1
|
Nair AG, Ehrhardt GRA, Grunebaum E. Variable Lymphocyte Receptor B Technologies - Are They Ready for Prime Time? Immunol Invest 2025:1-21. [PMID: 39936604 DOI: 10.1080/08820139.2025.2462536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
OBJECTIVE To review the current and the potential research and clinical use of VLRBs. METHODS A literature search was conducted for English studies published in the past 20 years using the terms "Variable Lymphocyte Receptor," "VLR," "VLRB" or "Repebody." Only primary reports were included. RESULTS VLRB-based technologies are currently being investigated for diagnosis, imaging, and treatment of diverse conditions including solid organ and hematological malignancies, infectious diseases, autoimmunity, and degenerative and metabolic disorders. VLRB mAbs can be used to directly recognize disease biomarkers, such as B cells from chronic lymphocytic leukemia, or to deliver drugs to the brain or cancer cells. The VLRB C-terminal multimerization domain has been utilized to create vaccines while VLR-based chimeric antigen receptor (CAR) T cell constructs are being investigated for cancer therapies. CONCLUSIONS The extensive knowledge gained with VLRB mAbs in diverse in vitro and in vivo models emphasizes their promise for translation into clinical applications and readiness for prime time.
Collapse
Affiliation(s)
- Arundhati G Nair
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ghosh M, Gupta PK, Behera LM, Rana S. Structure of Designer Antibody-like Peptides Binding to the Human C5a with Potential to Modulate the C5a Receptor Signaling. J Med Chem 2024; 67:14110-14124. [PMID: 39051153 DOI: 10.1021/acs.jmedchem.4c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
C5a is an integral glycoprotein of the complement system that plays an important role in inflammation and immunity. The physiological concentration of C5a is observed to be elevated under various immunoinflammatory pathophysiological conditions in humans. The pathophysiology of C5a is linked to the "two-site" protein-protein interactions (PPIs) with two genomically related receptors, such as C5aR1 and C5aR2. Therefore, pharmacophores that can potentially block the PPIs between C5a-C5aR1 and C5a-C5aR2 have tremendous potential for development as future therapeutics. Notably, the FDA has already approved antibodies that target the precursors of C5a (Eculizumab, 148 kDa) and C5a (Vilobelimab, 149 kDa) for marketing as complement-targeted therapeutics. In this context, the current study reports the structural characterization of a pair of synthetic designer antibody-like peptides (DePA and DePA1; ≤3.8 kDa) that bind to hotspot regions on C5a and also demonstrates potential traits to neutralize the function of C5a under pathophysiological conditions.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Lalita Mohan Behera
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
3
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Hainline KM, Haddad HF, Gilpin A, Curvino EJ, Varghese S, Collier JH. Active immunotherapy for C5a-mediated inflammation using adjuvant-free self-assembled peptide nanofibers. Acta Biomater 2024; 179:83-94. [PMID: 38447809 PMCID: PMC11045302 DOI: 10.1016/j.actbio.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The terminal protein in the complement cascade C5a is a potent inflammatory molecule and chemoattractant that is involved in the pathology of multiple inflammatory diseases including sepsis and arthritis, making it a promising protein to target with immunotherapies. Active immunotherapies, in which patients are immunized against problematic self-molecules and generate therapeutic antibodies as a result, have received increasing interest as an alternative to traditional monoclonal antibody treatments. In previous work, we have designed supramolecular self-assembling peptide nanofibers as active immunotherapies with defined combinations of B- and T-cell epitopes. Herein, the self-assembling peptide Q11 platform was employed to generate a C5a-targeting active immunotherapy. Two of three predicted B-cell epitope peptides from C5a were found to be immunogenic when displayed within Q11 nanofibers, and the nanofibers were capable of reducing C5a serum concentrations following immunization. Contrastingly, C5a's precursor protein C5 maintained its original concentration, promising to minimize side effects heretofore associated with C5-targeted therapies. Immunization protected mice against an LPS-challenge model of sepsis, and it reduced clinical severity in a model of collagen-antibody induced arthritis. Together, this work indicates the potential for targeting terminal complement proteins with active immunotherapies by leveraging the immunogenicity of self-assembled peptide nanomaterials. STATEMENT OF SIGNIFICANCE: Chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease are currently treated primarily with monoclonal antibodies against key inflammatory mediators. While helpful for many patients, they have high non-response rates, are costly, and commonly fail as anti-drug antibodies are raised by the patient. The approach we describe here explores a fundamentally different treatment paradigm: raising therapeutic antibody responses with an active immunotherapy. We employ innovative supramolecular peptide nanomaterials to elicit neutralizing antibody responses against complement component C5a and demonstrate therapeutic efficacy in preclinical mouse models of sepsis and rheumatoid arthritis. The strategy reported may represent a potential alternative to monoclonal antibody therapies.
Collapse
Affiliation(s)
- Kelly M Hainline
- Duke University, Department of Biomedical Engineering, United States
| | | | - Anna Gilpin
- Duke University, Department of Biomedical Engineering, United States
| | | | - Shyni Varghese
- Duke University, Department of Biomedical Engineering, United States
| | - Joel H Collier
- Duke University, Department of Biomedical Engineering, United States.
| |
Collapse
|
5
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
6
|
Mahita J, Kim DG, Son S, Choi Y, Kim HS, Bailey-Kellogg C. Computational epitope binning reveals functional equivalence of sequence-divergent paratopes. Comput Struct Biotechnol J 2022; 20:2169-2180. [PMID: 35615020 PMCID: PMC9118127 DOI: 10.1016/j.csbj.2022.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Epitope binning groups target-specific protein binders recognizing the same binding region. The “Epibin” method utilizes docking models to computationally predict competition and identify bins. Epibin recapitulated binding competition of repebody variants as determined by immunoassays. In addition, Epibin enabled identification of ‘paratope-equivalent’ residues in sequence-dissimilar variants. Computational epitope binning can scale to allow characterization of entire antigen-specific antibody repertoires.
The therapeutic efficacy of a protein binder largely depends on two factors: its binding site and its binding affinity. Advances in in vitro library display screening and next-generation sequencing have enabled accelerated development of strong binders, yet identifying their binding sites still remains a major challenge. The differentiation, or “binning”, of binders into different groups that recognize distinct binding sites on their target is a promising approach that facilitates high-throughput screening of binders that may show different biological activity. Here we study the extent to which the information contained in the amino acid sequences comprising a set of target-specific binders can be leveraged to bin them, inferring functional equivalence of their binding regions, or paratopes, based directly on comparison of the sequences, their modeled structures, or their modeled interactions. Using a leucine-rich repeat binding scaffold known as a “repebody” as the source of diversity in recognition against interleukin-6 (IL-6), we show that the “Epibin” approach introduced here effectively utilized structural modelling and docking to extract specificity information encoded in the repebody amino acid sequences and thereby successfully recapitulate IL-6 binding competition observed in immunoassays. Furthermore, our computational binning provided a basis for designing in vitro mutagenesis experiments to pinpoint specificity-determining residues. Finally, we demonstrate that the Epibin approach can extend to antibodies, retrospectively comparing its predictions to results from antigen-specific antibody competition studies. The study thus demonstrates the utility of modeling structure and binding from the amino acid sequences of different binders against the same target, and paves the way for larger-scale binning and analysis of entire repertoires.
Collapse
|
7
|
Dissecting the impact of target-binding kinetics of protein binders on tumor localization. iScience 2021; 24:102104. [PMID: 33615202 PMCID: PMC7881221 DOI: 10.1016/j.isci.2021.102104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Systematic control of in vivo behavior of protein-based therapeutics is considered highly desirable for improving their clinical outcomes. Modulation of biochemical properties including molecular weight, surface charge, and binding affinity has thus been suggested to enhance their therapeutic effects. However, establishing a relationship between the binding affinity and tumor localization remains a debated issue. Here we investigate the influence of the binding affinity of proteins on tumor localization by using four repebodies having different affinities to EGFR. Biochemical analysis and molecular imaging provided direct evidence that optimal affinity with balanced target binding and dissociation can facilitate deep penetration and accumulation of protein binders in tumors by overcoming the binding-site-barrier effect. Our findings suggest that binding kinetics-based protein design can be implicated in the development of fine-tuned protein therapeutics for cancers. High binding affinity limits the tumor localization of protein binders in vivo Moderate-affinity binders can exhibit better tumor localization than higher binders Binding kinetics of binders play a central role in controlling tumor localization Exploring the optimal affinity of binders can enhance their therapeutic potential
Collapse
|
8
|
Choi Y, Jeong S, Choi JM, Ndong C, Griswold KE, Bailey-Kellogg C, Kim HS. Computer-guided binding mode identification and affinity improvement of an LRR protein binder without structure determination. PLoS Comput Biol 2020; 16:e1008150. [PMID: 32866140 PMCID: PMC7485979 DOI: 10.1371/journal.pcbi.1008150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/11/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
Precise binding mode identification and subsequent affinity improvement without structure determination remain a challenge in the development of therapeutic proteins. However, relevant experimental techniques are generally quite costly, and purely computational methods have been unreliable. Here, we show that integrated computational and experimental epitope localization followed by full-atom energy minimization can yield an accurate complex model structure which ultimately enables effective affinity improvement and redesign of binding specificity. As proof-of-concept, we used a leucine-rich repeat (LRR) protein binder, called a repebody (Rb), that specifically recognizes human IgG1 (hIgG1). We performed computationally-guided identification of the Rb:hIgG1 binding mode and leveraged the resulting model to reengineer the Rb so as to significantly increase its binding affinity for hIgG1 as well as redesign its specificity toward multiple IgGs from other species. Experimental structure determination verified that our Rb:hIgG1 model closely matched the co-crystal structure. Using a benchmark of other LRR protein complexes, we further demonstrated that the present approach may be broadly applicable to proteins undergoing relatively small conformational changes upon target binding.
Collapse
Affiliation(s)
- Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sukyo Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jung-Min Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Christian Ndong
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
9
|
Sohn YK, Son S, Choi Y, Hwang DE, Seo HD, Lee JJ, Kim HS. Effective inhibition of C3a-mediated pro-inflammatory response by a human C3a-specific protein binder. Biotechnol Bioeng 2020; 117:1904-1908. [PMID: 32068245 DOI: 10.1002/bit.27309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
Complement component 3a (C3a) plays a crucial role in the immune response and host defense, but it is also involved in pro-inflammatory responses, causing many inflammatory disorders. Blockade of C3a has been regarded as a potent therapeutic strategy for inflammatory diseases. Here, we present the development of a human C3a (hC3a)-specific protein binder, which effectively inhibits pro-inflammatory responses. The protein binder, which is composed of leucine-rich repeat modules, was selected against hC3a through phage display, and its binding affinity was matured up to 600 pM by further expanding the binding interface in a module-by-module manner. The developed protein binder was shown to have more than 10-fold higher specificity to hC3a compared with human C5a, exhibiting a remarkable suppression effect on pro-inflammatory response in monocyte, by blocking the interaction between hC3a and its receptor. The hC3a-specific protein binder is likely to have a therapeutic potential for C3a-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yoo-Kyoung Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sumin Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Department of Statistics, Seoul National University, Seoul, Korea
| | - Da-Eun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Yuhan Research Institute, Yuhan Corporation, Yongin, Korea
| | - Hyo-Deok Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Research Group of Natural Materials and Metabolism, Korea Food Research Institute (KFRI), Jeollabuk-do, Korea
| | - Joong-Jae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Department of Biochemistry, Kangwon National University, Chuncheon, Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
10
|
McKitrick TR, Goth CK, Rosenberg CS, Nakahara H, Heimburg-Molinaro J, McQuillan AM, Falco R, Rivers NJ, Herrin BR, Cooper MD, Cummings RD. Development of smart anti-glycan reagents using immunized lampreys. Commun Biol 2020; 3:91. [PMID: 32111965 PMCID: PMC7048801 DOI: 10.1038/s42003-020-0819-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Studies on the expression of cellular glycans are limited by a lack of sensitive tools that can discriminate specific structural features. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus), which secrete variable lymphocyte receptors called VLRBs as antibodies, for generating libraries of anti-glycan reagents. We identified a wide variety of glycan-specific VLRBs detectable in lamprey plasma after immunization with whole fixed cells, tissue homogenates, and human milk. The cDNAs from lamprey lymphocytes were cloned into yeast surface display (YSD) libraries for enrichment by multiple methods. We generated VLRB-Ig chimeras, termed smart anti-glycan reagents (SAGRs), whose specificities were defined by microarray analysis and immunohistochemistry. 15 VLRB antibodies were discovered that discriminated between linkages, functional groups and unique presentations of the terminal glycan motif. The development of SAGRs will enhance future studies on glycan expression by providing sequenced, defined antibodies for a variety of research applications. Tanya McKitrick et al. develop a platform for generating libraries of anti-glycan reagents using immunized lampreys. They identify 15 glycan-specific lymphocyte receptor antibodies that can distinguish between different functional groups of the terminal glycan motif.
Collapse
Affiliation(s)
- Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,University of Copenhagen Glycomics Program, Copenhagen, Denmark
| | - Charles S Rosenberg
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hirotomo Nakahara
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Rosalia Falco
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,Marine Science Center, Northeastern University, Boston, MA, 02115, USA
| | - Nicholas J Rivers
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Acceleron Pharma, Boston, MA, 02110, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Hassan KMA, Hansen JD, Herrin BR, Amemiya CT. Generation of Lamprey Monoclonal Antibodies (Lampribodies) Using the Phage Display System. Biomolecules 2019; 9:E868. [PMID: 31842457 PMCID: PMC6995607 DOI: 10.3390/biom9120868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
The variable lymphocyte receptors (VLRs) consist of leucine rich repeats (LRRs) and comprise the humoral antibodies produced by lampreys and hagfishes. The diversity of the molecules is generated by stepwise genomic rearrangements of LRR cassettes dispersed throughout the VLRB locus. Previously, target-specific monovalent VLRB antibodies were isolated from sea lamprey larvae after immunization with model antigens. Further, the cloned VLR cDNAs from activated lamprey leukocytes were transfected into human cell lines or yeast to select best binders. Here, we expand on the overall utility of the VLRB technology by introducing it into a filamentous phage display system. We first tested the efficacy of isolating phage into which known VLRB molecules were cloned after a series of dilutions. These experiments showed that targeted VLRB clones could easily be recovered even after extensive dilutions (1 to 109). We further utilized the system to isolate target-specific "lampribodies" from phage display libraries from immunized animals and observed an amplification of binders with relative high affinities by competitive binding. The lampribodies can be individually purified and ostensibly utilized for applications for which conventional monoclonal antibodies are employed.
Collapse
Affiliation(s)
- Khan M. A. Hassan
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA
| | - John D. Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA;
| | - Brantley R. Herrin
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Chris T. Amemiya
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA
| |
Collapse
|
12
|
Kim TY, Park JH, Shim HE, Choi DS, Lee DE, Song JJ, Kim HS. Prolonged half-life of small-sized therapeutic protein using serum albumin-specific protein binder. J Control Release 2019; 315:31-39. [PMID: 31654685 DOI: 10.1016/j.jconrel.2019.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 01/20/2023]
Abstract
Many small-sized proteins and peptides, such as cytokines and hormones, are clinically used for the treatment of a variety of diseases. However, their short half-life in blood owing to fast renal clearance usually results in a low therapeutic efficacy and frequent dosing. Here we present the development of a human serum albumin (HSA)-specific protein binder with a binding affinity of 4.3nM through a phage display selection and modular evolution approach to extend the blood half-life of a small-sized therapeutic protein. As a proof-of-concept, the protein binder composed of LRR (Leucine-rich repeat) modules was genetically fused to the N-terminus of Glucagon-like Peptide-1 (GLP-1). The fused GLP-1 was shown to have a significantly improved pharmacokinetic property: The terminal half-life of the fused GLP-1 increased to approximately 10h, and the area under the curve was 5-times higher than that of the control. The utility and potential of our approach was demonstrated by the efficient control of the blood glucose level in type-2 diabetes mouse models using the HSA-specific protein binder-fused GLP-1 over a prolonged time period. The present approach can be effectively used in enhancing the efficacy of small-sized therapeutic proteins and peptides through an enhanced blood circulation time.
Collapse
Affiliation(s)
- Tae Yoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Ho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ha Eun Shim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk, 580-185, Republic of Korea
| | - Dae Seong Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk, 580-185, Republic of Korea
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk, 580-185, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
13
|
Mishra R, Rana S. A rational search for discovering potential neutraligands of human complement fragment 5a (hC5a). Bioorg Med Chem 2019; 27:115052. [DOI: 10.1016/j.bmc.2019.115052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022]
|
14
|
Son S, Park J, Seo H, Lee HT, Heo YS, Kim HS. A small-sized protein binder specific for human PD-1 effectively suppresses the tumour growth in tumour mouse model. J Drug Target 2019; 28:419-427. [PMID: 31524014 DOI: 10.1080/1061186x.2019.1669042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immune checkpoint inhibitors have drawn a consider attention as an effective cancer immunotherapy, and several monoclonal antibodies targeting the immune checkpoint receptors, such as human programmed cell death-1 (hPD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), are clinically used for treatment of various cancers. Here we present the development of a small-sized protein binder which specifically binds to hPD-1. The protein binder, which is composed of leucine-rich repeat (LRR) modules, was selected against hPD-1 through phage display, and its binding affinity was maturated up to 17 nM by modular evolution approach. The protein binder was shown to be highly specific for hPD-1, effectively inhibiting the interaction between hPD-1 and its ligand, hPD-L1. The protein binder restored T-cell function in vitro, and exhibited a strong anti-tumour activity in tumour mouse model, indicating that it acts as an effective checkpoint blockade. Based on the results, the developed protein binder specific for hPD-1 is likely to find a potential use in cancer immunotherapy.
Collapse
Affiliation(s)
- Sumin Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jinho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Hyodeok Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Hyun Tae Lee
- Department of Chemistry, Konkuk University, Seoul, Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Seoul, Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
15
|
Waters EA, Shusta EV. The variable lymphocyte receptor as an antibody alternative. Curr Opin Biotechnol 2018; 52:74-79. [PMID: 29597074 PMCID: PMC6082701 DOI: 10.1016/j.copbio.2018.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/21/2023]
Abstract
Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins in jawless vertebrates that function similarly to Ig antibodies. However, VLRs possess a distinct crescent-shaped structure and modularity that results in a concave binding interface that contrasts significantly with Ig antibodies. Antigen binding interactions result in specific, high affinity VLR binding interactions with both proteins and glycans. The natural sourcing of VLRs allows for immunization strategies, while the modularity enables a whole host of protein engineering approaches including consensus scaffolds, designed libraries and directed evolution with display technologies. VLR technologies have been recently deployed for applications in cell-specific targeting, drug delivery, tumor diagnostics and even protein stabilization. It is anticipated that the VLR field will continue to emerge to provide unique solutions for targeting glycans, evolutionarily conserved proteins and cellular specificity.
Collapse
Affiliation(s)
- Elizabeth A Waters
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
16
|
A dimeric form of a small-sized protein binder exhibits enhanced anti-tumor activity through prolonged blood circulation. J Control Release 2018; 279:282-291. [DOI: 10.1016/j.jconrel.2018.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
|