versus 151.43 ± 23.70 μM, 22.87 ± 0.54 versus 28.80 ± 1.61 μM, and 35.86 ± 5.63 versus 109.87 ± 35.15 μM, respectively. Alsevirone and abiraterone significantly increased annexin V-positive, caspase 3/7-positive, and activated Bcl-2-positive cells. In 22Rv1 xenografts, alsevirone 300 mg/kg × 10/24 h per os inhibited tumor growth: on Day 9 of treatment, tumor growth inhibition = 59% (p = .022). Thus, alsevirone demonstrated significant antitumor activity associated with CYP17A1 inhibition, apoptosis in PC cells, and testosterone reduction.
Collapse
Affiliation(s)
- Irina I Khan
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia
| | - Saida S Karshieva
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Vladimir A Zolottsev
- Department of biochemistry, RUDN University, Moscow, Russia.,Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexandra S Latysheva
- Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Natalia Y Anisimova
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Laboratory of polymer materials, NUST "MISIS", Moscow, Russia
| | - Marina V Komarova
- Department of laser and biotechnical systems, Samara University, Samara, Russia
| | - Marina N Yakunina
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Tatiana A Nitetskaya
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Alexander Y Misharin
- Laboratory of synthesis of physiologically active compounds, Institute of Biomedical Chemistry, Moscow, Russia
| | - Vadim S Pokrovsky
- Laboratory of combined treatment, N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia.,Department of biochemistry, RUDN University, Moscow, Russia.,Center of genetics and life sciences, Sirius University of Science and Technology, Sochi, Krasnodarsky Kray, Russia
| |
Collapse
|
10
|
Bernhardt R, Neunzig J. Underestimated reactions and regulation patterns of adrenal cytochromes P450. Mol Cell Endocrinol 2021; 530:111237. [PMID: 33722664 DOI: 10.1016/j.mce.2021.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
Although cytochrome P450 (CYP) systems including the adrenal ones are being investigated since many years, there are still reactions and regulation patterns that have been underestimated ever since. This review discusses neglected ones to bring them into the focus of investigators working in the field. Novel substrates and reactions described for adrenal CYPs recently point to the fact that different from what has been believed for many years, adrenal CYPs are less selective than previously thought. The conversion of steroid sulfates, intermediates of steroid biosynthesis as well as of exogenous compounds are being discussed here in more detail and consequences for further studies are drawn. Furthermore, it was shown that protein-protein interactions may have an important effect not only on the activity of adrenal CYPs, but also on the product pattern of the reactions. It was found that, as expected, the stoichiometry of CYP:redox partner plays an important role for tuning the activity. In addition, competition between different CYPs for the redox partner and for electrons and possible alterations by mutants in the efficiency of electron transfer play an important role for the activity and product pattern. Moreover, the influence of phosphorylation and small charged molecules like natural polyamines on the activity of adrenal systems has been demonstrated in-vitro indicating a possible regulation of adrenal CYP reactions by affecting redox partner recognition and binding affinity. Finally, an effect of the genetic background on the consequences of mutations in adrenal CYPs found in patients was suggested from corresponding in-vitro studies indicating that a different genetic background might be able to significantly affect the activity of a CYP mutant.
Collapse
Affiliation(s)
- Rita Bernhardt
- Department of Biochemistry, Campus B2.2, Saarland University, D-66123, Saarbrücken, Germany.
| | - Jens Neunzig
- Institute of Molecular Plant Biology, Campus A2.4, Saarland University, D-66123, Saarbrücken, Germany
| |
Collapse
|
11
|
Maylin ZR, Nicolescu RC, Pandha H, Asim M. Breaking androgen receptor addiction of prostate cancer by targeting different functional domains in the treatment of advanced disease. Transl Oncol 2021; 14:101115. [PMID: 33993099 PMCID: PMC8138777 DOI: 10.1016/j.tranon.2021.101115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, treatment for castration-resistant prostate cancer has changed markedly, impacting symptom control and longevity for patients. However, a large proportion of cases progress despite androgen deprivation therapy and chemotherapy, while still being fit enough for several more lines of treatment. Overstimulation of the androgen receptor (AR) activity is the main driver of this cancer. Targeting biological functions of the AR or its co-regulators has proven very effective in this disease and led to the development of several highly effective drugs targeting the AR signalling axis. Drugs such as enzalutamide demonstrated that the improvement in anti-tumour efficacy is closely correlated with an affinity for the AR and its activity and have established the paradigm that AR remains activity in aggressive disease. However, as importantly, key insights into mechanisms of resistance are guiding the development of the next generation of AR-targeted drugs. This review outlines the historical development of these highly specific agents, their mechanism of action in the context of defective AR activity, and explores the potential for the upcoming next-generation AR inhibitors (ARI) for prostate cancer by targeting the alternative domains of AR, rather than by the conventional ligand-binding domain approach. There is huge potential in these approaches to develop new drugs with high clinical activity and further improve the outlook for patients.
Collapse
Affiliation(s)
- Zoe R Maylin
- Department of Clinical & Experimental Medicine, University of Surrey, UK
| | | | - Hardev Pandha
- Department of Clinical & Experimental Medicine, University of Surrey, UK
| | - Mohammad Asim
- Department of Clinical & Experimental Medicine, University of Surrey, UK.
| |
Collapse
|
12
|
Kariyawasam D, Peries M, Foissac F, Eymard-Duvernay S, Tylleskär T, Singata-Madliki M, Kankasa C, Meda N, Tumwine J, Mwiya M, Engebretsen I, Flück CE, Hartmann MF, Wudy SA, Hirt D, Treluyer JM, Molès JP, Blanche S, Van De Perre P, Polak M, Nagot N. Lopinavir-Ritonavir Impairs Adrenal Function in Infants. Clin Infect Dis 2021; 71:1030-1039. [PMID: 31633158 DOI: 10.1093/cid/ciz888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/05/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Perinatal treatment with lopinavir boosted by ritonavir (LPV/r) is associated with steroidogenic abnormalities. Long-term effects in infants have not been studied. METHODS Adrenal-hormone profiles were compared at weeks 6 and 26 between human immunodeficiency virus (HIV)-1-exposed but uninfected infants randomly assigned at 7 days of life to prophylaxis with LPV/r or lamivudine (3TC) to prevent transmission during breastfeeding. LPV/r in vitro effect on steroidogenesis was assessed in H295R cells. RESULTS At week 6, 159 frozen plasma samples from Burkina Faso and South Africa were assessed (LPV/r group: n = 92; 3TC group: n = 67) and at week 26, 95 samples from Burkina Faso (LPV/r group: n = 47; 3TC group: n = 48). At week 6, LPV/r-treated infants had a higher median dehydroepiandrosterone (DHEA) level than infants from the 3TC arm: 3.91 versus 1.48 ng/mL (P < .001). Higher DHEA levels (>5 ng/mL) at week 6 were associated with higher 17-OH-pregnenolone (7.78 vs 3.71 ng/mL, P = .0004) and lower testosterone (0.05 vs 1.34 ng/mL, P = .009) levels in LPV/r-exposed children. There was a significant correlation between the DHEA and LPV/r AUC levels (ρ = 0.40, P = .019) and Ctrough (ρ = 0.40, P = .017). At week 26, DHEA levels remained higher in the LPV/r arm: 0.45 versus 0.13 ng/mL (P = .002). Lopinavir, but not ritonavir, inhibited CYP17A1 and CYP21A2 activity in H295R cells. CONCLUSIONS Lopinavir was associated with dose-dependent adrenal dysfunction in infants. The impact of long-term exposure and potential clinical consequences require evaluation. CLINICAL TRIALS REGISTRATION NCT00640263.
Collapse
Affiliation(s)
- Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology, and Diabetology Unit, Hopital Universitaire Necker-Enfants Malades, Assistance Publique-Hopitaux de Paris (AP-HP), Paris, France.,INSERM U1016, Faculte de Medecine, Universite Paris Descartes, Sorbonne Paris Cite, Paris, France.,IMAGINE Institute, Paris, France
| | - Marianne Peries
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Universite de Montpellier, Etablissement Francais du Sang, Montpellier, France
| | - Frantz Foissac
- Service de Pharmacologie Clinique, Hopital Cochin, AP-HP, Groupe Hospitalier Paris Centre, France.,Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France
| | - Sabrina Eymard-Duvernay
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Universite de Montpellier, Etablissement Francais du Sang, Montpellier, France
| | | | - Mandisa Singata-Madliki
- Effective Care Research Unit, University of Fort Hare, Cecilia Makiwane Hospital, East London, South Africa
| | - Chipepo Kankasa
- University of Zambia, School of Medicine, Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia
| | - Nicolas Meda
- Center of International Research for Health, Faculty of Health Sciences, University of Ouagadougou, Ouagadougou, Burkina Faso
| | - James Tumwine
- Department of Pediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mwiya Mwiya
- University of Zambia, School of Medicine, Department of Pediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia
| | | | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics and Department of BioMedical Research, University Hospital Inselspital Bern, University of Bern, Bern, Switzerland
| | - Michaela F Hartmann
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Deborah Hirt
- Service de Pharmacologie Clinique, Hopital Cochin, AP-HP, Groupe Hospitalier Paris Centre, France.,Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France
| | - Jean Marc Treluyer
- Service de Pharmacologie Clinique, Hopital Cochin, AP-HP, Groupe Hospitalier Paris Centre, France.,Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Universite de Montpellier, Etablissement Francais du Sang, Montpellier, France
| | - Stéphane Blanche
- Pediatric Immunology-Hematology and Rheumatology Unit, Hopital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Philippe Van De Perre
- Service de Pharmacologie Clinique, Hopital Cochin, AP-HP, Groupe Hospitalier Paris Centre, France.,Centre Hospitalo-Universitaire (CHU) de Montpellier, Montpellier, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology, and Diabetology Unit, Hopital Universitaire Necker-Enfants Malades, Assistance Publique-Hopitaux de Paris (AP-HP), Paris, France.,INSERM U1016, Faculte de Medecine, Universite Paris Descartes, Sorbonne Paris Cite, Paris, France.,IMAGINE Institute, Paris, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic Infections, INSERM U1058, Universite de Montpellier, Etablissement Francais du Sang, Montpellier, France.,Centre Hospitalo-Universitaire (CHU) de Montpellier, Montpellier, France
| | | |
Collapse
|
13
|
Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase. Nat Commun 2021; 12:2260. [PMID: 33859207 PMCID: PMC8050233 DOI: 10.1038/s41467-021-22562-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Metabolic control is mediated by the dynamic assemblies and function of multiple redox enzymes. A key element in these assemblies, the P450 oxidoreductase (POR), donates electrons and selectively activates numerous (>50 in humans and >300 in plants) cytochromes P450 (CYPs) controlling metabolism of drugs, steroids and xenobiotics in humans and natural product biosynthesis in plants. The mechanisms underlying POR-mediated CYP metabolism remain poorly understood and to date no ligand binding has been described to regulate the specificity of POR. Here, using a combination of computational modeling and functional assays, we identify ligands that dock on POR and bias its specificity towards CYP redox partners, across mammal and plant kingdom. Single molecule FRET studies reveal ligand binding to alter POR conformational sampling, which results in biased activation of metabolic cascades in whole cell assays. We propose the model of biased metabolism, a mechanism akin to biased signaling of GPCRs, where ligand binding on POR stabilizes different conformational states that are linked to distinct metabolic outcomes. Biased metabolism may allow designing pathway-specific therapeutics or personalized food suppressing undesired, disease-related, metabolic pathways.
Collapse
|
14
|
Masamrekh RA, Filippova TA, Sherbakov KA, Veselovsky AV, Shumyantseva VV, Kuzikov AV. Interactions of galeterone and its 3-keto-Δ4 metabolite (D4G) with one of the key enzymes of corticosteroid biosynthesis - steroid 21-monooxygenase (CYP21A2). Fundam Clin Pharmacol 2020; 35:423-431. [PMID: 33012006 DOI: 10.1111/fcp.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
We have investigated interactions of galeterone and its pharmacologically active metabolite - 3-keto-Δ4-galeterone (D4G) - with one of the key enzymes of corticosteroid biosynthesis - steroid 21-monooxygenase (CYP21A2). It was shown by absorption spectroscopy that both compounds induce type I spectral changes of CYP21A2. Spectral dissociation constants (KS ) of complexes of CYP21A2 with galeterone or D4G were calculated as 3.1 ± 0.7 μm and 4.6 ± 0.4 μm, respectively. It was predicted by molecular docking that both ligands similarly bind to the active site of CYP21A2. We have revealed using reconstituted monooxygenase system that galeterone is a competitive inhibitor of CYP21A2 with the inhibition constant (Ki ) value of 12 ± 3 μm, while D4G at the concentrations of 10 and 25 μm does not inhibit the enzyme. Summarizing, based on the in vitro analyses we detected inhibition of CYP21A2 by galeterone and lack of the influence of D4G on this enzyme.
Collapse
Affiliation(s)
- Rami A Masamrekh
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow, 117997, Russia.,Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Tatiana A Filippova
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow, 117997, Russia.,Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Kirill A Sherbakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Alexander V Veselovsky
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Victoria V Shumyantseva
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow, 117997, Russia.,Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| | - Alexey V Kuzikov
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow, 117997, Russia.,Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow, 119121, Russia
| |
Collapse
|
15
|
Masamrekh RA, Filippova TA, Haurychenka YI, Sherbakov KA, Veselovsky AV, Shumyantseva VV, Kuzikov AV. The interactions of a number of steroid-metabolizing cytochromes P450 with abiraterone D4A metabolite: spectral analysis and molecular docking. Steroids 2020; 162:108693. [PMID: 32645328 DOI: 10.1016/j.steroids.2020.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
The interactions of pharmacologically active 3-keto-Δ4-metabolite of anticancer drug abiraterone (D4A) with steroid-metabolizing cytochromes P450 (CYP51A1, CYP11A1, CYP19A1) was studied by absorption spectroscopy and molecular docking. Both abiraterone and D4A induce type I spectral changes of CYP51A1, one of the enzymes of cholesterol biosynthesis. We have revealed that D4A did not induce spectral changes of CYP11A1, the key enzyme of pregnenolone biosynthesis, unlike abiraterone (type II ligand of CYP11A1). On the contrary, D4A interacts with the active site of CYP19A1, the key enzyme of estrogen biosynthesis, inducing type II spectral changes, while abiraterone does not. Spectral analysis allowed us to calculate spectral dissociation constant (KS) for each complex of cytochrome P450 with respective ligands. The data were supported by molecular docking. The obtained results broaden understanding of interactions of D4A with some of the key steroid-metabolizing cytochromes P450 and allow one to predict possible disproportions of steroid metabolism.
Collapse
Affiliation(s)
- Rami A Masamrekh
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Tatiana A Filippova
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Yaraslau I Haurychenka
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Kirill A Sherbakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Alexander V Veselovsky
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Victoria V Shumyantseva
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia
| | - Alexey V Kuzikov
- Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia.
| |
Collapse
|
16
|
Parween S, DiNardo G, Baj F, Zhang C, Gilardi G, Pandey AV. Differential effects of variations in human P450 oxidoreductase on the aromatase activity of CYP19A1 polymorphisms R264C and R264H. J Steroid Biochem Mol Biol 2020; 196:105507. [PMID: 31669572 DOI: 10.1016/j.jsbmb.2019.105507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Aromatase (CYP19A1) converts androgens into estrogens and is required for female sexual development and growth and development in both sexes. CYP19A1 is a member of cytochrome P450 family of heme-thiolate monooxygenases located in the endoplasmic reticulum and depends on reducing equivalents from the reduced nicotinamide adenine dinucleotide phosphate via the cytochrome P450 oxidoreductase coded by POR. Both the CYP19A1 and POR genes are highly polymorphic, and mutations in both these genes are linked to disorders of steroid biosynthesis. We have previously shown that R264C and R264H mutations in CYP19A1, as well as mutations in POR, reduce CYP19A1 activity. The R264C is a common polymorphic variant of CYP19A1, with high frequency in Asian and African populations. Polymorphic alleles of POR are found in all populations studied so far and, therefore, may influence activities of CYP19A1 allelic variants. So far, the effects of variations in POR on enzymatic activities of allelic variants of CYP19A1 or any other steroid metabolizing cytochrome P450 proteins have not been studied. Here we are reporting the effects of three POR variants on the aromatase activities of two CYP19A1 variants, R264C, and R264H. We used bacterially expressed and purified preparations of WT and variant forms of CYP19A1 and POR and constructed liposomes with embedded CYP19A1 and POR proteins and assayed the CYP19A1 activities using radiolabeled androstenedione as a substrate. With the WT-POR as a redox partner, the R264C-CYP19A1 showed only 15% of aromatase activity, but the R264H had 87% of aromatase activity compared to WT-CYP19A1. With P284L-POR as a redox partner, R264C-CYP19A1 lost all activity but retained 6.7% of activity when P284T-POR was used as a redox partner. The R264H-CYP19A1 showed low activities with both the POR-P284 L as well as the POR-P284 T. When the POR-Y607C was used as a redox partner, the R264C-CYP19A1 retained approximately 5% of CYP19A1 activity. Remarkably, The R264H-CYP19A1 had more than three-fold higher activity compared to WT-CYP19A1 when the POR-Y607C was used as the redox partner, pointing toward a beneficial effect. The slight increase in activity of R264C-CYP19A1 with the P284T-POR and the three-fold increase in activity of the R264H-CYP19A1 with the Y607C-POR point toward a conformational effect and role of protein-protein interaction governed by the R264C and R264H substitutions in the CYP19A1 as well as P284 L, P284 T and Y607C variants of POR. These studies demonstrate that the allelic variants of P450 when present with a variant form of POR may show different activities, and combined effects of variations in the P450 enzymes as well as in the POR should be considered when genetic data are available. Recent trends in the whole-exome and whole-genome sequencing as diagnostic tools will permit combined evaluation of variations in multiple genes that are interdependent and may guide treatment options by adjusting therapeutic interventions based on laboratory analysis.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Giovanna DiNardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Francesca Baj
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland; Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
17
|
Rodríguez Castaño P, Parween S, Pandey AV. Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway. Int J Mol Sci 2019; 20:ijms20184606. [PMID: 31533365 PMCID: PMC6770025 DOI: 10.3390/ijms20184606] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/mL of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1–100 µg/mL of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as CYP21A2. In CYP17A1 and CYP19A1, curcumin docked within 2.5 Å of central heme while in CYP21A2 the distance from heme was 3.4 Å, which is still in the same range or lower than distances of bound steroid substrates. These studies suggest that curcuminoids may cause inhibition of steroid metabolism, especially at higher dosages. Also, the recent popularity of turmeric powder as a dilatory supplement needs further evaluation for the effect of curcuminoids on steroid metabolism. The molecular structure of curcuminoids could be modified to generate better lead compounds with inhibitory effects on CYP17A1 and CYP19A1 for potential drugs against prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Patricia Rodríguez Castaño
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland.
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
18
|
Lin HY, Ko CY, Kao TJ, Yang WB, Tsai YT, Chuang JY, Hu SL, Yang PY, Lo WL, Hsu TI. CYP17A1 Maintains the Survival of Glioblastomas by Regulating SAR1-Mediated Endoplasmic Reticulum Health and Redox Homeostasis. Cancers (Basel) 2019; 11:cancers11091378. [PMID: 31527549 PMCID: PMC6770831 DOI: 10.3390/cancers11091378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450 (CYP) 17A1 is an important steroidogenic enzyme harboring 17α-hydroxylase and performing 17,20 lyase activities in multiple steps of steroid hormone synthesis, including dehydroepiandrosterone (DHEA) biosynthesis. Previously, we showed that CYP17A1-mediated DHEA production clearly protects glioblastomas from temozolomide-induced apoptosis, leading to drug resistance. Herein, we attempt to clarify whether the inhibition of CYP17A1 has a tumor-suppressive effect, and to determine the steroidogenesis-independent functions of CYP17A1 in glioblastomas. Abiraterone, an inhibitor of CYP17A1, significantly inhibits the proliferation of A172, T98G, and PT#3 (the primary glioblastoma cells) by inducing apoptosis. In parallel, abiraterone potently suppresses tumor growth in mouse models through transplantation of PT#3 cells to the back or to the brain. Based on evidence that abiraterone induces endoplasmic reticulum (ER) stress, followed by the accumulation of reactive oxygen species (ROS), CYP17A1 is important for ER health and redox homeostasis. To confirm our hypothesis, we showed that CYP17A1 overexpression prevents the initiation of ER stress and attenuates ROS production by regulating SAR1a/b expression. Abiraterone dissociates SAR1a/b from ER-localized CYP17A1, and induces SAR1a/b ubiquitination, leading to degradation. Furthermore, SAR1 overexpression rescues abiraterone-induced apoptosis and impairs redox homeostasis. In addition to steroid hormone synthesis, CYP17A1 associates with SAR1a/b to regulate protein processing and maintain ER health in glioblastomas.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wen-Bin Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Siou-Lian Hu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Pei-Yu Yang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Lun Lo
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, New Taipei City 23561, Taiwan.
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
19
|
Sanders K, de Wit WL, Mol JA, Kurlbaum M, Kendl S, Kroiss M, Kooistra HS, Galac S. Abiraterone Acetate for Cushing Syndrome: Study in a Canine Primary Adrenocortical Cell Culture Model. Endocrinology 2018; 159:3689-3698. [PMID: 30219917 DOI: 10.1210/en.2018-00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
Abstract
Abiraterone acetate (AA) is a potent inhibitor of steroidogenic enzyme 17α-hydroxylase/17,20-lyase (CYP17A1). AA is approved for the treatment of prostate cancer but could also be used to treat patients with Cushing syndrome (CS). Similar to humans, canine glucocorticoid synthesis requires CYP17A1, providing a useful animal model. The objective of this study was to preclinically investigate the effect of AA on adrenocortical hormone production, cell viability, and mRNA expression of steroidogenic enzymes in canine primary adrenocortical cell cultures (n = 9) from the adrenal glands of nine healthy dogs. The cells were incubated with AA (0.125 nM to 10 μM) for 72 hours under basal conditions and with 100 nM ACTH(1-24). Adrenocortical hormone concentrations were measured in culture medium using liquid chromatography-mass spectrometry, RNA was isolated from cells for subsequent real-time quantitative PCR analysis, and cell viability was assessed with an alamarBlue™ assay. AA reduced cortisol (IC50, 21.4 ± 4.6 nM) without affecting aldosterone under basal and ACTH-stimulated conditions. AA increased progesterone under basal and ACTH-stimulated conditions but reduced corticosterone under basal conditions, suggesting concurrent inhibition of 21-hydroxylation. AA did not affect the mRNA expression of steroidogenic enzymes and did not inhibit cell viability. In summary, primary canine adrenocortical cell culture is a useful model system for drug testing. For the treatment of CS, AA may to be superior to other steroidogenesis inhibitors due to its low toxicity. For future in vivo studies, dogs with endogenous CS may provide a useful animal model.
Collapse
Affiliation(s)
- Karin Sanders
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wesley L de Wit
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Max Kurlbaum
- University Hospital Würzburg, Core Unit Clinical Mass Spectrometry, Würzburg, Germany
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
| | - Sabine Kendl
- University Hospital Würzburg, Core Unit Clinical Mass Spectrometry, Würzburg, Germany
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
| | - Matthias Kroiss
- University Hospital Würzburg, Core Unit Clinical Mass Spectrometry, Würzburg, Germany
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetology, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Hans S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sara Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Masamrekh R, Kuzikov A, Veselovsky A, Toropygin I, Shkel T, Strushkevich N, Gilep A, Usanov S, Archakov A, Shumyantseva V. Interaction of 17α-hydroxylase, 17(20)-lyase (CYP17A1) inhibitors – abiraterone and galeterone – with human sterol 14α-demethylase (CYP51A1). J Inorg Biochem 2018; 186:24-33. [DOI: 10.1016/j.jinorgbio.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
|
21
|
Frau R, Bortolato M. Repurposing steroidogenesis inhibitors for the therapy of neuropsychiatric disorders: Promises and caveats. Neuropharmacology 2018; 147:55-65. [PMID: 29907425 DOI: 10.1016/j.neuropharm.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022]
Abstract
Steroids exert a profound influence on behavioral reactivity, by modulating the functions of most neurotransmitters and shaping the impact of stress and sex-related variables on neural processes. This background - as well as the observation that most neuroactive steroids (including sex hormones, glucocorticoids and neurosteroids) are synthetized and metabolized by overlapping enzymatic machineries - points to steroidogenic pathways as a powerful source of targets for neuropsychiatric disorders. Inhibitors of steroidogenic enzymes have been developed and approved for a broad range of genitourinary and endocrine dysfunctions, opening to new opportunities to repurpose these drugs for the treatment of mental problems. In line with this idea, preliminary clinical and preclinical results from our group have shown that inhibitors of key steroidogenic enzymes, such as 5α-reductase and 17,20 desmolase-lyase, may have therapeutic efficacy in specific behavioral disorders associated with dopaminergic hyperfunction. While the lack of specificity of these effects raises potential concerns about endocrine adverse events, these initial findings suggest that steroidogenesis modulators with greater brain specificity may hold significant potential for the development of alternative therapies for psychiatric problems. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato CA, Italy; Tourette Syndrome Center, University of Cagliari, Monserrato CA, Italy; Sleep Medicine Center, University of Cagliari, Monserrato CA, Italy; National Institute of Neuroscience (INN), University of Cagliari, Monserrato CA, Italy.
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Fernández-Cancio M, Camats N, Flück CE, Zalewski A, Dick B, Frey BM, Monné R, Torán N, Audí L, Pandey AV. Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency. Pharmaceuticals (Basel) 2018; 11:ph11020037. [PMID: 29710837 PMCID: PMC6027421 DOI: 10.3390/ph11020037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel missense mutation V366M at the catalytic center of CYP17A1 which preferentially impaired 17,20 lyase activity. Kinetic experiments with bacterially expressed proteins revealed that V366M mutant enzyme can bind and metabolize pregnenolone to 17OH-pregnenolone, but 17OH-pregnenolone binding and conversion to dehydroepiandrosterone (DHEA) was impaired, explaining the patient’s steroid profile. Abiraterone could not bind and inhibit the 17α-hydroxylase activity of the CYP17A1-V366M mutant. Molecular dynamics (MD) simulations showed that V366M creates a “one-way valve” and suggests a mechanism for dual activities of human CYP17A1 where, after the conversion of pregnenolone to 17OH-pregnenolone, the product exits the active site and re-enters for conversion to dehydroepiandrosterone. The V366M mutant also explained the effectiveness of the anti-prostate cancer drug abiraterone as a potent inhibitor of CYP17A1 by binding tightly at the active site in the WT enzyme. The V366M is the first human mutation to be described at the active site of CYP17A1 that causes isolated 17,20 lyase deficiency. Knowledge about the specificity of CYP17A1 activities is of importance for the development of treatments for polycystic ovary syndrome and inhibitors for prostate cancer therapy.
Collapse
Affiliation(s)
- Mónica Fernández-Cancio
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
| | - Núria Camats
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Christa E Flück
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Adam Zalewski
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Bernhard Dick
- Department of Nephrology and Hypertension, University of Bern, Bern 3010, Switzerland.
| | - Brigitte M Frey
- Department of Nephrology and Hypertension, University of Bern, Bern 3010, Switzerland.
| | - Raquel Monné
- Pediatric Service, Hospital Joan XXIII, Tarragona 43005, Spain.
| | - Núria Torán
- Pathology Department, Hospital Universitari Vall d'Hebron, CIBERER, Barcelona 08035, Spain.
| | - Laura Audí
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
| | - Amit V Pandey
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| |
Collapse
|
23
|
Malikova J, Brixius-Anderko S, Udhane SS, Parween S, Dick B, Bernhardt R, Pandey AV. CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. J Steroid Biochem Mol Biol 2017; 174:192-200. [PMID: 28893623 DOI: 10.1016/j.jsbmb.2017.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/26/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
Abstract
Abiraterone is an inhibitor of CYP17A1 which is used for the treatment of castration resistant prostate cancer. Abiraterone is known to inhibit several drug metabolizing cytochrome P450 enzymes including CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, but its effects on steroid metabolizing P450 enzymes are not clear. In preliminary results, we had observed inhibition of CYP21A2 by 1μM abiraterone. Here we are reporting the effect of abiraterone on activities of CYP21A2 in human adrenal cells as well as with purified recombinant CYP21A2. Cells were treated with varying concentrations of abiraterone for 24h and CYP21A2 activity was measured using [3H] 17-hydroxyprogesterone as substrate. Whole steroid profile changes were determined by gas chromatography-mass spectrometry. Binding of abiraterone to purified CYP21A2 protein was measured spectroscopically. Computational docking was used to study the binding and interaction of abiraterone with CYP21A2. Abiraterone caused significant reduction in CYP21A2 activity in assays with cells and an inhibition of CYP21A2 activity was also observed in experiments using recombinant purified proteins. Abiraterone binds to CYP21A2 with an estimated Kd of 6.3μM. These inhibitory effects of abiraterone are at clinically used concentrations. A loss of CYP21A2 activity in combination with reduction of CYP17A1 activities by abiraterone could result in lower cortisol levels and may require monitoring for any potential adverse effects.
Collapse
Affiliation(s)
- Jana Malikova
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Simone Brixius-Anderko
- Department of Biochemistry, Faculty of Technical and Natural Sciences, Saarland University, 66123 Saarbrücken, Germany
| | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Shaheena Parween
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Bernhard Dick
- Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital of Bern, Bern, Switzerland
| | - Rita Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences, Saarland University, 66123 Saarbrücken, Germany
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
24
|
Association between polymorphisms in sex hormones synthesis and metabolism and prostate cancer aggressiveness. PLoS One 2017; 12:e0185447. [PMID: 28981526 PMCID: PMC5628818 DOI: 10.1371/journal.pone.0185447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022] Open
Abstract
Novel biomarkers for prostate cancer (PCa) diagnosis and prognosis are necessary to improve the accuracy of current ones employed in clinic. We performed a retrospective study between the association of several polymorphisms in the main genes involved in the synthesis and metabolism of sex hormones and PCa risk and aggressiveness. A total of 311 Caucasian men (155 controls and 156 patients) were genotyped for 9 SNPs in AR, CYP17A1, LHCGR, ESR1 and ESR2 genes. Diagnostic PSA serum levels, Gleason score, tumor stage, D´Amico risk and data of clinical progression were obtained for patients at the moment of the diagnosis and after 54 months of follow-up. Chi-squared test were used for comparisons between clinical variables groups, logistic regression for clinical variables associations between SNPs; and Kaplan–Meier for the association between SNPs and time to biochemical progression. We found 5 variants (CYP17A1) rs743572, rs6162, rs6163; (LHCGR) rs2293275 and (ESR2) rs1256049 that were statistically significant according to clinical variables (PSA, D´Amico risk and T stage) on a case-case analysis. Moreover, the presence of A and G alleles in rs743572 and rs6162 respectively, increase the risk of higher PSA levels (>10 ng/μl). With respect to D´Amico risk rs743572 (AG-GG), rs6162 (AG-AA) and rs6163 (AC-AA) were associated with an increased risk; and last, AC and AA genotypes for rs6163 were associated with a shorter biochemical recurrence free survival (BRFS) in patients with radical prostatectomy. In multigene analysis, several variants in SNPs rs2293275, rs6152, rs1062577, rs6162, rs6163, rs1256049 and rs1004467 were described to be associated with a more aggressiveness in patients. However, none of the selected SNPs show significant values between patients and controls. In conclusion, this study identified inherited variants in genes CYP17A1, LHCGR and ESR2 related to more aggressiveness and/or a poor progression of the disease. According to this study, new promise PCa biomarkers for clinical management could be included in these previous SNPs.
Collapse
|